
User-Friendly GUI in Software Model Checking
Shoichi Yokoyama, Haruhiko Sato, and Masahito Kurihara

Graduate School of Information Science and Technology,
Hokkaido University,

Sapporo, JAPAN
{yokosho,haru}@complex.eng.hokudai.ac.jp, kurihara@ist.hokudai.ac.jp

Abstract—Model Checking is an automatic technique for
verifying finite-state concurrent systems such as communication
protocols and sequential circuit designs. It has a number of
advantages over traditional approaches to this problem that are
based on simulation, testing, and deductive reasoning. Model
checking tools are, however, not widely introduced into industry,
and one of the reasons is that they are tricky and difficult to
use for engineers. In this paper, we extend the functions of Java
PathFinder, a software model checker to verify executable Java
bytecode programs, and propose a graphical user interface with
a high degree of usability. Our GUI depicts the state transition
graphs of not only a whole program but also each thread as a
result of verification. Users can get much information through
the GUI, for example, the internal states of a program and
the correspondence relation between the graphs, with interactive
mouse operation. One of the key features of our GUI is a variable-
value-based graph abstraction that allows users to focus upon an
aspect they are interested in. Our GUI also has an intuitively easy-
to-use interface for users to input linear temporal logic (LTL)
formulae as a program specification based on the Specification
Pattern System.

Index Terms—Model Checking, GUI, Java Pathfinder

I. INTRODUCTION

Today, various kinds of large-scale and complicated com-
puter systems such as concurrent systems are widely used
in applications where failure is unacceptable: electronic com-
merce, highway and air traffic control systems, medical instru-
ments, and so on. Clearly, as the involvement of such systems
in our lives increases, the need for their reliability is critical
and the burden for ensuring their correctness also increases.

The principal validation methods for complex systems are
simulation, testing, deductive verification and model checking.
Simulation and testing usually involve providing certain inputs
and observing the corresponding outputs. These methods can
be a cost-efficient way to find many errors. However, in these
methods, errors detected in concurrent systems are not repro-
ducible. Moreover, checking all of the possible interactions
and potential pitfalls using simulation and testing techniques
is rarely possible. Deductive verification normally uses axioms
and proof rules to prove the correctness of systems. However,
use of this method is rare because this is a time-consuming
process that can be performed only by experts who are edu-
cated in logical reasoning and have considerable experience.

On the other hand, model checking [1] has attracted at-
tention recently, which is an automatic technique for verifying
finite state concurrent systems. The procedure normally uses an
exhaustive search of the state space of the system to determine
if the system satisfies some specifications. Given sufficient

memory spaces, the procedure will always terminate with a
correct answer. Moreover, in case of negative result, this tech-
nique can provide users with an error trace. However, model
checking technique is not widely introduced into industry,
although it has a number of advantages over other methods
as seen above. One of the reason is that model checking tools
are tricky and difficult to use for engineers.

To make model checkers easy to use, we present in this
paper a graphical user interface (GUI) with them with a high
degree of usability. We extend the functions of Java PathFinder
[7], a software model checker, and propose input and output
GUI functions which are intuitively understandable for users.

The paper is organized as follows. In Section II, we briefly
describe model checking technique, and review some model
checkers as related works. We then describe the Specification
Pattern System [8], which is a basic concept of our specifi-
cation input GUI, in Section III. In Section IV, we present
our user-friendly GUI, and in Section V, we evaluate our GUI
by comparing it with traditional ones. Section VI contains the
conclusion and possible future work.

II. MODEL CHECKING

A. Model Checking Technique

Model Checking is one of the formal verification methods
toward finite-state concurrent systems. This method treats a
system as a state transition graph called a Kripke structure,
and verifies the properties required to satisfy on the system
with exhaustive search. Let AP be a set of atomic propositions
which expresses properties of a system. A Kripke structure M
over AP is a 4-tuple M = 〈S, S0, R, L〉, where S is a finite
set of states; S0 ⊆ S is the set of initial states; R ⊆ S × S
is the transition relation, which must be total (i.e., for every
state s ∈ S there exists a state s′ ∈ S such that (s, s′) ∈ R);
and L : S → 2AP is a function that labels each state with a
set of atomic propositions to be true in that state.

The properties in model checking are typically expressed as
formulae of temporal logic. If a verification result is negative,
this method can output an error trace that is an execution path
leading to an error state.

B. Temporal Logic

In model checking, the properties that the system must
satisfy are usually given in temporal logic, which can assert
how the behavior of the system evolves over time. There are
some kinds of temporal logic: CTL, LTL, ACTL and so on. In

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
474

this section, we describe Linear Temporal Logic (LTL), which
is the basic of our property description GUI.

LTL is temporal logic describing events along a single
computation path. To build up expressions describing prop-
erties, LTL uses not only atomic propositions and Boolean
connectives such as conjunction, disjunction, and negation, but
also temporal operators, which describe properties of a path
through the computation tree. There are five basic operators: X,
F, G, U and R. Each operator expresses the following property:

Xφ : φ holds in the second state of the path. (neXt
time)

Fφ : φ holds at some state on the path. (in the
Future)

Gφ : φ holds at every state on the path. (Globally)
ψUφ : There is a state on the path where φ holds,

and at every preceding state on the path, ψ
holds. (Until)

ψRφ : φ holds along the path up to and including
the first state where ψ holds. But ψ is not
required to hold eventually. (Release)

Let AP be the set of atomic propositions. The syntax of
LTL formulas is given by the following rules:

• If p ∈ AP , then p is a LTL formula.
• If f and g are LTL formulas, then ¬fCf ∨ gCf ∧

gCXfCFfCGfCfUgCfRg are LTL formulas.

A path in a Kripke structure M = 〈S, S0, R, L〉 is an finite
sequence of states, π = s0, s1, ... such that for every i ≥ 0,
(si, si+1) ∈ R. We use πi to denote the suffix of π starting at
si. If f is a LTL formula, π |= f means that f holds along path
π. The relation |= is defined inductively as follows (assuming
that f and g are LTL formulas):

1. π |= p ⇔ p ∈ L(s0).
2. π |= ¬f ⇔ π �|= f .
3. π |= f ∧ g ⇔ π |= f and π |= g.
4. π |= f ∨ g ⇔ π |= f or π |= g.
5. π |= Xf ⇔ π1 |= f .
6. π |= Ff ⇔ there exists a i ≥ 0 such that πi |= f .
7. π |= Gf ⇔ for all i ≥ 0, πi |= f .
8. π |= fUg ⇔ there exists a i ≥ 0, such that πi |= g

and for all 0 ≤ j < i, πj |= f .
9. π |= fRg ⇔ for all j ≥ 0, if for every i < j πi �|=

f then πj |= g.

C. Model Checkers

SPIN [4] is one of the most famous model checkers. It
verifies properties described as CTL or LTL of a system
written with SPIN-specific process description language called
Promela. SPIN provides a GUI application called XSPIN,
which includes editors of Promela language and temporal
logics. XSPIN can show the static image of the state transition
graph of a whole system as verification result.

LTSA (Labelled Transition System Analyzer) [5] and UP-
PAAL [6] are model checkers that have characteristics in their
GUI. LTSA verifies properties described as LTL of systems
written with LTSA-specific system description language called
Finite State Process (FSP). As verification result, it can show
not only the state transition graph of a whole system, but also
the ones of each concurrent module separately. Moreover, its
animator function can display the dynamic behavior the system
as animation.

In UPPAAL, users can build up the state transition graph
of the system visually and graphically with mouse operation.
And in addition to the state transition graph, it can display the
sequence diagram of the system as verification result.

In many model checkers including above three, the system
must be modeled in each tool-specific language. In contrast to
those, Java PathFinder (JPF) [7] is a software model checker
for Java bytecode. JPF is a Java virtual machine that executes
a program not just once, but theoretically in all possible way,
checking for property violations like deadlocks or unhandled
exceptions along all potential execution paths. It also shows
the static image of the state transition graph of a program as
verification result.

III. DESCRIBING FORMAL SPECIFICATION

As mentioned in the previous section, in model checking,
specifications to be verified are written in temporal logics.
However, describing such a formal specification is a compli-
cated work and needs high-level skills, which causes the delay
in the penetration of the technique.

In this section, we describe Specification Pattern System
[8], which is one of the solutions to the problem. We use this
concept as the basis of our property description GUI. As a
related work, we also introduce Prospec [9], which is a GUI
application of Specification Pattern System.

A. Specification Pattern System

Specification Pattern System (SPS) [8] is a collection of
generalized descriptions of commonly occurring requirements
on the permissible state/event sequences in finite-state models.
It describes the essential structure of some aspect of a system’s
behavior and provides expressions of this behavior in a range
of common formalisms.

SPS defines eight property patterns (TABLE I) and five
scopes (TABLE II). A scope is the extent of the program
execution over which the pattern must hold. In SPS, a property
is basically constructed by the combination of one property
pattern and one scope. For example, “The OK button is enabled
after the user enters correct data.” can be specified by the
combination of Response pattern and Global scope.

B. Prospec

Prospec (Property Specification) [9] is a tool that provides
visual and textual guidance for specifying common properties
of systems. This work builds on the SPS. Prospec provides
a process for elicitation and specification of properties and

475

TABLE I
PROPERTY PATTERNS.

Occurrence Patterns
Absence being free of certain events/states. (Never)
Universality containing only states that have a desired

property. (Always)
Existence containing an instance of certain events/states.

(Eventually)
Bounded Existence containing at most a specified number of

instances of a designated state transition or
event.

Order Patterns
Precedence an occurrence of the first is a necessary pre-

condition for an occurrence of the second.
Response an occurrence of the first, must be followed

by an occurrence of the second. (Follows)
Chain Precedence a scalable pattern. 1 stimulus - 2 responses, 2

stimuli - 1 response, ...
Chain Response a scalable pattern. 1 cause - 2 effects, 2 causes

- 1 effect, ...

TABLE II
SCOPES.

Global the entire program execution.
Before the execution up to a given state/event.
After the execution after a given state/event.
Between L and any part of the execution from one given

state/event to another given state/event.
After L until like between but the designated part of the exe-

cution continues even if the second state/event
does not occur.

generates formal specifications in LTL, etc that can be used
by a various tools such as theorem provers, model checkers,
and runtime monitors.

IV. PROPOSED GUI

The purpose of our work is to create the GUI in model
checking that the user can use easily and intuitively. To fit
the purpose, we extend the GUI of JPF. JPF can directly
treat the Java bytecode, therefore is easier to use than other
model checkers that can treat the systems modeled only in their
tool-specific languages. We consider that the difficulty to use
model checkers mainly consists of two type of problems: one
is a poor understandability of verification output, and another
is a difficulty to input specifications of a system in formal
descriptions such as LTL. Therefore, we propose an output
interface that shows users a verification result in a intuitively-
understandable way and is useful as a debugger, and a property
description interface that users can build up specifications of
a system without special knowledge.

A. Output Interface of Verification Result

As a verification result, JPF shows a static image of the
state transition graph of a whole system. Our output interface
is a Java application that shows not only it but also the state
transition graphs of each thread that runs in the system (Fig.
1). Blue, green and red circle nodes (state node) in the graph
represent a normal state, a successful end state, and an error

Fig. 1. Overview of proposed GUI.

state respectively. An orange rectangle node (transition node)
between state nodes represents a transition. The graph layout
is decided based on the hierarchical drawing algorithm of a
general directed graph by Sugiyama et al. [10].

When the user clicks a state node in a thread transition
graph, the detailed information of the state, which is the
contents of corresponding virtual machine stack, is displayed.
On the other hand, clicking a transition node, users can know
the detailed information on the transition, which includes the
name of the bytecode last executed on the transition, the name
of the thread executing the bytecode, the corresponding line
in source code to the bytecode with the line number, and the
file name of the source code.

We present two key GUI functions: a display function of
correspondence relation between the state transition graphs,
and an abstract function of a state transition graph based on a
designated variable in the program.

The former is a function to show users mutual correspon-
dence relation between the state transition graphs of a whole
program and each thread. When a state node in the state
transition graph of a whole program is clicked, the state nodes
in the one of each thread corresponding to the clicked state are
highlighted (Fig. 2). In reverse, when state node in the thread
transition graph is clicked, the state nodes in the one of a whole
program corresponding to the clicked state are highlighted.

The latter is a function to show users an abstracted state
transition graph of a whole program. This abstraction is based
on values of a variable in the program. The variable is
designated by users before the verification with its dedicated
interface. Using this function, the adjacent nodes at which the
values of the designated variable are equal are abstracted as a
one cluster. In the abstracted graph, corresponding to scaling
operation with mouse wheel, the further users zoom in the
graph, the more detailed structure of the graph users can know,
and vice versa (Fig. 3).

476

Fig. 2. The function to show correspondence relation between nodes in a
whole transition graph and ones in each thread transition graph.

Fig. 3. The function to abstract a whole transition graph based on values of
the variable designated by users.

B. Property Description Interface

We propose a user-friendly GUI that users can intuitively
build up LTL formulae to be verified in JPF. We also im-
plement a LTL verification function because JPF originally
doesn’t equip it. In our property description interface, users
take two steps to build up a LTL property.

At a first step, users define atomic propositions that are
used in LTL formulae. In this process, we propose a way to
define them with the combination of primitive-type (boolean,
byte, short, int, long, char, float) or String-type variables in the
program, its specific values, and three operators we prepare
(=, >, <). For example, the atomic proposition that is true
when “an integer-type variable called i is 0” is defined by a
combination of integer-type variable i, its value 0, and a =
operator. We also present a user interface for users to process
this step easily.

After the first step, users build up properties that are

Fig. 4. Proposed GUI to describe LTL formulae.

Fig. 5. The expressions of scopes and patterns in proposed GUI.

program specifications using the atomic properties defined in
the first step. The overview of our GUI at this step shows
on Fig. 4. The basic concept used in our interface is a SPS.
We adopt 5 all scopes and 5 property patterns (Absence,
Existence, Universality, Precedence and Response) in SPS. In
this interface, users can build up a property through selecting
a property pattern, a scope, and their arguments from combo
boxes placed at the top of the window. Moreover, our interface
has a function that users can build up a property intuitively
with mouse operation on the diagram placed at the center of
the window. The red rectangle (score area) in the diagram
represents a scope of SPS. Users can interactively change this
area with mouse drag and decide the scope. Each scope in our
interface shows on the left-side diagram in Fig. 5. Between
and After-Until scopes are distinguished by selecting a radio
button. The argument of a scope (if any) is described in the
square box on the shoulder of its area. The circles in a scope
area represent states on an execution path, and the properties
that holds at each state are described in them. The arguments
of scope and property pattern in SPS can be specified with
mouse operation through dragging an atomic proposition or

477

Fig. 6. The verification output of JPF.

LTL formula from the list of them placed at the bottom of the
window, and drop it to each box or one of circles. According
to the selected property pattern, the diagram of state circles
change. The diagrams of each property pattern show on the
right-side diagram in Fig. 5.

V. EVALUATION

A. Output Interface of Verification Result

To evaluate usability of our output interface as a debugger,
we consider a simple error-prone example program that has an
asynchronous access to a shared variable in it. This example
program has an integer-type shared variable called value whose
initial value is 0, and each of two thread (INC 1, INC 2)
increments the value once in the process without exclusive
access control. Intuitively the value is expected to be 2 at the
end of program, but actually it may be 1 because of the lack
of exclusive access control. In the verification of this example
program, we consider the terminal state where the value is not
2 to be an error.

As a result of verification, JPF detects the error and outputs
a static image of the state transition graph of the whole pro-
gram (Fig. 6). In this image, a green circle and a red diamond
mean a successful terminal state and an error state respectively.
The state 9 is a last branch point to them. Therefore we can see
that, it is highly possible that the processes executed shortly
after the state 9 are closely connected with the cause of the
error. However, users can not identify the cause from this
image, because this error arises from a bytecode-level problem
but this image shows only the information of the source code.
Moreover, it is difficult to intuitively understand each of the
behaviors of two threads only from this image.

Fig. 7. The verification output of proposed GUI.

On the other hand, the verification result of our GUI shows
on Fig. 7. The state transition diagram of the whole program
placed at the center is abstracted based on the value of the
variable value. In addition to this transition graph, our GUI
shows the state transition graphs of each thread separately,
which is placed at the both side. This function makes users
easily and clearly understand the behaviors of each thread
working in the program. Furthermore, the abstraction function
makes the timing where the value of the designated variable
changes clear, therefore users can specify the processes that
may cause the error. Our output interface can show the
bytecode-level information of the program. From Fig. 7, users
can understand the cause of this error is that INC 2 get the old
value of the variable value with the bytecode getfield between
after INC 1 increments the value and before it returns the
result with the bytecode putfield.

For comparison, the verification result of the program by
LTSA shows on Fig. 8. The key function of LTSA is an
animator, but our proposed GUI has a same function as it.
In the state transition graph, all state nodes are just simply
aligned, and the information about each transition is described
on it. Therefore, it becomes too complicated to understand
the behavior, if the program is large-scale. Moreover, the code
translation task from an original program to a LTSA-specific
FSP puts a burden on users and may cause mis-translations.

B. Property Description Interface

For example, we consider the property on a queue “Between
after enqueue is executed and before the queue becomes empty,
dequeue must be executed.”. The LTL formula representing the
property is as follows:

G((enque ∧ ¬empty) →
(¬emptyU((deque ∧ ¬empty) ∨ G¬empty)))

478

Fig. 8. The verification output of LTSA.

The property is not so complex but this LTL formula is too
complicated for users without special knowledge to describe.
On the other hand, the expression of the property in our
interface shows on Fig. 9. This diagram is more intuitively
understandable than the LTL formula, on which users can build
up it with mouse operation.

Although our interface can not describe the all of prop-
erty patterns in SPS because of the difficulty to express it
graphically, [8] shows that most of general specifications can
be described only by a few property patterns. Our interface
supports all of the principal property patterns, therefore the
lack of expressive power of properties compared to SPS is not
a much serious problem.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented user-friendly input and output
GUI of software model checker. We extended Java PathFinder
and proposed mainly three GUI functions: the function to show
correspondence relation between nodes in the transition graph
of whole program and ones in each thread transition graph, the
function to show fine information inside a program, and the
function to abstract a whole transition graph based on value
of the variable designated by users. Moreover, we proposed
a LTL-based property description GUI which users can use
without knowledge on complicated logic. Also, we showed that
these GUI functions enhanced usability of Java PathFinder as
a debugger.

As future work, we plan to improve drawing performance
of large-scale graphs and extend the expression power which
property description interface can treat. Furthermore, we plan
to evaluate our GUI by inquiry survey from users.

Fig. 9. The diagram representing the property in proposed GUI.

REFERENCES

[1] E. M. Clarke, O. Grumberg and D. Peled: Model Checking, MIT Press,
2000.

[2] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda: “Model Checking
Programs”, Automated Software Engineering Journal, Volume 10, Num-
ber 2, 2003.

[3] M. B. Dwyer, G. S. Avrunin and J. C. Corbett: “Patterns in property
specifications for finite-state verification”, In Proceedings of the 1999
International Conference on Software Engineering, pp. 411-420, IEEE,
1999.

[4] G. J. Holzmann: THE SPIN MODEL CHECKER, Addison-Wesley Pub,
2003.

[5] J. Magee and J. Kramer: CONCURRENCY: STATE MODELS & JAVA
PROGRAMMING, John Wiley & Sons Inc, 2006.

[6] G. Behrmann, A. David and K. G. Larsen: “A Tutorial on UPPAAL”, In
Proceedings of the 4th International School on Formal Methods for the
Design of Computer, Communication, and Software Systems, pp. 200-236,
Springer, 2004.

[7] W. Visser, K. Havelund, G. Brat, S. Park and F. Lerda: “Model Checking
Programs”, Automated Software Engineering Journal, Volume 10, Num-
ber 2, 2003.

[8] M. B. Dwyer, G. S. Avrunin and J. C. Corbett: “Patterns in property
specifications for finite-state verification”, In Proceedings of the 1999
International Conference on Software Engineering, pp. 411-420, IEEE,
1999.

[9] O. Mondragon, A. Q. Gates and S. Roach: “Prospec: Support for Elici-
tation and Formal Specification of Software Properties”, Proceedings of
the 3rd Workshop on Runtime Verification, pp. 1-22, Elsevier, 2003.

[10] P. Eades and K. Sugiyama: “How to draw a directed graph”, Journal of
Information Processing, Vol. 13, No. 4, pp. 424-437, 1990.

479

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

