
Enhanced Operator Function Model:
A Generic Human Task Behavior Modeling Language

Matthew L. Bolton and Ellen J. Bass
Department of Systems and Information Engineering

University of Virginia
Charlottesville, Virginia, United States of America

mlb4b@virginia.edu, ejb4n@virginia.edu

Abstract— Task analytic models are extremely useful for hu-
man factors and systems engineers. Unfortunately, there is no
standard language for describing task models. We present an
xml-based task analytic modeling language. The language incor-
porates features from Operator Function Model and extends
them with additional task sequencing options and conditional
constraints. This language’s use is illustrated via a radio alarm
clock example. In addition, parsing, visualization, and develop-
ment tools are discussed.

Keywords— task analysis, XML, operator function model,
human behavior modeling

I. INTRODUCTION

Task analytic models are used to model human task behav-
ior as sequences of activities with respect to the fulfillment of
goals. These models have been used in the evaluation of single
and multiple operator systems for a variety of purposes includ-
ing intent inferencing [1], usability evaluation [2], intelligent
tutoring [3], timing analysis of human tasks [4], hazard moni-
toring [5], formal verification of human-interactive systems
[6][7], and controlling agents in simulations [8].

Task analytic models have a number of similar features.
They can be heterarchical in that they can define multiple inde-
pendent goals and the tasks to accomplish them. Task analytic
models are hierarchical as they decompose high level activities,
tasks, or goals into lower level ones. The lowest level in the
hierarchy includes atomic level actions such as physical actions
(e.g., pressing keys, moving a computer mouse, pressing but-
tons) and perceptual and cognitive operations. Model specifica-
tions may include dependencies within decomposition compo-
nents such as task ordering. Other types of dependencies are
associated with external or internal states or conditions that can
determine under what circumstances portions of the model are
relevant. Model components can often be reusable as well;
where they can be referenced in other models, or in other parts
of the same model. Models can also have graphical notations
that can be used to represent modeled behavior visually.

Specific task modeling techniques may implement these fe-
atures differently. For example, Keystroke-Level Modeling
Goals, Operators, Methods, and Selection rules (KLM-GOMS)
decomposes tasks into sequences of keystrokes [4] without
supporting additional hierarchical structures. The Operator
Function Model (OFM) [1], ConcurTaskTrees (CTTs) [9], Pro-
cedure Representation Language (PRL) [10], and other variants

of GOMS [4] allow for multiple levels of decomposition:
where any activity can decompose into lower level activities
[10]. However, while OFMs, CTTs, and GOMS models ulti-
mately require that activities decompose into atomic actions,
PRL does not.

Modeling techniques also differ in how they represent
atomic actions. In some version of GOMS (such as KLM-
GOMS), all atomic actions must be observable human actions
like keystrokes [4]. However, OFMs, CTTs, and Critical Path
Method – GOMS (CPM-GOMS) have been used to model non-
observable cognitive and perceptual acts such as observing
phenomena on an interface or monitoring a particular display
[1][4][8][12].

Different modeling techniques vary in how the cardinality
and order of activities and actions are specified. OFM supports
a number of different cardinality and ordering options (a super-
set of those supported by PRL) for the sequential execution of
activities or actions in each hierarchical decomposition [1][11]:
one or more acts (an activity or action) can be executed in any
order, exactly one act can be executed, all acts must be exe-
cuted in any order, and all acts must be executed in a specific
order. CTTs support all of these but also support the optional
execution of acts (where zero or more acts could be executed),
and the synchronous execution of acts (where the acts must be
performed at the same time, like pressing two keyboard keys at
once) [9]. CPM-GOMS supports the parallel execution of ac-
tivities in which multiple activities (and their sub-acts) can be
executed in parallel in order to encompass human multitasking
behavior [4].

The modeling techniques also differ in how strategic
knowledge is handled (when goals and activities can or should
be considered). Selection rules in GOMS models describe
when a particular activity is used [4]. CTTs do not directly im-
plement constraints on an activity’s execution, but do contain
operators which allow one act to enable another act [9]: behav-
ior that would be handled by conditions in an OFM. OFM sup-
ports a number of conditions which can be used to constrain
how an activity executes [1][11]:

• Initiators specify under what condition an activity
should start executing;

• Conditions to initiate specify what must be true for an
activity to start executing;

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2983

• Terminators specify under what conditions an activity
must stop executing; and

• Conditions to complete specify what will be true after
an activity has completed.

PRL supports a number of conditions that both encompass
and extend the conditions utilized by OFM [10]:

• Start and preconditions specify what must be true for
an activity to start executing;

• Repeat-until conditions specify what must be true for
an activity to cease repeating execution;

• Invariant conditions specify what must be true
throughout the execution of the activity; and

• End and post-conditions specify what is expected to
be true after the execution of an activity.

Different modeling techniques are often associated with a
specific implementation which can restrict their use. For exam-
ple, OFMs are associated with OFMspert [1][11] and CTTs are
associated with CTTE [12]. While PRL is implemented as a
platform-independent XML language, it is designed expressly
for specifying procedures for spaceflight operations [10]. While
GOMS models are represented using an internal notation, a
number of different implementations of GOMS exist [4]. Thus,
GOMS models are often wedded to specific analysis tools such
as CogTool [13].

The graphical representations used for the different models
also vary. While PRL does not support a graphical notation,
others do. CPM-GOMS models are modeled as pert charts,
with operators (or tasks) represented by boxes and links be-
tween them indicating dependency [4]. CTT models represent
activities in a hierarchy of symbols, where activities can be
decomposed into lower-level activities and actions in a tree
structure [9][12]. Ordering and inter-activity conditions are
represented as operators between peer activities in a decompo-
sition [1][11]. OFMs also represent their task models hierarchi-
cally, where atomic actions are presented as rectangles and
activities as rounded rectangles. A decomposition is displayed
as a large rectangle below the decomposing activity which con-
tains all of the sub-activities or actions. A line connecting the
decomposing activity to the decomposition rectangle is anno-
tated with an operator that describes the ordering of the con-
tained activities or actions. Conditions on activities are repre-
sented as shapes (a separate shape is associated with each type
of condition) attached to it via a line annotated with the condi-
tion’s logic or, depending on the context of its use, a plain lan-
guage description.

This paper describes a task modeling language (the En-
hanced Operator Function Model (EOFM) language) designed
to support both the common and discrepant features of the ex-
isting modeling systems. This paper specifies the requirements
for a generic modeling system for human task behavior, de-
scribes the EOFM language which was designed to meet these
requirements, illustrates the application of the EOFM language
via an alarm clock programming example, and discusses tools
that facilitate the language’s use.

II. LANGUAGE REQUIREMENTS

Because a generic language for modeling human task be-
havior would attempt to encompass all of the behaviors of ex-
isting task modeling paradigms, it would support all of the re-
quirements described below.

A. Functional Requirments
1) Language models should be capable of representing ob-

servable atomic human actions: All of the discussed task mod-
els encompass sequences of atomic, observable human actions
in fulfillment of a purpose or goal. Thus a generic task model-
ing language must allow atomic, observable human actions to
be modeled.

2) Language models should be capable of representing in-
ternal human behaviors: Some task modeling paradigms (in-
cluding OFMs, CTTs, and CPM-GOMS) allow perceptual or
cognitive acts to be modeled, such as noticing an alert, or re-
membering a quantity displayed on a human-system interface.
Thus, a generic task modeling language must provide a means
of modeling cognitive and perceptual human acts.

3) Language models should support hierarchical decompo-
sition of goals into activities, multiple levels of activities, and
activities into actions: All of the discussed task modeling para-
digms are composed as activities which decompose into lower
level activities and, potentially, into atomic actions. Thus, a
generic task modeling language must provide a means of mod-
eling activities such that they can be decomposed into both
lower level activities and atomic actions.

4) Language models should support specification of sub-
activity and action execution cardinality: The discussed task
models support the ability to describe how many activities
within a given decomposition can execute: zero or more, one or
more, or all of them. Thus, a generic task modeling language
must support all of these cardinalities.

5) Language models should support human behavior tem-
poral orderings: The discussed task models support a number
of temporal orderings for describing when activities or acts can
be performed: executed in a particular sequential order, per-
formed one at a time in any order, performed synchronously (at
the same time), or performed in parallel (any interleaving of
activities or actions with potential overlap). A generic task
modeling language should support the all of these orderings.

6) The language should be capable of describing con-
straints/conditions on task execution: Because the execution of
a given activity within a task model may be dependent on sys-
tem, environmental, cognitive, or perceptual conditions, many
task modeling paradigms (GOMS, OFM, and PRL) specify
what conditions must be true at different phases of a given ac-
tivity’s execution. All of the following conditions are supported
by the discussed task models:

• Conditions that force the start of an activity

• Conditions that must be true before starting an activity

• Conditions that must be true throughout the execution
of an activity

• Conditions that indicate when to repeat an activity

2984

• Conditions associated with the successful completion
of an activity

• Conditions forcing the termination of an activity

Thus, a generic task modeling language should support the
ability to specify the logic for all of these conditions.

7) The language should be capable of modeling multiple
operators: Some systems have only one human operator while
others have multiple operators who are working independently
or in cooperation with each other. Thus, a generic task model-
ing language must provide a means of modeling the task behav-
ior of one or more human operators.

8) Language models should be capable of linking to infor-
mation from external sources: Task models are often used con-
currently with other models or system components, where the
state of these other entities may influence what tasks can or
should be performed by the operator described by the task
model. As such, a generic task modeling language must pro-
vide means of communicating information from external
sources to task models.

9) Model components should be reusable: Existing task
modeling languages support the reuse of activities between and
within task models. Such a feature allows for the compact rep-
resentation and rapid development of models. Thus, a generic
task modeling language should support the reuse of activities
and actions.

10) Language models should support a graphical notation:
Some task modeling systems such as GOMS, CTT, and OFM
have graphical notation for visualizing their model’s task hier-
archical structure, activity orders, cardinalities, and constraints.
Thus, a generic task modeling language should support a
graphical representation capable of depicting these features.

B. Technological Requirements
To avoid the segmentation associated with the tool specific

implementations and non-standard notations, a generic task
modeling language should also have the following technologi-
cal requirements:

• The language should be platform and analysis-
environment independent.

• The language should support interpretation or parsing
capabilities that will facilitate the incorporation of its
models into different analysis infrastructures.

III. LANGUAGE DESCRIPTION

In addition to the features already discussed, OFM supports
a visual and object-oriented means of representing task models.
It has state and derived variables that can be used to specify
model behavior including its handling of input and output.
Thus, it was used as a starting point for the language descrip-
tion and the resulting extension is called Enhanced OFM
(EOFM).

The EOFM language utilizes the extensible markup lan-
guage (XML) [14], a highly supported specification for arrang-

ing data in hierarchical structures of nodes which can contain
formatted data and valued attributes. Because XML is an inter-
national standard, its adoption supports third party applications’
ability to parse models represented as EOFMs. The structure of
an EOFM XML document was specified using RELAX NG
(REgular LAnguage for XML Next Generation) [15], an inter-
national standard XML schema language (itself based on
XML). A visualization of this specification appears in Figure 1
and is discussed in the subsequent sections.

A. The Root Node
All XML documents must contain a single root node whose

attributes and sub-nodes define the document. For the EOFM
specification, the root node is called eofms. At the next level of
the hierarchy, it has azero or more constant nodes, zero or more
type nodes, and one or more operator nodes.

B. Types and Constants
Types and constants each serve to help connect EOFMs to

the external system and to express model concepts using intui-
tive descriptors.

Because human operators often interact with interfaces
whose component states do not readily translate to variable
values associated with the types inherent to most development
environments (Boolean variables, integers, floating point val-
ues, strings, etc.) the use of custom types can help make models
much more intuitive. For example, a special enumerated type
could be created to represent the state of a switch with more
than two positions, where each position would be modeled with
a specific name representing the value selected by the switch.
Types can also be used for representing restricted ranges of
values. In the EOFM language, such a construct is defined by a
type node, which itself is composed of a unique name attribute
(giving it a unique identifier from which it can be referenced by
the rest of the document) and a string of data representing the
type construction (in the current implementation there are no
restrictions on the format of the type construction).

Constants (represented by constant nodes) are variables
meant to store fixed values. These can be used to communicate
bounds on ranges and other unchanging values for types as well
conditional logics and variable definitions (both discussed
later). In the EOFM language, a constant is defined by a unique
name attribute, either a type attribute (the name attribute of a
type node) or othertype attribute (the name or type construction
of a type not defined in the xml document which can be used
for basic types such as integers, Boolean variables, etc.), and a
data string representing the value of the constant.

C. Operators
The operator nodes are used to represent the different hu-

man operators of the systems (one operator node for each hu-
man operator being modeled). The task behavior of the opera-
tor node is defined by and within its sub-nodes. The operator
node is defined by a unique name attribute, zero or more input
variables (ivariable or ivariablelink nodes), one or more human
actions (humanaction nodes), zero or more local variables
(lvariable nodes), and one or more enhanced operator function
models (eofm nodes).

2985

Figure 1. The RELAX NG visualization of the XML-based EOFM language.

D. Input Variables and Local Variables
Input variables (ivariable or ivariablelink nodes) and local

variables (lvariable nodes) can be used to express the con-
straints/conditions which control when activities can execute.

Input variables are specifically meant to convey informa-
tion about external sources (human-system interfaces, envi-
ronmental data, mission directives, etc.) to the task behavior
model. An ivariable node is used to define an input variable. It
is composed of a unique name attribute and either a type or
othertype attribute (defined the same as the identically named
attributes of the constant node). Because multiple operators can
be aware of the same external information (like hearing the

same alarm issued by an automated system) the ivariablelink
node allows an operator node to access input variables defined
in a different operator node. This is facilitated by a link attrib-
ute which indicates the name of the ivariable node being
linked.

Local variables are the means by which internal human acts
are expressed: where a perceptual or cognitive act is repre-
sented by a value being assigned to a local variable. Local vari-
ables are represented by lvariable nodes, themselves defined
with the same attributes as an ivariable or constant node, but
containing an additional sub-node, initialvalue, which repre-
sents a data string for the variable’s default initial value.

2986

E. Human Actions
A human action (a humanaction node) describes a single,

observable, atomic act that a human operator can perform such
as pressing a button. All potential human actions are described
in this part of the model so that they can be referenced later in
the task behavior description. This node is defined by a unique
name attribute, presumably describing the action it represents.

F. Task Models
Each eofm node represents a single task behavior model at

the goal level of the task model hierarchy. Each encompasses
execution constraints as well as the hierarchical and temporal
relationships between activities and human actions. Structurally
the eofm node is represented by a unique name attribute, a de-
composition operator attribute, a set of optional conditions, and
either one or more activities (activity or activitylink nodes) or
one or more atomic actions (haction or laction nodes).

The decomposition attribute specifies a decomposition op-
erator which controls the temporal execution order of a given
eofm’s sub-activity and action nodes (henceforth referred to as
sub-acts). In order to support the required combinatorial tempo-
ral orderings, the EOFM language implements all of the fol-
lowing decomposition operators:

• or_seq – One or more of the sub-acts must execute for
the parent eofm or activity to finish and each sub-act
must be executed one at a time.

• or_par - One or more of the sub-acts must execute
and each sub-act can be executed concurrently.

• and_seq – All of the sub-acts must execute and each
sub-act must be executed one at a time.

• and_par - All of the sub-acts must execute and each
sub-act can be executed concurrently.

• xor – Exactly one sub-act must execute.

• seq – All of the sub-acts must execute, each sub-act
must execute one at a time, and each must execute in
the order it appears in the markup.

• optor_seq – Zero or more of the sub-acts must execute
and each sub-act must be executed one at a time.

• optor_par – One or more of the sub-acts must execute
and each sub-act can be executed concurrently.

• sync – All sub-acts must be executed synchronously
(at the same time). This is different from the _seq suf-
fixed decompositions as all decomposed actions must
be executed at the same time rather than arbitrarily in-
terleaved with each other.

The set of optional conditions provides the means of con-
straining task model execution. The EOFM language supports
all of the following conditions (each represented as a string
encompass a Boolean expression written in terms of the de-
fined variables):

• startcondition – when true, execution must start

• endcondition – when true, execution must terminate

• precondition – must be true for execution to start

• postcondition – will be true when execution has
stopped

• invariantcondition – must be true during execution

• whilecondition – when true, execution can repeat

The activity nodes represent lower-level or sub-activities.
They are defined identically to eofm nodes, thus allowing for
the hierarchical composition of task structures. Activity links
(activitylink nodes) allow for reuse of model structures by link-
ing to existing activity or eofm nodes via a link attribute which
lists the name attribute of an activity node.

The lowest level of the task model hierarchy is represented
by observable, atomic human actions (represented by haction
nodes) and internal human actions (represented by laction
nodes). The haction nodes are defined by an attribute called
humanaction which references the name attribute of a hu-
manaction node. The laction node defines a valuation of a local
variable. This is defined structurally by an attribute called
lvariable which references the name attribute of an lvariable
node and a data string representing the value to be assigned to
the variable.

G. Graphical Representation
The graphical representation of models written in the

EOFM language is based on that used to depict OFMs [1][11].
Actions are represented as rectangles and activities are repre-
sented as rounded rectangles. Higher level activity’s decom-
posed activities or actions are depicted in a large rectangle
shown below it, connected to the decomposing activity via a
line annotated with its decomposition operator. Conditions on
activities are represented as shapes and arrows (annotated with
the condition logic) that point to the activity that they constrain.
The form, position, and color of the shape are determined by
the type of condition:

• startcondition – A green ball connected to the right
side of the activity;

• endcondition – A red octagon connected to the left side
of the activity;

• precondition – A yellow, downward-pointing triangle
connected to the right side of the activity;

• postcondition – A pink, upward-pointing triangle con-
nected to the left side of the activity;

• invariantcondition – A blue square connected to the
right side of the activity; and

• whilecondition – An arrow attached to the top of the
activity with both ends of the arrow connected to the
activity.

IV. EXAMPLE

To illustrate some model concepts, we implemented
EOFMs for programming a radio alarm clock (Figure 2). This
clock displays the time via a digital readout on its face. The
AM and PM designations are indicated by LEDs on the right
side of the face. The clock has two alarm functions, a buzzer

2987

Figure 2. Clock radio used for illustrating modeling concepts

TABLE I. INPUT VARIABLES (IVARIABLE NODES)
FOR THE CLOCK PROGRAMMING EXAMPLE

Input Variable Name Type Description

iTime time The time displayed on the clock
iRadioAlarmSet tOffOn The state of the Radio LED
iBuzzerAlarmSet tOffOn The state of the Buzzer LED
iAMFrequency real The selected AM Frequency
iFMFrequency real The selected FM Frequency
iVolume real The volume
iAtMinFreqPosition Boolean True if at the bottom of the radio dial
iAtMaxFreqPosition Boolean True if at the top of the radio dial
iAtMaxVolumePosition Boolean True if at the minimum volume
iAtMinVolumePosition Boolean True if at the maximum volume
iDisplayMode tDisplayMode The mode of display for the clock
iFrequencyMode tAMFM State of the AM/FM switch
iCurrentTime time The actual time
iRadioAlarmTime time The desired time for the radio alarm
iBuzzerAlarmTime time The desired time for the buzzer alarm
iDesiredFrequency real The desired radio frequency
iDesiredFrequencyMode tAMFM The desired radio frequency mode
iDesiredVolume real The desired volume

and a radio which are programmed separately. The radio output
is separate from the alarm, so both can sound simultaneously.

The tuning of the radio station is controlled by the AM/FM
switch and frequency dial on the side of the clock. The selected
radio frequency is indicated below the face of the clock. Radio
and buzzer volume is controlled by a volume dial on the side of
the clock. The radio is turned on and off using the on and off
buttons respectively.

An alarm is programmed by pressing and holding either the
buzzer or radio buttons (an act which activates the respective
LEDs on the clock face). While the button is held, the time for
the respective alarm is displayed. The plus (+) or minus (-)
buttons increment or decrement the displayed time. Releasing
the buzzer or radio buttons sets the respective alarm. An alarm
is deactivated (prevented from going off) by pressing the alarm
button (either radio or buzzer), pressing the off button, and
releasing the alarm button. Similarly, the clock time is set by
holding the clock button down and pressing the plus and minus
buttons to change the time.

When an alarm goes off, the human operator can either
press the snooze button to delay the alarm for 7 minutes or
press the off button to turn off the alarm.

A complete listing of the radio alarm clock EOFM can be
found at http://cog.sys.virginia.edu/formalmethods/. What fol-
lows is a description of some of the implementation details of
this model.

This EOFM model had five enumerated types (there were
no constants) defining specific values relevant to the informa-
tion displayed by the clock and the state of its human interface:

• tOffOn for the state of clock LEDs: Off or On;

• tAMFM indicating the state of the AM/FM switch: ei-
ther AMfreq or FMfreq;

• tDisplayMode indicating the display mode on the
clock’s face: TimeDisplay for displaying the time,
SetTime for setting the clock’s time, SetRadioAlarm
for setting the radio alarm time, and SetBuzzerAlarm
for setting the buzzer alarm time; and

• tAlarmState for indicating the state of an alarm: Silent,
Radio, or Buzzer.

To illustrate how these were constructed, the code definition of
tAlarmState follows:

<type name="tAlarmState">{Silent, Radio, Buzzer}</type>

The clock has a single human operator (and hence one op-
erator node). This operator has no associated local variables
but it does have a number of input variables, representing the
state of the information displayed on the clock (top of TABLE
I) and the desired/mission-directed settings for the clock (bot-
tom of TABLE I).

A number of humanaction nodes specify each of the possi-
ble atomic programming acts: pressing the on, off, snooze, plus
(+), and minus (-) buttons (hPressOn, hPressOff, hPressS-
nooze, hPressPlus, and hPressMinus respectively); holding
down and releasing the buzzer, radio, and clock buttons
(hHoldBuzzer, hReleaseBuzzer, hHoldRadio, hReleaseRadio,
hHoldClock, hReleaseClock); flipping the AM/FM switch
(hFlipAMFMSwitch); and turning the tuning and volume knobs
up and down (hTurnTuningKnobUp, hTurnTuningKnobDown,
hTurnVolumeKnobUp, hTurnVolumeKnobDown).

Twelve eofm nodes are used to describe twelve separate
goal level activities: setting the clock time, setting the radio
alarm time, setting the buzzer alarm time, turning the radio on,
setting the AM/FM switch, setting the radio frequency, re-
sponding to an alarm (turning the alarm off or activating
snooze), setting the volume, activating the buzzer alarm, acti-
vating the radio alarm, deactivating the buzzer alarm, and deac-
tivating the radio alarm.

The eofm node for setting the time of the buzzer alarm
(aSetBuzzerAlarm) is shown in Figure 3 along with its visuali-
zation in the EOFM graphical notation. This eofm has a pre-
condition specifying that it cannot execute until the display
mode of the clock (iDisplayMode) is TimeDisplay. The buzzer
alarm can be set by sequentially performing the three sub-
activities: selecting the buzzer alarm mode (aSelectBuzzerA-
larmMode), changing the buzzer alarm time (aChangeBuzzerA-
larmTime), and exiting the mode for setting the buzzer alarm
(aExitBuzzerAlarmMode). The activity of selecting the buzzer
alarm mode has a precondition that the display is in time dis-

2988

A.
<eofm name="aSetBuzzerAlarm" decomposition="seq">
 <precondition>iDisplayMode = TimeDisplay</precondition>
 <activity name="aSelectBuzzerAlarmMode" decomposition="seq">
 <precondition>iDisplayMode = TimeDisplay</precondition>
 <postcondition>iDisplayMode = SetBuzzerAlarm</postcondition>
 <haction humanaction="hHoldBuzzer"/>
 </activity>
 <activity name="aChangeBuzzerAlarmTime" decomposition="xor">
 <whilecondition>iTime /= iBuzzerAlarmTime </whilecondition>
 <haction humanaction="hPressPlus"/>
 <haction humanaction="hPressMinus"/>
 </activity>
 <activity name="aExitSetBuzzerAlarmMode" decomposition="seq">
 <precondition>iTime = iBuzzerAlarmTime and iDisplayMode = SetBuzzer</precondition>
 <postcondition>iDisplayMode = TimeDisplay</postcondition>
 <haction humanaction="hReleaseBuzzer"/>
 </activity>
</eofm>

Figure 3. A. EOFM code of the eofm node for setting the buzzer alarm.
B. Visual representation of the aSetBuzzerAlarm eofm.

play mode (iDisplayMode = TimeDisplay) and a postcondition
indicating that the activity has completed when the clock is in
the display mode for setting the buzzer time (iDisplayMode =
SetBuzzerAlarm). The activity ultimately decomposes into the
human action of holding down the buzzer button (hHold-
Buzzer).

The activity for changing the buzzer alarm time is per-
formed repeatedly as long as the whilecondition (that the dis-
played time is not equal to the desired or mission directed
buzzer time: iTime iBuzzerAlarmTime) is satisfied. The activ-
ity is performed by the human action of pressing either the plus
button (hPressPlus) or the minus button (hPressMinus).

The activity for exiting the display mode has the precondi-
tion that the display be in the mode for setting the buzzer alarm
time and that the displayed time be equal the desired buzzer
alarm time (iTime = iBuzzerAlarmTime and iDisplayMode =
SetBuzzer) and a postcondition indicating that the action has
completed when the time display mode is shown (iDisplay-
Mode = TimeDisplay). The activity is completed by performing
the action of releasing the buzzer button (hReleaseBuzzer).

 The EOFM language and this example are currently being
disseminated via http://cog.sys.virginia.edu/formalmethods/.
Here one can download the EOFM RELAX NG schema, the
clock radio example, and the full visualization of the clock ra-
dio example’s EOFMs.

V. DISCUSSION

The EOFM language introduced in this paper meets all of
the requirements laid out in the introduction:

• The language allows for the direct modeling of atomic
human actions via references to humanaction nodes.

• The language allows for the modeling of internal hu-
man actions through valuations of local variables
(lvariable nodes).

• The language allows models to be constructed hierar-
chically using eofm and activity nodes which decom-
pose into other activity nodes and, ultimately, atomic
actions (haction and laction nodes).

• The language allows for the specified cardinalities and
temporal orderings (those supported by OFM, CTT,
GOMS, and PRL) through the use of decomposition
operators.

• The language allows for the conditional executions of
activities given in the specification, supporting all of
the conditions found in OFM, CTT, GOMS, and PRL.

• The language allows for the modeling of multiple op-
erators via multiple operator nodes.

• The language is capable of allowing models to receive
information from external sources through the use of
custom types, constants, and input variables.

• The language allows activities to be reused between
and within task models via activitylink nodes.

• The language is specified in RELAX NG and imple-
mented in XML which fulfill the technological re-
quirements: both are platform independent and XML
documents are easily parsable with existing code li-
braries.

• The language supports a graphical notation for visu-
ally describing model activity and action hierarchies
with the model-specified decomposition operators and
conditions.

Since the EOFM language met its technological require-
ments through the use of RELAX NG and XML, a number of
tools associated with these technologies can be used to facili-
tate the development and use of the EOFM language.

A. Tool Support
1) Integration with Existing Technologies: The parsing ca-

pabilities offered by existing XML libraries allow the EOFM
language to be integrated into a number of existing tools and
frameworks. For example, we have developed a Java-based
parser that translates EOFM models into the language of the
Symbolic Analysis Laboratory, allowing human task behavior
to be verified as part of a formal system model [7]. We have
also developed a Visio document which uses Microsoft’s XML
parsing libraries to render visualization of the EOFM models
as Visio drawings (for example, Figure 3B).

2) Automatic Generation of Software: A number of tools
exist for expediting the production of parsing software for
XML based languages. For example, Relaxer and RelaxNGCC
can be used to automatically generate java code to parse
RELAX NG specified languages (see http://relaxng.org/). Thus
others can create their own EOFM code parsers.

3) Model Validation: Many parsing libraries for XML have
the capability to validate that an opened XML document

B.

2989

matches a given RELAX NG schema. Thus EOFM modelers
should be able to check that their developed models are prop-
erly conforming to the EOFM language structure.

4) Integrated Development Environments: A variety of
XML integrated development environments (IDEs) such as the
oXygen xml editor (see http://www.oxygenxml.com/) and
nXML for Emacs (see http://www.thaiopensource.com/nxml-
mode/) can be used to dynamically check that an XML docu-
ment is conforming to a RELAX NG schema while it is being
written. Such programs can also use schemas to suggest nodes,
node attributes, and data values dynamically via code-
completion functionality. Thus, these environments can be (and
have been) used as effective IDEs for EOFM models.

B. Future Work
There are some ways the EOFM language could be im-

proved. Firstly, the current implementation does not specify a
particular syntax for type constructions, initial values, and con-
dition formulas. RELAX NG offers a variety of ways in which
this could be done (additional XML structure and/or regular
expressions specifying data formatting). Future work should
investigate this potential feature.

Some forms of the operator function model allow for condi-
tions to be established between two activities in any given de-
composition, allowing for execution to shift between activities
much like a finite state machine [1]. While the current imple-
mentation of EOFM can use its supported conditions to pro-
duce a model that exhibits comparable behavior (an endcondi-
tion on the source activity and a startcondition on the destina-
tion activity with the same condition logic are equivalent to a
transition from one activity to the other), it may be a less intui-
tive representation. Future work should investigate whether
inter-activity, transitional conditions are a useful feature.

Work by Lee and Sanquist has attempted to extend the
OFM by adding cognitive operations [16]. Future work should
more explicitly attempt to incorporate these capabilities into the
EOFM language.

Finally, the EOFM language is intended to be easy to use
by the Human Factors and Systems Engineering communities.
As such, it may be necessary to conduct studies to determine
what application areas and analyses the language best supports
and thus find ways of improving the capabilities of the lan-
guage. Further, it may be useful to conduct usability analyses to
assess how intuitive and easy to use the language is and inves-
tigate potential improvements that would facilitate such goals.

C. Conclusions
The EOFM language offers a complete, flexible, generic,

platform-independent, means of creating human task models
that can be parsed and incorporated into other infrastructures.
Through the use of existing XML technologies, the EOFM
language can be used with sophisticated pre-existing develop-
ment resources which facilitate its use.

ACKNOWLEDGEMENT

The project described was supported in part by Grant Num-
ber T15LM009462 from the National Library of Medicine and

Research Grant Agreement UVA-03-01, sub-award 6073-VA
from the National Institute of Aerospace (NIA). The content is
solely the responsibility of the authors and does not necessarily
represent the official views of the NIA, NASA, the National
Library of Medicine, or the National Institutes of Health.

REFERENCES

[1] Thurman, D. A., Chappell, A. R., and Mitchell, C. M., “An enhanced
architecture for OFMspert: a domain-independent system for intent
inferencing,” IEEE International Conference on Systems, Man, and
Cybernetics, vol.1, no., pp. 955-960 vol.1, 11-14 Oct 1998.

[2] Lecerof, A. and Paternò, F., “Automatic support for usability
evaluation,” IEEE Transactions on Software Engineering, vol.24, no.10,
pp.863-888, Oct 1998.

[3] Chu, R. W., Mitchell, C. M., and Jones, P. M., “Using the operator
function model and OFMspert as the basis for an intelligent tutoring
system: towards a tutor/aid paradigm for operators of supervisory control
systems,” IEEE Transactions on Systems, Man and Cybernetics, vol.25,
no.7, pp.1054-1075, Jul 1995.

[4] John, B. E. and Kieras, D. E., “Using GOMS for user interface design
and evaluation: Which technique?” ACM Transactions on Computer-
Human Interaction, vol. 3, pp. 287-319, 1996.

[5] Bass, E. J., Ernst-Fortin, S. T., Small, R. L., and Hogans, J., Jr.,
"Architecture and development environment of a knowledge-based
monitor that facilitate incremental knowledge-base development,"
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE
Transactions on , vol.34, no.4, pp. 441-449, July 2004.

[6] Fields, R. E., “Analysis of erroneous actions in the design of critical
systems,” D. Phil Thesis, Technical Report YCST 20001/09, University
of York, Department of Computer Science, 2001.

[7] Bolton, M. L. and Bass, E. J. “A Method for the Formal Verification of
Human-interactive Systems,” HFES 53rd Annual Meeting, San Antonio,
Texas, October 19-23, 2009.

[8] Göknur, S., Bolton, M. L., and Bass, E.J. “Adding a motor control
component to the Operator Function Model Expert System to investigate
air traffic management concepts using simulation,” IEEE International
Conference on Systems, Man, and Cybernetics, vol. 1, pp.886-892,
October 10-13 2004.

[9] Paternò, F., Model-based Design and Evaluation of Interactive
Applications. Springer Verlag, 1999.

[10] Kortenkamp, D., Dalal, K. M., Bonasso, R. P., Schreckenghost, D.,
Verma, V. and Wang, L. “A Procedure Representation Language for
Human Spaceflight Operations”, Proceedings of the International
Symposium on Artificial Intelligence, Robotics and Automation in Space,
2008.

[11] Mitchell, C. M., Thurman, D. A., Brann, D. M., and Chappell, A. R.,
“OFMspert I: operations automation,” IEEE International Conference
on Systems, Man, and Cybernetics, vol.2, no., pp.1093-1098 vol.2, 2000.

[12] Mori, G., Paternò, F., and Santoro, C., “CTTE: support for developing
and analyzing task models for interactive system design,” IEEE
Transactions on Software Engineering, vol.28, no.8, pp. 797-813, Aug
2002.

[13] John, B. E. and Salvucci, D. D., “Multipurpose prototypes for assessing
user interfaces in pervasive computing systems,” Pervasive Computing,
IEEE, vol.4, no.4, pp. 27-34, Oct.-Dec. 2005

[14] “Extensible Markup Language (XML) 1.0 (5th Edition) W3C
Recommendation,” Bray, T., Paoli, J., Sperberg-McQueen, C. M.,
Maler, E., and Yergeau, F. Eds., November 2008, Available:
http://www.w3.org/TR/2008/REC-xml-20081126/

[15] Clark, J. and Makoto, M., RELAX NG Specification, OASIS, 2001,
Available: http://relaxng.org/spec-20011203.html

[16] Lee, J. D. and Sanquist, T. F., "Augmenting the operator function model
with cognitive operations: assessing the cognitive demands of
technological innovation in ship navigation," Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on ,
vol.30, no.3, pp.273-285, May 2000

2990

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

