
 SMC 2009

ORIPS: An Open Resource-based Integrated
Platform System for business process execution

Hongming Cai
School of Software

Shanghai JiaoTong University
Shanghai, China

hmcai@sjtu.edu.cn, h ming.cai@bit-institute.com

Dominik Englert and Hao Yu
BIT Institute

University of Mannheim
Mannheim, Germany

{dominik.englert | hao.yu}@bit-institute.com

Abstract—An open resource-based integrated platform
system is built for the execution of business processes,
assuming that the business process model is the fundamental
factor for the next generation of integrated business
information systems. First of all a resource meta-model is
constructed, which represents the basic information unit. Then
the concept of domain ontology is used to organize and manage
resources obtained from distributed and heterogeneous sources.
Based on the resource, Bite is used to compose RESTful
services in order to control business processes in an orderly
way. Therefore, the way of services to call resources within the
limits of traditional web service architectures is being
transferred into a resource flow. A software architecture is
proposed and tested, based on an exemplary business process
scenario. The result indicates a new research direction for the
application of business process models based on the platform
ORIPS.

Keywords—ORIPS, RESTful web service, resource model,
ROA, business process, ontology, distributed systems

I. INTRODUCTION

Information systems within the enterprise always involve
various people, processes, data, documents, rules and other
factors. In order to share information in a more effective way,
we need an information system architecture based on
collaboration concepts to execute business process models.
Therefore, an open, flexible and in addition integrated
software platform is required for successful implementations
of information systems. The approach of the Service-oriented
Architecture (SOA) seems to be able to solve these
requirements. SOA is an abstract concept for the creation of
application landscapes within and across organizational
boundaries based on the composition of loosely coupled
components [1]. The basic concept for the realization of
SOA can be seen in the Web Service technologies, which are
structured in a stack model, including SOAP, the Web
Services Description Language (WSDL) and the Business
Process Execution Language (BPEL) [2].

In the recent past there grew an increasing interest in the
resource-oriented approach proposed by the Representational
State Transfer (REST) because of the complexity of the Web
Service specifications. Furthermore requires REST far fewer
development steps than e.g. SOAP. The Resource-oriented
Architecture (ROA) is based on the concept of the resource,

which is an abstraction of information [3]. Every resource
has a uniquely identifier in form of a Uniform Resource
Identifier (URI), which contains the name and the address of
the resource. The access to resources is being ensured
through RESTful Web Services using the Hypertext Transfer
Protocol (HTTP). The response from the server includes the
representation of this resource. In order to support the
dynamic, flexible and scalable execution of business
processes, some extensions of the resource-oriented
paradigm with focus on business entities or respectively
resources have to be proposed [4]. But semantic relation
between these resources in the business process is lack to
some extent. Therefore, we are realizing an Open Resource-
based Integrated Platform System (ORIPS) for the execution
of business process models to reach a flexible as well as open
enterprise infrastructure in order to integrate heterogeneous
business applications for the collaborative work within and
across enterprises. Relating to semantic relations between
different resources, one of the centric components of ORIPS
is the access, management and use of resources implemented
on the basis of domain ontology.

II. THE MAIN IDEA OF ORIPS FRAMEWORK

Fig. 1 illustrates the realization of our RESTful Web
Service-based architecture for the execution of business
process models. The construction of specific mapping
mechanism is stringent required to map the business process
model respectively the particular process steps on the
resources. Within this scope a resource can be a personnel
resource, which carries out the tasks of business processes, a
data resource, which is an integrated and comprehensive data
source that makes data identifiable and accessible, a tool
resource, which supports a personnel resource in their task
execution, et cetera. The business process model generated
during the build time includes the goal, tasks and rules.
Furthermore it is used to control the execution of the process,
i.e. to control the process thus resource and service match
and carry out. The key point is that the coordination through
a resource array flows in a serialization of services contrary
to the traditional way of calling the resource individually
through services. This represents a more efficient way for the
services to call the resources in a sequence order pattern.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
5261

 SMC 2009

Resource-based Run-time Supported Environment

Resource
Array

Resource
Array

Legacy
System
Service

Encapsulation

RESTful
Web Service

Java
Program
Service

Encapsulation

RESTful
Web Service

Applica-
tion

Service
Encapsulation

RESTful
Web Service

.NET App-
lication
Service

Encapsulation

RESTful
Web Service

Resources Supported Platform

Domain Ontology

People
Resources

Data
Resources

Process
Resources

Tool
Resources ...

Distributed
Resources

Business Process Model
(Goal, Task, Rule)

Figure 1. Concept of ORIPS for the execution of business process models

Service encapsulation is the main approach to integrate
applications in enterprises in the context of SOA. Hereby the
execution of the business processes takes place on a high
service level instead of a low level within one system. In
order to realize a flexible as well as open enterprise
infrastructure, service encapsulation is used to construct
RESTful Web Services for the interaction with legacy
systems, java programs, application interfaces, and .net
applications based on one resource oriented platform. The
core of the concept for the retrieval, organization and
management of the resource model and resources is the
involvement of domain ontology. The creation of relations
between distributed resources with possibly different
representation formats and resource models occurs through
mapping into one united virtual space. The domain ontology
contains not only features of the resources but also
operations, rules, events as well as messages. In fact we are
able to build the semantic relations between resources and
resource models on the basis of domain ontology and to
execute complicated operations such as association,
comparison, et cetera.

III. RESOURCES AND RESTFULL SERVICES MODELLING

A. Business process to ORIPS model mapping
According to DAVENPORT a business process is “simply a

structured, measured set of activities designed to produce a
specified output for a particular customer or market” [5].

In the world of SOA a process invokes external services
and is itself exposed as a service. In the context of ROA,
however, process interacts with resources and itself exposed
as a resource. With HTTP PUT on the process, the instance
of process is created and the corresponding URI is returned.

Within the scope of ROA data can be regarded as
resources naturally. Data represent the business objects in the
enterprise and can be modeled using e.g. the Unified
Modeling Language (UML) or the Entity Relationship
Model (ERM).

It is important to note, that not every business object
should be considered as a resource. For example, quote and
quote items should be together defined as one resource
instead of two separated. So the non-resource business
objects have to be firstly eliminated from the data model. We
define three types of business objects ranked from the point
of view of different URI representations. The first one is the
so-called absolute independent business object. This type
does not rely to other business objects. Accordingly it always
appears in the first segment of a URI. The second one is the
semi independent business object, which can be used alone
as well as referenced by other business objects. Accordingly
this type is able to appear in any segment of a URI. The last
one is the type of dependent business objects, which cannot
exist alone. The lifecycle of such business objects depends
on the lifecycle of others. Correspondingly they can never
appear at the first segment of a URI.

Organizational units are responsible for the execution of
their dedicated activities. They can also be modeled in form
of resources and their resource representation can also be
organized based on the hierarchical structure of the
organization units within the bounds of the enterprise.
Control flows represent the path in which activities are
executed. They are better described in an independent
language in order to achieve the business flexibility and
agility. It will be discussed later in this paper.

Activities get an input and produce a defined output. We
can consider both of them as a set of data in certain states. So
activity can be regarded as the transformation of data states.
We distinguish between two types of activities, simple and
compound activities. A simple activity operates on one main
resource and possible other related resources. It can then be
modeled as one RESTful service operating on the main
resource using the standard interface. In contrast to this a
compound activity operates on at least two groups of
resources, which are not related. In that case the compound
activity should be divided into a set of simple activities so
that they can be modeled with some RESTful services.

B. Resource Meta-Model
To achieve the goal of comprehensive process integration,

first of all the resources in an existing distributed and
heterogeneous system landscape have to be identified and
encapsulated. Then resources will be registered and managed
within the resource integrated platform, so as to shield the
differences among the different distributed, heterogeneous
systems. At last, resources are able to achieve
interoperability in the way of RESTful Web Services.
Regarding the handling of resources, a business process step
contains the procedure, in which the business information of
resource models are carried out and properties of resource
models are changed according to certain operations, and the
corresponding parameters and messages are sent to the next
business process step. Therefore, it is necessary to define a
unified resource modeling method. There exist a lot of
researches about the area of resource modeling, some of the
studies use object-oriented modeling methods and define the
structure and the relationship of resource models through
mechanisms such as inheritance and encapsulation. Others

5262

 SMC 2009

analyzed resources along multi dimensions and described
resources using ontology-based concepts and approaches
from the research area Semantic Web. Based on workflow
analysis, a resource meta-model is proposed at this point. By
this method of modeling resources, the integrated platform
can organize and manage the static and dynamic messages in
the enterprise system, as well as establish an open, extensible
framework for business application systems so as to satisfy
the integration requirements of distributed, dynamic, flexible,
and typically heterogeneous systems. Fig. 2 illustrates the
resource meta-model, which is accurately defined in the
following.

RESTfull Service
Series of
activities

Resource
Meta-Model

Management
Information

Rules Set Resource
Properties

Activity
State

Operations
Set

Activity

Figure 2. Resource Meta-Model

Definition 1 (Resource Meta-Model): The Resource
Meta-Model (RMM) is described as a set of Resource
Properties, Management Information, Operations Set, Rules
Set and Resource View, and the relationship RE:

RMM = (RP, MI, OS, RS, RV, RE)

Definition 2 (Resource Property): A Resource Property
is being presented by the following quadruple:

RPi = (ResID, ResType, SProps, DProps)

Hereby the ResID is the unique identification of a
resource entity. ResType is the underlying category, it is the
description of a class of resources with a specific static
property and it is able to organize the resource types by using
a hierarchical tree method. SProps includes the static
properties of a resource, the values of these properties will
never be changed when the resource object is set up, e.g. the
manufacturing date of a machine. The dynamic properties of
a resource can be seen in DProps, these properties are used to
describe the usage calendar, real-time status and lifecycle
status of resource objects and so on, e.g. the status (created,
reviewing, freezing, et cetera) of orders in a sales process.
Dynamic properties can describe the status of resources in
business activities and are suitable to workflow modeling.

Definition 3 (Management Information): Management
Information (MI) is defined in form of the tuple:

MI = (SysInfo, PlatformInfo)

SysInfo is the information in the system where resources
are stored. PlatformInfo is the register information of
resources in the integrated platform. It is used to confirm the
RESTful Web Service presentation method of resource
objects.

Definition 4 (Operations Set): An Operation Set (OS) is
defined as a set of several functions Oi with the property and
status of the resource object as its parameters. It can be
mapped to the specific property relationship operation. E.g.
the order resource contains the operations of: create, delete,
modify, freeze, activate and so on.

Definition 5 (Rules Set): A Rules Set (RS) is defined as
a set of mapping functions Ri, which are able to map
functions from a resource property to a specific workflow
status. It is used to reflect the rules and restricts of a resource
status transition in the processes. E.g., when the order’s
goods are availabe in the inventory, the status can be
converted to activated. Business rules are organized based on
resources, and the choreography of resource services can be
more convenient through compounding resource rules in the
integration of processes.

Definition 6 (Resource View): The Resource View (RV)
is the result shown by the resource properties according to a
certain rule. The core of the resource view is the realization
of a set of rules f (RP). It is used to provide the functions of
resources such as display, search, filter and buffer.

REi is a relationship used to connect resources. After the
resource-oriented analysis and reorganization of the selected
system, a set of fine-granular business resources will be the
resulting output. By creating virtual resources, resources are
unified operated, monitored and managed. For example we
can define a cluster of resources, which occur usually
together in the business activities as a virtual resource, thus
avoid the data interaction of a large number of fine-granular
service resources, and simplify the choreography of resource
services. In order to create virtual resources, the following
main relationships among resource models, namely
inheritance, aggregation, association, and combination can be
used.

C. Ontology for the organization of resources
To take advantage of resources efficiently, resources are

grouped according to similar features and preferences related
to the business process model. Therefore, ontology is built,
where entities, operations, and conceptional relations are
included for the organization and utilization of resources.
Based on ontology of a concrete domain, a pushing
mechanism can be built for a resource array flow. Those are
arranged in a series of services to make services interact with
resources more efficiently. For further details concerning
ontology see [6]. Resources of domain ontology may have
complex and dynamic connections to fulfill different
disposed requests. Fig. 3 illustrates a fragment related to a
given quote process. For example, the resource Quote could
link to the resource Customer by a request relation and the
resource Product and Purchase Order are linked to get
detailed information about the product price, delivered daily
and so on. If more information related to the inventory and
stock is needed, more Resource models such as Good
Receipt, Purchase Order Request, Invoice, and Bill of
Materials (BOM) will be involved. One point is that the
conception in the domain ontology includes some operations
inside the resources, which are references for the

5263

 SMC 2009

organization of resources according to extern RESTful
services in the run time of a business process model.

Product
<Get price>

<Modify price>
< >

Customer
<Check Credit>

<Evaluate>
<...>

Quote
<Check Completeness>

<Check Availability>
<Determine delivery date>

<Calculate price>
< >

Purchase Order
<Check Completeness>

<Check Availability>
<Determine delivery date>

<Calculate price>
< >

request

reference

transform

reference

Product Order Request
<Get Request People>

<Determine quality>
<Calculate price>

< >

Invoice
<Get Amount>

< >

Product BOM
<Get price>

< >

Goods Receipt
<Check Availability>
<Determine quality>

<Calculate price>
< >

Product Order
<Check Availability>
<Determine quality>

<Calculate price>
< >

Organization unit
<Get Unit Rank>
<Get Chief man>

< >

Related

Stock State
<Get Product item>

< >

reference

reference

Related

Related

Related

Related

Figure 3. Fragment of the domain ontology related to the quote process

Based on this conception of certain domains, some
complex operations between two resources such as similarity
calculation and associated navigation could be executed.
This facilitates the building of semantic relations between
resources as well as to use these resources in a deeper level.

D. Representation of Resources and RESTful services
In the context of ROA resources are represented through

URI, as mentioned. The uniform URI template for resources
consists of three parts:

“/{namespace}/{name}?{parameters}”

Hereby namespace is used to avoid possible name
conflicts in the heterogeneous environment because so many
resources exist. Furthermore based on namespaces the
resources can be better structured. For example, to represent
organization units we can use a namespace to determine the
organizational structure that the organization unit belongs to,
such as /SalesDepartment/Regional/. Another example is the
dependent business object, whose namespace contains the
business object it relies on, such as /customer/quote. A name
is used to identify a resource. Because of the variant names
of the same resource ontology is used to avoid such kind of
ambiguity. Parameters are used to help defining the limits of
resources. For example, an identifier of a resource is used as
a parameter to get a certain resource. Resources can be
represented in different forms. In the context of HTTP they
are MIME media types. Typical types are, e.g., text/html for
web pages, or application/json for JavaScript Object
Notation. RESTful services use standard HTTP methods
(GET, PUT, POST, and DELETE) to access or modify the
resources. Given the resource URI, the GET method is used
to retrieve the particular state of resources. With PUT a new
resource, which is represented in form of the given URI, will
be created, which can be deleted later with the DELETE
method. POST changes the resource state, which, together
with parameter, is most flexible to support possible actions
on resources. Parameters are used to designate, what kind of
state change should be made on the resources. For example,

to check the availability of a quote, the method POST will be
issued to the URI /customer/quote?ac=available. Based on
this way of representation business processes can be fully
supported in the context of Resource-oriented Architecture.
To compose the RESTful services we use the Bite [7]
language, which is a minimalist choreography language and
runtime built to support the Web. Bite is similar to BPEL but
more lightweight. It contains particularly two main
constructs: activities and links. An activity defines a unit of
tasks and links define dependencies between activities. The
basic constructs in Bite are the following: <receive>, <reply>,
<receive-reply>, <invoke>, <local>, <wait>, <assign>,
<pick>, <while>, and <source>. Within the scope of Bite
data-centric flows as well as interactive flows are supported.
For further details of Bite see [7].

IV. CASE STUDY AND DISCUSSION

A. Architecture of ORIPS
Based on resources and RESTful web services, Fig. 4

illustrates the framework of ORIPS, which is divided into six
components explained in the following:

CAPPERP CRM HRMES PDM

Heterogeneous System Resources Adapter

Resource Model Management

Resources
Registration

Center
resource model
mapping pattern

Rule Set
Features Set
Operations Set

Model
Export/Import
Management

Model
Lifecycle
Management

Domain Ontology

Resource Model Register

Resource Object Management

Lifecycle management
Report management
Representation transfer

Resource Object

Resource
Strategy
Manager

Resource
Handing
Engine

Resource
Router

Manager

Resource
Object Cache
pool

Resource
View

Resource
Identifier

Resource
Representation

Resource Service Management
Process
Lifecycle
Management

Service
Interface
Definitions

Services
Authority
Management

Service
Configuration
Management

Application
Interface

Resource service
dynamic binding

Resource
representation

Resource
requirement

Resource Service Bus

Service
Registration

Service
Attaining

Service
Execution

Service
Scheduling

Process Management

Process
Lifecycle
Management

Service
Exeption
Handling

Resource
Service
Scheduling

Workflow
Engine

Service
Temporary Data

Transfer Process
DB

Figure 4. Framework of ORIPS

(1) Heterogeneous System Resources Adapter: A
Resource Adapter supports heterogeneous systems to
encapsulate operational resources, and then registering them
to the Resources Registration Center on the integrated
platform in order to make sure that the integrated platform
can use the unified resource identifier to implement
operations on the heterogeneous resources.

(2) Resource Model Management Module: This module
is responsible for the management of the resource model
information from various heterogeneous information systems.
Domain Ontology is an essential reference to organize the

5264

 SMC 2009

resource models. The meta-information of the resource
model and resource mapping strategies are stored in XML
files and can be used by the resource object model. This
module also provides the service dynamic binding model
information to the Resource Service Module.

(3) Resource Object Management Module: This
component manages the resource object information, which
is obtained from different heterogeneous systems. The
resource request from the Resource Service Module will be
assigned through the Resource Strategy Manager to the
corresponding Resource Handling Engine, and then the
parsed request will be routed by the Resource Routing
Manager and integrated with the Resource Presentation from
the heterogeneous systems and sent back to the Resource
Service Module. URI is used to integrate resources to the
Resource Object Cache Pool and enhance the performance of
the integration process.

(4) Resource Service Management Module: The lifecycle,
discovery and matching, transaction and security of resource
services are managed within the limits of this module. It
receives service dynamic binding requests and after the
service interface definition and configuration it publishes
them in the format of a Web Application Description
Language (WADL) document [8], so that the external
applications can call these services.

(5) Resource Service Bus: It ensures the information
transfer and the routing among resource services. It includes
the publishing, subscription, response to request of resource
services, and it supports the synchronous or asynchronous
messages, as well as records the call history of services,
measures and monitors data.

(6) Process Management Module: This component is
responsible for the management of process service lifecycle
and choreography, and it provides the workflow engine to
parse the resource process execution language. Service
Temporary Data Transfer Module embeds the data handling
scripts into the resource service process files, and executes
the operations extraction, filtering, cleaning, and transfer on
the input and output parameters among services.

B. An exemplary case scenario
The following example, depicted in Fig. 5, demonstrates

how to use our approach to implement a business process in
the context of ROA. A customer sends a request for a quote
(RFQ) to the sales department of a company. In the first
instance the sales employee checks the completeness of the
request. If some data lack, the customer will be requested to
complement the request. In the second step the type and
quantity of products that are requested are checked for their
availability in the stock. If they are not available, the request
will be rejected. In the case of availability the delivery date is
determined and the price is calculated. A quote will then be
sent to the customer.

First of all we analyze the resources involved in the
process. Based on our approach the quote items are part of
the quote and should not be treated as resources. The quote,
however, is a resource which contains the quote items as well
as the quote. Although there is a request for a quote in the

process, we think it is just a status of quote. Because a quote
relies on the customer, it is classified as a dependent resource.
A possible URI for the quote is then /customer/quote. Hereby
the customer is classified as an absolute independent
resource and can be represented with the URI /customer. A
Product can be independent as well as dependent, which is
referenced by a quote item. Accordingly a possible URI for
the product is then /product or /customer/quote/product. The
mentioned resources and their relationships are illustrated in
Fig. 3. There exist mainly five activities in the activity
diagram that relate to the resource handling (Fig. 5). They
are all simple activities because they operate on one resource,
namely the quote. At first a PUT method is issued on the
resource /customer/quote to create a new quote with initial
status. For the activity check request for quote a POST
method is issued on the resource
/customer/quote?ac=checkCompleteness. Hereby a
parameter is used to explicitly identify the change of the
status. All possible operations on a resource are described
within ontology, accordingly there exists no ambiguity
regarding to the semantics of this operation. The activities
check availability, determine delivery date and calculate
price can be handled similarly. To get the status of the quote
a GET method can be issued on the resource /customer/quote.

Inventory
Department

Sales
Department

Customer

Send RFQ Check RFQ

call back

not complete
Check Availability

complete

refuse

Determine delivery date

Calculate price

Send quote

not available

available

compliment RFQ

Figure 5. Example scenario quote process

In the Table 1, the whole process is designed in the Bite-
language.

TABLE 1. PROCESS EXPRESSED WITH BITE

<process name="requestForQuoteProcess">
 <receive name="requestForQuote"
 url=http://example.com/requestForQuoteProcess />
 <invoke name="checkCompleteness"
 invocationTarget="http://example.com/customer/
 quote?ac=checkCompleteness">
 <source name="requestForQuote" input="yes"/>
 <input value="requestForQuote" />
 </invoke>
 <reply name="requestForCompleteness">
 <source name="checkCompleteness"
 condition="checkCompleteness==no" />
 <input value="Please complete the request for quote
 with the url http://exmaple.com/customer/quote" />
 </reply>

5265

 SMC 2009

 <invoke name="checkAvailability"
 invocationTarget="http://example.com/customer/
 quote?ac=checkAvailability">
 <source name="checkCompleteness"
 condition="checkCompleteness==yes"
 input="yes"/>
 <input value="requestForQuote" />
 </invoke>
 <reply name="refusal">
 <source name="checkAvailability"
 condition="checkAvailability==no" />
 <input value="The products you requested are not
 available." />
 </reply>
 <invoke name="determineDeliveryDate"
 invocationTarget="http://example.com/customer/
 quote?ac=deterDeliveryDate">
 <source name="checkAvailability"
 condition="checkAvailability==yes"/>
 <input value="requestForQuote" />
 </invoke>
 <invoke name="calcPrice"
 invocationTarget="http://example.com/customer/
 quote?ac=calcPrice">
 <source name="determineDeliveryDate"/>
 <input value="requestForQuote" />
 </invoke>
 <reply name="quote">
 <source name="calcPrice"/>
 </reply>
</process>

C. Discussion
Compared with other approaches, which use the abstract

concept of resource-oriented architecture to support business
processes [4, 9], our approach is highlighted by the following
features:

All basic elements of a business process are mapped
to corresponding elements in resource-oriented
architecture to build a basis for the implementation.
Unlike the mapping of tasks on resources in [9], we
propose the corresponding mapping of RESTful
services on resources, which is natural. Compared
with [4], which proposed the information-centric
business modeling and which requires the
transformation of usual task-centric business
modeling, our approach does not require suchlike
transformation.

Unlike the use of micro-formats to define the next-
step actions in [9], which burdens the client by
transferring the control of a business process to the
client, Bite is used to compose RESTful services so
that a central control of a business process on the
server-side is possible.

One of the main problems within the scope of ROA
is the production of a large number of objects [10].
With our REST-based approach this problem can be
partly avoided. On the one hand, a resource is
assigned to a well structured URI, so the resource
management can be executed in a much more
efficient way. On the other hand, ontology is
introduced to build semantic relationships between
resources.

Furthermore a resource meta-model provides a
unified information framework for the formal
description of resources. By introducing the elements
process, activity, people, data and management
information into one body, the resource has much
more semantics than other general formats such as
UML, ERM and so on.

V. CONCLUSIONS

Based on RESTful web services, a resource-based
integrated platform for the execution of business processes is
proposed. Comparing to SOA and other ROA platforms,
ORIPS focuses on semantic relations among the resources.
Based on the concept of domain ontology, a resource in the
platform is organized effectively in order to support the
matching of services and resources. Furthermore an
exemplary business process is given for testing the platform.
The further research will focus on the mechanism of pushing
ontology-based resources to a serial of services.

ACKNOWLEDGMENT

This paper is supported by the National High Technology
Research and Development Program of China (“863”
Program) under No.2008AA04Z126, the National Natural
Science Foundation of China under Grant No.60603080,
No.70871078, and the Aviation Science Fund of China under
Grant No.2007ZG57012. Furthermore we want to express
our gratitude to the Alfried Krupp von Bohlen und Halbach
Foundation for supporting this joint research.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design, Upper Saddle River: Prentice Hall, 2005

[2] S. S. Kumar, and S. Sinha, “Limitations of Web Service Security on
SOAP Messages in a Document Production Workflow Environment,”
16th International Conference on Advanced Computing and
Communications, 2008, IEEE Press, pp. 342 - 346

[3] L. Richardson, and S. Ruby, RESTful Web Services, Cambridge:
O’Reilly, 2007

[4] S. Kumaran, R. Liu, P. Dhoolia, T. Heath, P. Nandi, and F. Pinel, “A
RESTful Architecture for Service-Oriented Business Process
Execution,” Proceedings of IEEE International Conference on e-
Business Engineering 2008, pp. 197-204

[5] T. H. Davenport, Process Innovation: Reengineering Work through
Information Technology, Boston: Harvard Business School, 1992

[6] R. Studer, S. Grimm, and A. Abecker, Semantic Web Services:
Concepts, Technologies, and Applications, Heidelberg: Springer,
2007

[7] F. Curbera, M. Duftler, R. Khalaf, and D. Lovell, “Bite: Workflow
Composition for the Web,” Proceedings of IEEE International
Conference on Service Oriented Computing 2007, pp. 94-106

[8] T. Takase, S. Makino, S. Kawanaka, K. Ueno, C. Ferris, and A.
Ryman, Definition Languages for RESTful Web Services: WADL vs.
WSDL 2.0, IBM Reasearch, 2008

[9] X. Xu, L. Zhu, Y. Liu, M. Staples, “Resource-Oriented Architecture
for Business Processes,” 15th Asia-Pacific Software Engineering
Conference 2008, pp. 395-402

[10] M. Muehlen, J. V. Nickerson, and K.D. Swenson, “Developing web
services choreography standards: the case of REST vs. SOAP,“ in:
Decision Support Systems, vol. 40(1), 2005, pp. 9-29

5266

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

