Tabu Split and Merge for the Simplification of Polygonal Curves

Gildas Ménier
VALORIA, Université de Bretagne Sud
Université Européenne de Bretagne
France
gildas.menier@univ-ubs.fr

Pierre-François Marteau
VALORIA, Université de Bretagne Sud
Université Européenne de Bretagne
France
pierre-francois.marteau@univ-ubs.fr

Abstract—A Tabu Move Merge Split (TMMS) algorithm is proposed for the polygonal approximation problem. TMMS incorporates a tabu principle to avoid premature convergence into local minima. TMMS is compared to optimal, near to optimal top down Multi-Resolution (TDMR) and classical split and merge heuristics solutions. Experiments show that potential improvements for crudest approximations can be obtained. The evaluation is carried out on 2D geographic maps according to effectiveness and efficiency measures.

Keywords—Polygonal approximation, Tabu search, Split-and-Merge, top down multi resolution, dynamic programming.

I. INTRODUCTION

Polygonal curve approximation has been widely studied in the past to scale up time consuming applications such as graphic display, contour detection or time series data mining. If we apprehend a discrete curve as a multidimensional vector, polygonal approximation can be seen as a dimension reduction technique that relates also to multidimensional scaling.

Following polygonal approximation is an optimization problem that can be tackled along two angles:

• Min-ε problem: Given a polygonal curve S_c having N segments, find an approximation A_c having K segments such that the maximal approximation error ε is minimized.

• Min-# problem: Given a polygonal curve S_c having N segments, find an approximation A_c with the minimum number of segments K so that the maximal approximation error does not exceed a given tolerance ε.

Most of the proposed algorithms developed to solve these problems belongs either to graph-theoretic approaches [1,6,8,10,11,12], dynamic programming [5,7] or to heuristic approaches [2,4,12,13,15]. Optimal solutions based on dynamic programming principle exist, nevertheless, there complexities are proved to be $O(K.N^2)$ leaving space for much faster but suboptimal solutions.

Finding fast algorithms as near-to-optimality as possible for long input curves is still an open challenge leading to fruitful applications. In [10] for instance, author proposed a fast and dirty filtering approach dedicated to time series retrieval whose efficiency is highly correlated with the quality of polygonal approximations.

Recently, we have proposed a top down multiresolution algorithm (TDMR) [9] that solves the problem of polygonal curve approximation in linear time complexity $O(N)$. This algorithm ensures near to optimal solutions between each two successive levels of resolution, but, as we descend the resolution levels, the approximations depart further from optimality. The only other known algorithm showing a linear complexity is the Douglas-Peucker algorithm [2,4]. It is faster than TDMR but provides approximations that are much farther to optimality than the ones provided by TDMR. In this paper, we explore heuristic strategies based on three elementary operations (merge, split and move) associated to a Tabu search principle and try to evaluate how these strategies could boost suboptimal solutions such as TDMR, Merge-L2 [12] or Douglas Peucker [2] heuristics.

The second section of the paper states the problem definitions and introduces the three elementary operations at the basis of the heuristics we will detail into the third section of the paper. The fourth section presents and comments the experiments we have carried out on a set of 2D geographic maps; we conclude the paper and suggest some perspectives in the final section of the paper.

II. PROBLEM DEFINITIONS AND THE THREE ELEMENTARY OPERATIONS

We attempt to correct an approximation curve A_c of k points (source) curve S_c of n points ($k << n$) by the mean of elementary transformation operators: move, merge and split. To simplify the search space, and following the common definitions of the Min-ε and Min-# problems, we take approximation points among the points of the target curve: A_c is therefore a sorted list of references (index) of points in S_c.

Let $S_c[i]$ be the ith point of the curve S_c.

Let $A_c[i]$ be the reference to a point in S_c – the ith element of A_c is the $A_c[i]^{th}$ point of S_c, i.e. the point $S_c[A_c[i]]$ (Fig. 1).
Let $S_c[a,b]$ be the sub-curve between the a^{th} point and the b^{th} point of the curve S_c.
Let $A_c[a,b]$ be the sub-curve between the a^{th} point and the b^{th} point of the curve A_c.

A. move operator

With the aim of minimizing the Min_{ε} criterion, the move operator slides a potentially misplaced point through the set of curve’s indexes according to least surface error gradient direction. The error is computed as follows:

For the approximation point i_a (coding the i_a^{th} element of the curve A_c), an evaluation of the surface between the sub-curve $S_c[A_c[i_a-1], A_c[i_a]]$ and the sub-curve of $A_c[i_a-1, i_a]$ is computed as $E_{left}(S_c, i_a)$ summing the Euclidian distances between the points of S_c and the approximation line provided by $A_c[i_a-1, i_a]$ (Figure 2).

$$E_{left}(i_a) = \sum_{j=A_c[i_a-1]}^{A_c[i_a]} d_{eucl}(A_c[i_a-1, i_a], S_c[j])$$

$d_{eucl}(D,P)$ stands for the Euclidean distance between a point P and a line D.

Likewise,

$$E_{right}(i_a) = \sum_{j=A_c[i_a]}^{A_c[i_a+1]} d_{eucl}(A_c[i_a, i_a+1], S_c[j])$$

Let $E_{left/right}(i)$ be the surface error balance supported by the i^{th} point:

$$E_{left/right}(i) = |E_{left}(i) - E_{right}(i)|.$$

The main idea here is to slide the i_a^{th} point (in the S_c indexes space) to balance the left and right errors. If $E_{right}(i_a) > E_{left}(i_a)$ then the i_a^{th} point is moved by one position right in the S_c indexes space (respectively left if $E_{right}(i_a) < E_{left}(i_a)$). The displacement is constrained by the segment boundary points i_a-1 and i_a+1 (Alg. 1).

Algorithm 1

OPERATOR move

BEGIN

foreach point i in A_c

compute $E_{left/right}(i)$

end foreach

select the point i_{max} having the maximum $E_{left/right}(i)$

if $E_{left}(i_{max}) < E_{right}(i_{max})$

then

if ($A_c[i_{max}-1] < A_c[i_{max}] - 1$)

then

$A_c[i_{max}] := A_c[i_{max}] - 1$

// slides i to the left

end if

else

if $E_{left}(i_{max}) > E_{right}(i_{max})$

then

if ($A_c[i_{max}] > A_c[i_{max}] + 1$)

then

$A_c[i_{max}] = A_c[i_{max}] + 1$

// slides i to the right

end if

end if

end if

end foreach

END

One execution of the operator move slides only one point - the point of A_c having the worse $E_{left/right}(i)$ (thus being the most unbalanced point on the A_c curve regarding the local surface error).

B. split operator

The split operator (Alg. 2) finds one of the point i_c in S_c that maximises $d_{eucl}(A_c, S_c[i])$ and inserts a new point in A_c to correct this error – thus decreasing (eventually not strictly) the Min_{ε} value.
C. **merge operator**

The **merge** operator removes an element from A_c, thus merging the two adjacent approximating segments. Since the ratio $k/error$ is important, the point to remove should be the point contributing the least to the global error — *ie* it is important to discard first the points which removal increases the least the global error.

The removal priority R_p for an element i_a is computed as follows: The error criterion Error (e.g., $\text{Min-}\varepsilon$ for instance) is computed on the segments $[A_c[i_a-1], A_c[i_a]], [A_c[i_a], A_c[i_a+1]]$ (Figure 3) and if the element $A_c[i_a]$ were to be discarded, on the segment $[A_c[i_a-1], A_c[i_a+1]]$, the two segments $[A_c[i_a-1], A_c[i_a]], [A_c[i_a], A_c[i_a+1]]$ are merged.

For instance, if the $\text{Min-}\varepsilon$ error is used:

$$R_p(i_a) = \text{Max}(\text{Error}_{\text{Min-}\varepsilon}[i_a-1, i_a], \text{Error}_{\text{Min-}\varepsilon}[i_a, i_a+1]) / \text{Error}_{\text{Min-}\varepsilon}[i_a-1, i_a+1]$$

Alg. 3 describes the process:

Algorithm 2

OPERATOR **split**

BEGIN

`foreach` point i_c in S_c

compute $d_{\text{eucl}}(A_c, S_c[i])$

`end foreach`

select the point i_{max} with the maximum distance

insert a new point i_{new} in A_c

that minimizes $d_{\text{eucl}}(A_c[i_{\text{new}}-1, i_{\text{new}}+1], S_c[i_{\text{max}}])$

END

Algorithm 3

OPERATOR **merge**

BEGIN

`foreach` element i_a in A_c

compute $R_p(i_a)$

`end foreach`

select the element i_a having the higher removal priority R_p

remove it

END

Algorithm 4

FUNCTION **Refine** (A_c, S_c)

// Refines the approximation A_c (of k elements) of the curve S_c (of n points)

BEGIN

repeat $2*k$ loops of

`move();`

`merge();`

`split();`

`end repeat`

END

Unfortunately, a sequence of **move**, **split** and **merge** does not ensure that the error criterion will strictly decrease. In fact, the experiments (see Fig. 4) show a sequence of global error changes similar to those existing in incremental learning (such as Back Propagation Networks, or to a least amount in Genetic Algorithm) — *ie* in stabilizations and step breaks: this suggests that the optimization of the locations of the points is not a gradient process but rather a complex organizing mechanism necessary to explore the parameters space.

It is then necessary to keep aside the best solution found and to expect the next iterations to eventually improve this solution. In the simple algorithm described above (Alg. 4), we decided to perform a number of loops proportional to the k elements of the approximation since we think that, in the ideal configuration, each element of the approximation should undergo – a least once - a **move/merge/split** operator.

Experimentally, we observe that k loops is a minimum limit to achieve the best expectable error: experimentally, more than $2k$ loops doesn’t increases the performances so far.
During its exploration of the parameter’s space (as a vector of \(k \) indexes in the \(S_c \) curves), this algorithm seems to fall in gradient wells: Fig. 4 exhibits oscillating behaviours that prevents the search to go on: it seems that the sequence of move/merge/split can lead to configurations that occur sequentially after \(t \) loops.

This suggests that the same configuration of elements in \(A_c \) may be scanned more than once. Keeping the \(n^{th} \) last configurations of \(A_c \) and preventing (temporary) the algorithm to re-scan these previous solutions is somehow related to a search space strategy called Tabu Search [8].

In this example, we assumed that the cost to store and compare a new solution of \(A_c \) (of \(k \) points) to the \(t \) previous solutions would be important. Mostly, it is the recurring choice of the points to move, merge and split that leads to an endless evaluation of sequences of already-seen configurations.

Therefore, we propose to introduce some Tabu search principles through the management a list of ‘recently points chosen to perform move/merge/split’ and prevent the operator from picking (again) one of the tagged element – at least as long as these elements are enqueued in this FIFO list.

Restricting the search by the choice of one index point segments the search space in classes of approximation curves containing (or not) a specific point: this could be very restrictive at a first glance, but this strategy speeds up the search by selecting the curve containing the best / worse point in regard to the \(Min-\varepsilon \) criterion.

For a Tabu list of size \(t_b \) elements, not only this strategy seems to prevent the rapid oscillating behaviour under \(t_b \) loops, but also seems to increase the search speed.

Increasing the size of the Tabu list above 10-15 elements decreases the performance of the algorithm without significant better results (mostly under \(10^{-4} \) for the maximum error).

III. APPROACHES

A. RSDP: Reduced Search Dynamic Programming

The reference algorithms for curve approximations for the \(Min-\varepsilon \) criterion are mostly based on dynamic programming [12]: they usually provide the minimal error at a computational cost of \(O(n^2) \). It is possible to reduce this complexity, constraining the search when near-optimal solutions are acceptable – lowering the computational cost to \(O(n^2/k) \) : in the following experiments, RSDP stands for Reduced Search Dynamic Programming [7].

B. MR : Multi Resolution

In [9], we introduced a top-down multi resolution algorithm TDMR designed to compute iteratively nested approximations with a complexity (at the best case) of \(O(n) \): it features sequential processing of RSDP-like processing and outputs a multiresolution solution to the approximation problem.
C. I-TMMS : Refine with equidistant initialization
This processing involves the refine function (described above) starting with a first curve of \(k \) points to correct: each \(k_i \) point is initially set at equidistant position on the \(S_c \) curve (rounded to the nearest index). \(2^k \) loops are performed.

D. SPLT : Split
Starting with an initial curve of \(k_0=2 \) points (the first and last point of \(S_c \)), this algorithm performs \(k-2 \) split operations to reach the final \(k \) elements for \(A_c \).

E. MRG : Merge
Likewise, this algorithm starts with the complete curve \(S_c \) – as the full collection of indexes for \(A_c \) – and decimates iteratively the points (by the mean of merge operators) until the number of remaining elements reaches \(k \) elements in \(A_c \).

F. MR/TMMS
A multiresolution process (MR) is performed [9], refined by the tabu move/merge/split (TMMS) sequence of operators.

G. SPLT/TMMS
The SPLT (split) is performed, followed by the refine (tabu move/merge/split) TMMS process.

H. MRG/TMMS
The MRG (merge) is performed, followed by the refine (tabu move/merge/split) TMMS process.

IV. EXPERIMENTS
The experiments have been performed on 10 curves \(S_c \) depicting the costal maps of Western Europe. The 10 curves \(S_c \) have at least \(n = 8192 \) points.
We measure the fidelity of an approximation using the following formula:

\[
F_{\text{method}} = \frac{E_{\text{RSDP}}}{E_{\text{method}}}
\]

where \(E \) is the \(\min-\varepsilon \) error.

RSDP, that is near-optimal, is used as reference solution. Fig.7 shows the Fidelity for all the experimented methods. Basically, the TMMS procedure boosts the experimented methods for low \(k \) values. ISM performs quite well for values of \(k << n \); it is only outperformed by MR and MR/TMMS : for \(k>64 \), ISM gives the worst results. MR/TMMS seems to improve marginally the error of MR. The TMMS procedure introduces a time cost that is measurable for all experimented methods in Fig.8.

V. CONCLUSION
We have introduced the use of move/merge/split operators using a Tabu-like selection to refine an existing approximation curve. We compared this approach with other sub optimal algorithms, namely top down multiresolution, split algorithm and merge algorithm. The TMMS procedure offers some boosting capability for the crudest approximations and could probably be used directly inside a multiresolution approach to improve the overall fidelity of the provided approximations a low level of resolution.

REFERENCES

