
An Empirical Investigation of Search-Based
Computational Support for Conceptual Software

Engineering Design
Christopher L. Simons and Ian C. Parmee

Department of Computer Science,
University of the West of England,

Bristol, BS16 1QY, United Kingdom.
chris.simons@uwe.ac.uk, ian.parmee@uwe.ac.uk

Abstract—Conceptual software engineering design is an
intensely people-oriented and non-trivial activity, yet current
computational tool support is limited. While a number of search-
based software engineering approaches to support software
design have been reported, few empirical studies into their
application have been described. This paper reports the findings
of an observational study of conceptual design episodes in a UK
higher education problem domain. When compared with a
manual design episode, a design episode enabled by a user-
interactive, search-based, evolutionary computation tool
generates a large number of useful and interesting candidate
designs, and provides enhanced qualitative and quantitative
evaluation. It is also found that tool-supported visualization of
UML class designs offers opportunities for sudden design
discovery, and that designers respond positively to opportunities
to explore and exploit multiple candidate designs. It appears
therefore that search-based computational tool support offers
high potential in the support of conceptual software engineering
design.

Keywords—evolutionary computation, software design,
search, user-interaction.

I. INTRODUCTION

Conceptual software engineering design is an intensely
people-oriented activity wherein concepts and information
relating to a relevant problem domain are identified and
evaluated. However, the act of conceptual software design is
non-trivial and demanding for software engineers to perform.
Furthermore, the current extent of computational tool support
for conceptual software design is limited. Unified Modeling
Language (UML) tools e.g. [1] appear to provide the designer
with a means to formally record the output of design decisions
rather than support the design process. For any conceptual
design support tool to be effective, it must proactively support
and enable the design process itself. Following on from
previous research [2], [3], we continue to suggest that it is
impossible to completely automate the people-oriented richness
of the design process and exclude the designer. Rather, we
would suggest that it is highly desirable to support (not replace)
the designer. For this to be effective, the human designer and
the support tool must collaborate interactively in an iterative
and opportunistic process beginning with a design problem
domain and leading to useful and interesting design solutions.

A number of approaches have arisen in the emerging field
of Search-Based Software Engineering (SBSE) to assist the
human software engineer with design activities. For example,
heuristic search techniques have been suggested by Mitchell
and Mancoridis as a mechanism to extract design abstractions
from source code [4]. Search-based approaches to module
clustering have been reported wherein the architecture of
software modules is reorganized with respect to various
cohesion and coupling metrics [5]. More recent research
reports the automatic reverse engineering of source code to
infer subsystem abstractions which may be useful for a variety
of software maintenance activities [6]. Search-based
refactoring approaches have also been proposed and show
promising results [7], [8]. However, it is characteristic of
module clustering and refactoring that both are essentially
down-stream design activities with respect to the software
lifecycle. It seems likely that the software engineer will have
already designed, implemented and deployed at least initial
versions of the software system before such down-stream
search-based approaches may be of practical benefit.

Up-stream search-based design support approaches are not
plentiful in the literature, although Lo and Chang [9] report the
up-stream application of clustering techniques to software
component architecture design, and Aversano et al. [10] report
a search-based approach to semi-automatically support the
design of service compositions by means of genetic
programming. Previous work by the authors [11], [12] reports
results of search-based support for upstream conceptual design,
in which the human designer and computational tool support
collaborate to jointly steer the search through a space
comprised of a mass of candidate solutions. As an upstream
design activity, collaboration between software engineer and
computational tool support is considered crucial to enhance the
integrity of conceptual software designs.

However, despite the encouraging results achieved,
empirical studies of the effectiveness of up-stream search-
based support approaches appear lacking in the research
literature. Specifically, no examples of empirical studies of
search-based computational tool support for industrial
conceptual software design are evident. This paper aims to
address this shortfall and reports the findings of participant
observation which are used to assess the effectiveness of user-

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2577

interactive search-based tool support for up-stream conceptual
software design.

The structure of the remainder of the paper is as follows.
Section 2 provides a brief overview of user-centered,
evolutionary search-based approach for support of conceptual
software design. Section 3 describes the investigation problem
domain, while section 4 details the method used to assess the
participant observation. Section 5 specifies observation and
data collection, section 6 details the results obtained and
section 7 offers analysis and discussion of the results. Threats
to validity are presented in section 8, and the paper concludes
in section 9.

II. USER-CENTERED, EVOLUTIONARY SEARCH
The evolutionary search approach evaluated in this paper is

described previously at [11]. In overview, the evolutionary
search incorporates representations of both problem and
solution spaces which are manipulated by a multi-objective
Non-Dominated Sorting Algorithm inspired by Deb’s NSGA-II
[13]. The problem space representation is derived from the
application of use cases [14], which are well understood and
widely applied in software engineering requirements capture.
Actions and data are identified from the narrative scenario text
of use cases relevant to the problem domain under study. Thus
the problem space is represented by a set of actions and a set of
data derived directly from the requirements of the problem
domain. The solution space is represented as UML classes,
which serve as placeholders for attributes and methods. The
solution space is comprised of a set of attributes and a set of
methods, which are partitioned among the UML classes. The
set of solution attributes are directly derived from the problem
space set of data, while the set of solution methods are directly
derived form the problem set of actions. Such derivation
provides inherent traceability from the problem space to the
solution space.

Acting upon the solution space, optimization and diversity
preservation operators are inspired by the elitist Non-
Dominated Sorting Genetic Algorithm (NSGA-II) proposed by
Deb [13]. In NSGA-II, an offspring population of the same size
is created from the parent population. Using cohesion and
coupling metrics as fitness functions, the combined population
is non-domination sorted into ordered ‘fronts’ of equivalent
optimality. The new population is filled by solutions of
different non-dominated fronts, one at a time: the filling starts
with the best front, and continues with the next best and so on
until the population size is met or exceeded. Solutions that do
not make the new population are discarded. In the early stages
of evolution, many fronts are evident in the population.
However, as evolution proceeds, the number of fronts
decreases until a small number of fronts, including the Pareto-
optimal front, remains.

Designer preferences and software agents enable joint
human-computer collaborative interaction during search of the
solution space [12]. Indeed, interactive, joint human-computer
activity appears to map well to the notion of a conceptual
software design episode. Design episodes have been observed
in many fields of design (e.g. [15]) and software development
(e.g. [16]). Design episodes provide a useful vehicle for
human-computer interaction wherein human engineers and

Figure 1. Flow chart of design episode

software agents progressively focus on increasing superior
design concepts, providing a natural and effective way of
narrowing the population based search.

A search-based conceptual software design episode begins
with multi-objective search of the global solution space using
metrics and preferences chosen by the software engineer in
conjunction with agent-based utility values. A flow chart
summarizing the components of a design episode is shown in
fig. 1. In reality the flow of design is iterative; fig. 1 shows a
sequential process for simplicity. Multi-objective search is
performed by a Global Search Agent, which collaborates with a
Concept Isolator Agent to halt global search at an optimum
point at which local zones of particular software design
concepts are emerging. Thereafter, the episode may progress to
a number of local searches (one in each emerging zone)
conducted concurrently by Local Search Agents. As in global
search, local search is guided jointly by designer preferences
and agent search utility values. At any point in the search, the
software engineer may visualize a candidate UML class
diagram solution. Visualization reveals color coding of
cohesion values of individual class diagrams - highly cohesive
classes are red for ‘hot’, classes of low cohesion are blue for
‘cool’. Having identified interesting and useful UML class
diagram solutions, the software engineer may place them in the
episode portfolio together with reasons why the class diagram
is retained. In addition, in the course of a design episode, an
Event Logger Agent records significant events to an episode
log, which enables a detailed record of the history of the
episode.

III. PROBLEM DOMAIN
The problem domain chosen for investigation is the

specification of an extension to a student administration system
performed by the in-house information systems department at

Designer selects Search Parameters

Designer selects Search Preferences

Agent performs global search

Designer/Agent selects useful zones

Agent conducts local search(es)

Designer inspects design visualizations

Where appropriate, designer adds
individual design/concept to

portfolio with qualitative evaluation

2578

the University of the West of England, UK. Over recent years,
this university has sought to record and manage outcomes
relating to personal student development during their studies. A
strategic decision was then made to extend the capabilities of
the existing student administration system to be able to record
and track students’ personal development in parallel with their
academic achievement.

In line with standard practice for the in-house information
systems department initial requirements capture activities have
involved regular, highly iterative and people intensive,
interactive sessions with stakeholders where ‘mock-up’
scenarios of usage have been piloted under conference room
conditions. While no specific development methodology has
been employed, principles common to DSDM [17] and agile
methods [18] predominate. During the interactive pilot
sessions, no computational tool support has been deployed
except for rapid construction of mock graphical user interfaces
(GUIs). The pilot sessions successfully identified system actors
and four main goals that the actors would wish to achieve
within a scenario of interaction with the system. The four goals
included:

• the ability to record a personal development outcome
for an individual student;

• the ability to record personal development outcomes
for a batch of many students;

• the ability to generate various reports on personal
development outcomes; and

• the ability to export report results in a format capable
of being read in desktop spreadsheet applications.

The four goals have been recorded as use cases and are
available at [19].

IV. METHOD AND CASE STUDY DESIGN

The method employed in the empirical study is to observe
two conceptual software design episodes; one with search-
based computational tool support and one without. The manual
episode is a baseline against which comparisons and contrasts
with the search-based tool support episode may then be drawn.

The software engineering participants being observed
included a project manager and business analyst who work
within the in-house information systems department under
investigation. The project manager and business analyst have
been selected for observation as they typically perform
conceptual software design within the in-house information
systems department. The project manager has a bachelor’s
degree in systems analysis and 20 years professional
experience of requirements capture, analysis, design and
project management of information systems. The business
analyst has bachelor’s degree in business information systems
and 7 years professional experience of requirement capture,
analysis and design of information systems. Two issues arise at
this point:

• How generalizeable might be the results when the
number of participants is small?

• How representative is this sample of the larger
population of software engineers?

Given the relative lack of empirical studies reported in the
literature for search-based engineering, it is hard to answer this
question. There exists little or no population data to compare
this sample against, and there is no standard type of individual
who performs conceptual software design – education,
professional experience, job context and competencies may
differ markedly. However, the two individuals selected are held
in high esteem by their colleagues, and are representative of
some segment of the population of software engineers who
perform conceptual software design.

The method of the investigation compares and contrasts
two design episodes, based on the same problem domain.
Clearly, a higher degree of confidence in observations would
have been achieved from observing further design episodes.
Unfortunately, finding suitable people-intensive industrial
design situations appropriate to observational studies is not a
trivial task. With respect to method, the manual episode has
been conducted first, followed by the tool supported episode.
Data obtained from the first episode is therefore treated as a
baseline for comparison with the second.

Visual and audio recordings have been made for both
design episodes, and a textual transcript of verbal utterances
has been taken from the recordings. One of the authors has
been present at both design episodes in order to produce
recordings but has remained silent and non-participatory
throughout, except with respect to the physical mechanics of
producing recordings and tool support in the second episode.

V. OBSERVATION AND DATA COLLECTION

Measurements have been selected to investigate the
richness of the design episodes both in terms of outputs
produced and the means by which the outputs are produced.
With respect to the means by which the outputs are produced, a
number of characteristics of interaction have been investigated
including approaches to:

• concept generation;

• iteration;

• opportunistic realization; and

• medium of interaction.

According to Liu et al., “conceptual design should contain
two types of steps: divergent in which alternative concepts are
generated, and convergent in which these are evaluated and
selected.” [20]. The suggestion of Liu et al. is consistent with
reports within software engineering by Glass, who suggests
that design is a complex, iterative process in which initial
designs are usually wrong and certainly not optimal [21]. Thus
divergent and convergent design activities have been observed
and recorded as a measure of the richness of the design
episode.

Iteration is widely regarded as a necessary and natural
component of design (e.g. [21], [22]) and so iteration between
not only the problem and solution spaces, but also convergent
and divergent design activities have been observed.

2579

Furthermore, sudden discovery moments and opportunistic
understandings (e.g. [21], [23]) have been noted as being
significant events within design episodes and so these have
been observed too.

Finally, as an indicator of the richness of the design
episode, the medium of interaction between the two designers
has been observed, be it verbal, paper-based sketching,
interacting via the search-based support tool, or via UML class
modeling.

Textual transcripts of the two episodes have been analyzed
according to design mode, design activity, and the occurrence
of design events. Design modes and design activities have been
analyzed within 20 second intervals in the design episode. 20
second intervals have been chosen to provide a reasonable level
of granularity of analysis. Design modes include:

• Space – is the design episode focused primarily on the
problem or solution space in each 20 second timed
interval?

• Thrust – is the thrust of the design episode primarily
convergent or divergent in each 20 second time
interval?

• Medium – is the medium of designer interaction
verbal, sketching, search-based tool supported, or
UML class modeling in each 20 second time interval?

Design Activities include:

• Evaluation – are the designers primarily evaluating
individual candidate designs in a 20 second time
interval?

• Generation – are the designers primarily generating
candidate designs in a 20 second time interval?

• Trading-off - are the designers primarily trading-off
between multiple candidate designs in a 20 second time
interval?

• Scoping – are the designers primarily considering if a
candidate design is in scope during a 20 second time
interval?

• Reflective silence pauses – have the designers paused
for silent reflection?

Design Events are discrete happenings at a point in time in the
design episode and include:

• Request for clarification – a designer requests a
clarification of design activities of the other;

• Explanation of understanding – a designer explains
their understanding of a design activity to the other;

• Sudden discovery – a designer expresses an “ah-ha!”
moment of sudden discovery of a design concept or
design concept relationship;

• Realization of constraint – a designer expresses a
moment of realization that a candidate solution is
constrained in some manner by the problem domain
requirements;

• Realization of inferred requirement – a designer
expresses an insight of an inferred requirement i.e.
although not explicitly stated in the case study problem
domain specification, a further requirement is inferred
as consistent with the specification;

• Inspection of a candidate UML class diagram – a
designer inspects a candidate UML class diagram.

• Add a UML class diagram to portfolio – a designer
adds a useful and interesting UML class diagram to the
episode portfolio.

VI. RESULTS

A. Duration
The duration of the baseline manual conceptual design

episode was 37 minutes and 2 seconds (2122 seconds), while
the duration of the test design episode with search-based tool
support was 55 minutes and 23 seconds (3323 seconds). A
textual transcript of the baseline manual conceptual design
episode is available from [24]; a textual transcript of the test
design episode with search-based tool support is available from
[25].

B. Designs Produced
No design artifacts of conceptual software designs were

produced during the baseline manual conceptual design
episode. While much verbal interaction centered on the
explanation of the concept of “Student” and its associated
information, no drawings or UML diagrams were produced.

Many conceptual designs were produced in the course of
the search-based tool supported design episode. Analysis of the
transcript reveals that 30 candidate class diagrams were
inspected, and from these, 7 were added to the portfolio with
the search-based support tool. While adding candidate class
diagrams to the portfolio, the two designers recognized a
“Student” concept after 5 minutes, an “Award” concept after 6
minutes, a “Report” concept after 16 minutes, and a “Rule” and
a “Development” concept after 23 minutes. Thus in total, 5
concepts were identified in the search-based tool supported
design episode, which contrasts with one concept identified in
the manual design episode.

Designer reaction to the introduction of the search-based
computational tool was positive. After a period of
familiarization, the two designers became fluent in the use of
features provided by the search-based tool. Indeed, by the end
of the tool supported design episode, both designers were freely
suggesting useful enhancements and extensions to the search-
based tool, which the authors plan to incorporate into future
research.

C. Richness of Design Episodes
A summary of all observation data is shown in Table 1.

Where proportions are reported for episode modes and
activities, these relate to the proportion of the mode or activity
as a part of the total duration of the episode. Where average
frequencies are reported for episode events, the average
frequency in seconds is the episode duration divided by the
number of events.

2580

TABLE 1. Observation Data

ASPECT OBSERVATION BASELINE Proportion TEST Proportion
Duration Seconds 2212 3323
 Minutes - Seconds 37-02 56-23
Mode Space Problem 34 0.307 4 0.024
 Solution 77 0.699 158 0.950
 Thrust Convergent 45 0.406 87 0.523
 Divergent 17 0.153 37 0.222
 Iterations 10 28
 Medium Verbal 110 0.994 10 0.060
 Sketching 1 0.090 0 0.000
 Tool interaction 0 0.000 71 0.427
 UML Class Modeling 0 0.000 85 0.512
Activity Evaluation 60 0.542 67 0.403
 Generation 4 0.036 28 0.168
 Trading-off 5 0.045 36 0.216
 Scoping 1 0.009 0 0.000
 Reflective silence 0 0.000 9 0.054
 (Ave Freq) (Ave Freq)
Events Request for Clarification 37 59.780 32 103.840
 Explain Understanding 41 53.950 37 89.910
 Sudden Discovery 2 1106.000 18 184.610
 Constraint realization 3 737.330 0
 Inferred Requirement 3 737.330 0
 Inspect candidate 0 30 110.770
 Add to portfolio 0 7 474.710

VII. ANALYSIS

With regard to the duration of the two episodes, the
participants appeared to respond positively to opportunities
presented to explore and exploit designs, resulting in more time
spent in the test episode than the manual. Indeed, the test
episode would have continued longer had not the tool
encountered an out-of-memory problem.

With respect to design modes observed, it is clear that
iteration between the problem and solution spaces is richer in
the manual design episode; less problem / solution iteration is
evident in the tool supported episode. This suggests that tool
support tends to focus the designers on the solution space,
which may hinder potential problem reformulation. The design
thrust of the manual design episode is essentially convergent
whereas the tool supported episode shows more divergence and
iteration. This may be due to population-based search
providing superior exploratory support. The medium of the
manual design episode shows dramatic differences to the
medium of the tool supported episode. The manual design
episode is highly verbal, with occasional paper sketching of
graphical interfaces but no UML modeling. However, the tool
supported design episode is greatly more productive in terms of
UML modeling, with over one half of the episode focused on
this.

Within the design activities, evaluation is observed to be the
dominant activity in the manual design episode. Indeed, with
few candidate designs being generated, qualitative evaluation
appears to dominate. However, the population-based search

tool provides much designer support in generating candidate
designs. Interestingly, tool support also provided opportunities
for both quantitative and qualitative evaluation, as well as
trade-off evaluation. Trade-off evaluation appears to be a
difficult activity in the manual design episode as it requires
designers to remember many designs for comparison.
Conversely, in the tool supported episode, a design portfolio is
provided which greatly assists trade-off evaluation – a
significant benefit of the design support tool. Furthermore, it is
observed that visualization of UML class models enables
cognitive reflection, which stimulates the designers. Nine
reflective periods of silence were observed in the tool
supported episode whereas none were observed in the manual
design episode.

Regarding design events, designers were observed to make
more requests for clarification at a greater frequency in the
manual design episode. In addition, a greater number of verbal
explanations of understanding were observed in the manual
design episode. This is consistent with the highly verbal
medium in which the manual design episode is conducted.
Conversely, requests for clarification and explanations were
less abundant in the tool supported episode; it seems likely that
this is due to the visualizations of candidate design solutions
that promoted shared understanding of the designs. It is
significant that the number of sudden design discovery events
were observed to be higher in the tool supported episode (18)
than in the manual design episode (2). This finding appears to
be consistent with the nine periods of reflective silence
observed in tool supported episode. It seems likely that rich

2581

generation of alternative candidate designs, when combined
with opportunities for visual reflection, affords more
opportunities for moments of sudden design discovery. Lastly,
it is also significant that in the tool supported episode, unique
candidate designs were inspected by the designers on 30
occasions; i.e. a candidate design was inspected roughly once
every two minutes. The designers having been stimulated by
the visualization on the UML designs, 7 were added to the
portfolio.

VIII. THREATS TO VALIDITY

Two designers have been observed in the course of this
empirical investigation. While a greater number of designers
would add weight to the investigation, this situation reflected
the reality of the team under study. Moreover, the two
designers are representative of some section of the software
engineering community where empirical investigations
available in the literature are few.

The above analysis is also tempered by the fact that the
same problem domain has been used for both episodes. Given
that the manual design episode has been conducted firstly, the
designers will take any acquired knowledge of the problem
domain into the second, tool supported episode. Given this
learning effect, it might be reasonably expected that the
designers would arrive at a greater number of designs in the
tool supported episode. However, it is argued that the number
of trade-off evaluations, moments of sudden design discovery,
and candidate inspection and additions to the portfolio is
significantly higher in the tool supported episode, even
accounting for any learning effect.

IX. CONCLUSIONS

Analysis of the observation data reveals that in this small
scale empirical investigation, interactive, search-based tool
support for conceptual software design could be considered
effective at generating multiple candidate design solutions, and
highly productive in terms of UML class models. In the manual
design episode, as few candidate designs are generated,
qualitative evaluation of candidate designs is the dominant
design activity. In contrast, in the search-based tool supported
design episode, (i) generation of candidate designs is more
balanced with evaluation, (ii) evaluation is both qualitative and
quantitative and (iii) trade-off analysis is greatly enhanced.
Furthermore, visualization of UML class designs, when
combined with generation of multiple candidate designs,
enables periods of reflection that offer opportunities for sudden
design discovery. In addition, observations suggest that
designers respond positively to opportunities presented to them
to explore and exploit multiple candidate designs. We
therefore conclude that search-based computational tool
support offers high potential in assisting conceptual software
engineering design and on this basis we are continuing with
research involving empirical studies into larger industrial scale
case studies of search-based computational tool support.

REFERENCES

[1] Object Management Group, UML vendor directory listing [Online].
Available: http://uml-directory.omg.org/vendor.list.htm.

[2] I.C. Parmee, A. Watson, D. Cvetkovic, C.R. Bonham, “Multi-objective
satisfaction within an Interactive Evolutionary Design Environment”, J.
Evol. Comput., vol. 8, no. 2, 2000, pp 197–222.

[3] D. Cvetkovoc, I.C. Parmee, “Agent-Based support within an Interactive
Evolutionary Design System”, Artif. Intll. Eng. Des. Anal. Manuf., vol.
16, no. 5, 2002, pp. 331-342.

[4] B.S. Mitchell, S. Mancoridis, “Using heuristic search techniques to
extract design abstractions from source code”, in Proc. Genetic and
Evol. Comput. Conf. (GECCO 2002), New York, USA, 2002, pp. 1375-
1382.

[5] O. Magbool, H.A. Babri, “Hierarchical clustering for software
architecture recovery”, IEEE Trans. Softw. Eng., vol. 33, no. 11, 2007,
pp. 759-780.

[6] B.S. Mitchell, S. Mancoridis, “On the evaluation of the Bunch search-
based software modularization algorithm”, Soft Comput., vol. 12, no. 1,
2008, pp. 77-92.

[7] M. Harman, L. Tratt, “Pareto optimal search-based refactoring at the
design level”, in Proc. Genetic and Evol. Comput. Conf. (GECCO
2007), London, UK, 2007, pp. 1106-113.

[8] M. O’Keeffe, M.O. Conneide, “Search-based refactoring for software
maintenance”, J. Sys. Softw., vol. 81, no. 4, 2008, pp. 502-516.

[9] S.-C. Lo, J.-H. Chang, “Application of clustering techniques to software
component architecture design”, Intl. J. Softw. Eng. Know. Eng., vol. 14,
no. 4, 2004, pp.429-439.

[10] L. Aversano, M. Di Penta, K. Tanejy, “A Genetic Programming
approach to support the design of service compositions”, Comp. Sys. Sci.
Eng., vol. 21, no. 4, 2006, pp 247-254.

[11] C.L. Simons, I.C. Parmee, “A cross-disciplinary technology transfer for
search-based evolutionary computing: from engineering design to
software engineering design”, Eng. Opt., vol. 39, no. 5, 2007, pp. 631-
648.

[12] C.L. Simons, I.C. Parmee, “User-centered, evolutionary search in
conceptual software design”, in Proc. IEEE Congr. Evol. Comput. (CEC
’08) (IEEE World Congr. Comput. Intell.), Hong Kong, 2008, pp.869-
876.

[13] K. Deb, Multi-objective optimization using evolutionary algorithms,
Wiley, 2001.

[14] I. Jacobsen, M. Christerson, P. Jonsson, G. Overgaard, Object-oriented
software engineering – a use case driven approach, Addison-Wesley,
1992.

[15] B. Lawson, What designers know, Architectural Press (Elsevier), 2004,
pp. 17-18.

[16] K. Beck, “A development episode”, Chapter 2 in Extreme
programming: embrace change, Addison-Wesley, 2000.

[17] Dynamic Systems Development (DSDM) Consortium, [Online].
Available: http://www.dsdm.org/.

[18] Agile Alliance, [Online]. Available: http://www.agilealliance.org/.
[19] Use case descriptions for Student Development Program [Online].

Available:
http://www.bit.uwe.ac.uk/~clsimons/CaseStudies/CaseStudyUseCases.p
df

[20] Y.-C. Liu, T. Bligh, A. Chakrabati, “Towards an ‘ideal’ approach for
Concept Generation”, Design Studies, vol. 24, no. 4, 2003, pp. 341-355.

[21] R.L. Glass, “Facts and fallacies of Software Engineering”, Addison-
Wesley, 2003, pp. 79-83.

[22] Jin, Y., Chusilp. P., “A study of mental iteration in different design
situations”, Design Studies, vol, 27, no. 1, 2006, pp. 25-55.

[23] R. Guindon, “Designing the design process: exploiting opportunistic
thoughts”, Hum.-Comput. Interact., vol. 5, no. 2-3, 1990, pp. 305-344.

[24] Transcript of baseline manual conceptual design episode [Online].
Available:
http://www.bit.uwe.ac.uk/~clsimons/CaseStudies/BaselineTranscript.pdf

[25] Transcript of test conceptual design episode with search-based tool
support [Online]. Available:
http://www.bit.uwe.ac.uk/~clsimons/CaseStudies/TestTranscript.pdf.

2582

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

