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Abstract—This paper presents a method, based on 
classification techniques, for automatically detecting and 
diagnosing various types of defects which may occur on a rolling 
element bearing. In the experiments we have used vibration 
signals coming from a mechanical device including more than ten 
rolling element bearings monitored by means of four 
accelerometers: the signals have been collected both with all 
faultless bearings and substituting one faultless bearing with an 
artificially damaged one: four different defects have been taken 
into account. The proposed technique considers all the aspects of 
classification: feature selection, different base classifiers (two 
statistical classifiers, namely LDC and QDC, and MLP neural 
networks) and classifier fusion. Experiments, performed on the 
vibration signals represented in the frequency domain, have 
shown that the proposed classification method is highly sensitive 
to different types of defects and to different severity degrees of 
the defects. 

Keywords—automatic fault diagnosis, fault classification, 
multi-layer perceptron, statistical classifiers, classifier fusion

I. INTRODUCTION

Breakdowns in industrial manufacturing systems can have 
serious consequences on people, machinery and environment 
[1]-[4]. For this reason machine condition monitoring and fault 
diagnostics have became an integral part of industrial systems 
with the aim of reducing costly machine downtime and 
ensuring production quality. There are mainly three types of 
maintenance: corrective, preventive and condition-based 
maintenance (CBM) [1]. 

Corrective maintenance consists of repairing faults after 
they have occurred, while preventive maintenance aims to 
prevent future faults by performing periodic inspections to 
identify conditions that would cause breakdowns, and 
correcting these conditions. Both these kinds of maintenance 
have serious drawbacks: the former does not prevent any faults, 
the latter can waste time and money since many controls may 
result useless, besides no guarantee can be given regarding the 
proper work of the system between two subsequent checks. To 
overcome these drawbacks CBM has been introduced. 

CBM consists of monitoring the system state and 
performing appropriate maintenance actions only when 
necessary. One field in which CBM has been widely applied is 
rotating machinery maintenance [3,4]. Actually, rotating 
machines are present in most manufacturing and production 

industries, and real-time monitoring and diagnostics are needed 
to guarantee a continuous and reliable production process. 
Most rotating machines operate by means of bearings which 
may develop several types of faults. These faults may cause 
machine breakdown and decrease the performance level. 
Different methods for detection and diagnosis of faults in 
bearings have been developed. 

Traditional techniques for bearing performance analysis 
include time-domain [5,6] and frequency-domain analysis [4] 
used separately or together [7,8]. Time-domain analysis is 
based on performance indexes such as RMS (Root Mean 
Square), Crest Factor and Kurtosis, while frequency-domain 
analysis is based on the Fourier Transform technique. 
Frequency-domain analysis is the most popular one, perhaps 
because characteristics of vibration signals are more easily 
noticed in the frequency domain rather than in the time domain 
[3,4,8]. 

This paper aims to achieve the following objectives: given a 
mechanical object containing rolling bearings, i) to detect the 
presence of a defect, ii) to recognize the specific kind of defect, 
iii) to recognize the severity of the defect. To this aim, we have 
dealt with the problem as a classification problem, adopting 
two statistical classifiers, namely the Linear Discriminant 
Classifier (LDC) and the Quadratic Discriminant Classifier 
(QDC), and Multi-Layer Perceptron (MLP) neural networks. 
LDC is a minimum-error (Bayes) classifier for normally 
distributed classes with equal covariance matrices [9-12],. 
QDC is a minimum-error (Bayes) classifier for normally 
distributed classes with class-specific covariance matrices 
[9,10,11]. MLPs [9] are characterized by one or more hidden 
layers and non-linear transfer functions. In the experiments we 
used one hidden layer and logarithmic sigmoid transfer 
functions.  

In particular, we use LDC and QDC to perform both feature 
selection and classification, whereas MLP neural networks 
perform classification of signals represented by means of the 
features selected by LDC and QDC. 

Finally, to solve particularly difficult classification 
problems, we have adopted classifier fusion [9]. Indeed, it is 
well-known that the appropriate combination of a set of 
different classifiers designed for a given classification task may 
achieve higher performance than any of the classifiers 
considered individually [9,13]. 
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In the experiments we used vibration signals coming from 
bearings monitored in the time domain by four accelerometers, 
the second and the third accelerometers closer than the others 
to the bearing to be analyzed. For each experiment we used the 
PRTools software in a Matlab environment [14]. 

II. DEFECTS 
In this section we briefly describe the types of defects 

analyzed. 

In the experiments we use vibration signals coming from a 
mechanical device including more than ten rolling element 
bearings monitored by means of four accelerometers: the 
signals have been collected both with all faultless bearings and 
after substituting one faultless bearing with a damaged one. 

The bearings were artificially damaged. Four types of 
damages have been considered. Experimental data were 
collected before and after each damage. Therefore the data can 
be classified into five classes: 

C1: faultless bearing, 

C2: bearing with an indentation on the inner raceway, 

C3: bearing with an indentation on the roll, 

C4: bearing with sandblasting of the inner raceway, 

C5: bearing with unbalanced cage. 

The fault of bearings of class C2 consists of a 450 m
indentation on the inner raceway, whereas bearings of class C3
can be divided into three subclasses depending on the severity 
of the damage (light, medium or high): 

C3.1: bearing with a 450 m indentation on the roll (light), 

C3.2: bearing with a 1.1 mm indentation on the roll (medium), 

C3.3: bearing with a 1.29 mm indentation on the roll (high). 

In the following we will refer to the complete set of all 
damaged bearings (classes C2, C3, C4, C5) as class C6.

III. EXPERIMENTAL DATA 
The data used in the experiments are the vibration signals 

recorded by four accelerometers. The data were recorded for 
time intervals of ten minutes. We considered a data set 
consisting of one-second signals and including 2890 signals for 
class C1, 1770 for class C2, 4790 for class C3, 1520 for class 
C4 and 1770 for class C5 (Table I). 

TABLE I. SIGNALS PER CLASS

Class C1 C2 C3 C4 C5

Number of signals (sec) 2890 1770 4790 1520 1770 

Class C3 is subdivided in the following way: 1770 signals 
(sec) for class C3.1, 1250 for class C3.2 and 1770 for class 
C3.3 (Table II). Fig. 1 shows an example of the time signals 
and the corresponding FFT for classes C1 and C2. 

TABLE II. AMOUNT OF DATA FOR CLASS C3 

Class C3.1 C3.2 C3.3 

Number of signals (sec) 1770 1250 1770 

(a)              (b) 

(c)               (d) 
Figure 1. Examples of time signals and corresponding FFT. (a) time signal 

for C1, (b) FFT for C1, (c) time signal for C2, (d) FFT for C2. Accelerometer 1 
(green), accelerometer 2 (red), accelerometer 3 (yellow), accelerometer 4 (blue) 

We worked in the frequency domain by transforming the 
signals by the Fast Fourier Transform (FFT). Unlike the 
classical approach, which identifies specific characteristic 
frequencies associated with given defects, we tried to find out 
the frequencies able to discriminate among the different defects 
taken into consideration. 

Thus, we considered the frequency interval [1, 250] Hz (the 
interval does not contain the continuous component), sampled 
every 1 Hz. Therefore, each signal is represented by 250 
frequency samples. As there are four accelerometers the total 
number of frequency samples for each element to be analyzed 
is 250× 4=1000. In other words, each signal is represented in 

1000ℜ . The 1000 frequency samples (referred to as features in 
the following) are obtained by concatenating the four groups of 
250 frequency samples (i.e., features) relative to the four 
accelerometers (Fig. 2). 

Figure 2. Organization of the features considering the four accelerometers 
and the five frequency ranges 
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As a final remark, we point out that for each experiment the 
data have been balanced using a random technique so that each 
class involved in the experiment contains the same number of 
samples as the least numerous one. Then the training set has 
been built by randomly choosing 70% of the total data, while 
the remaining data have been used as the test set. 

A. First series of experiments: classification of C1 and C6 
The goal of these experiments is to classify the signals into 

two classes: faultless bearings (C1) and damaged bearings (C2,
C3, C4, C5). As said before, the set of all the damaged bearings 
will be referred to as class C6.

Since each signal is represented in 1000ℜ , we need to 
decrease the space dimension. To this aim, we first divide the 
frequency interval [1, 250] Hz into five sub-intervals 
consisting, respectively, of the first 50 frequencies, the second 
50 frequencies, etc. In each sub-interval, each signal is 
represented by 200 features obtained by concatenating the four 
groups of 50 features associated with the four accelerometers 
(Fig. 2). 

For each sub-interval, we look for the best discriminating 
frequencies (DFs), i.e., the frequencies that are able to provide 
the best accuracy when used to represent the signals to be 
classified. In this way, besides decreasing the space dimension, 
we also identify the most significant frequency (sub-)interval 
for classification purposes. This step is performed using the 
forward feature selection (FFS), based on the featself function 
of PRTools. We chose to use FFS because it is a reasonable 
compromise between exhaustive search and random search. 
We adopted LDC and QDC to perform both feature selection 
and classification of the signals represented through the 
selected features. This choice stems from the fact that LDC and 
QDC are fast trainable classifiers with only one parameter r,
called regularization parameter (one degree of freedom). 
However we will consider r fixed to 0 (the default value in 
PRTools) for both the LDC and QDC classifiers, for all the 
following experiments. 

We use 5 LDCs and 5 QDCs: each LDC/QDC works on a 
particular range of frequency, namely, the range 1-50 Hz, the 
range 51-100 Hz, etc. We experimentally verified that each 
classifier achieves the maximum classification accuracy with 
less than 200 features. The typical situation is represented in 
Fig. 3: we can notice that the accuracy increases with the 
number of features up to a point in which the accuracy remains 
almost constant and eventually decreases reaching a value that 
is equal to 1/n, with n being the number of classes (we recall 
that we work with balanced classes). 

Figure 3. Typical curve representing the classification accuracy (y-axis) 
versus the number of features (x-axis) for a five-class problem 

Considering all the 200 features and repeating the 
experiment 10 times, LDC and QDC have both selected as the 
best frequency range for this classification problem the fourth 
range, i.e., the range 151-200 Hz as in this range we obtained 
the highest accuracies. In particular, we found that in the fourth 
frequency range LDC and QDC achieved a maximum accuracy 
of 99.66 % with 33 features and 99.94 % with 20 features, 
respectively. 

Observing the curve that represents the classification 
accuracy versus the number of selected features, we noticed 
that just with the first 6 and 10 DFs, respectively, the two 
classifiers LDC and QDC achieve a performance close to the 
maximum in all the frequency ranges. We therefore decided to 
adopt only 6 and 10 DFs, respectively, to keep computation 
complexity at an acceptable level. Indeed we can notice that 
each new added feature brought a negligible improvement after 
6 and 10 features, respectively. In this way, the space dimension 
is reduced from 1000ℜ  to 6ℜ  and 10ℜ , respectively. In the 
following, we will refer to the discriminating features chosen to 
reduce the space dimension as reduced discriminating features 
(RDFs). The accuracy obtained by LDC and QDC considering 
only the RDFs for each frequency range is shown in Table III. 
Table IV shows the list of the RDFs for the fourth range. 

TABLE III. CLASSIFICATION OF C1, C6. ACCURACY FOR LDC AND QDC
IN THE FIVE FREQUENCY RANGES (6 AND 10 FEATURES RESPECTIVELY)

Range Frequency 
range 

Accuracy of LCD 
(mean over 10 trails) 

Accuracy of QDC 
(mean over 10 trials) 

1 1-50 Hz 86.82 % 85.47 % 
2 51-100 Hz 86.82 % 85.47 % 
3 101-150 Hz 94.35 % 93.94 % 
4 151-200 Hz 98.45 % 99.76 % 
5 201-250 Hz 84.98 % 89.45 % 

TABLE IV. CLASSIFICATION OF C1, C6. LIST OF THE RDFS USING THE 
LDC AND QDC CLASSIFIERS FOR THE FOURTH FREQUENCY RANGE

LDC 181, 23, 131, 138, 39, 32 
QDC 181, 23, 131, 31, 118, 44, 5, 187, 190, 8 

Fig. 4 shows the signals (both faultless and damaged) 
around feature 181 of the fourth accelerometer, i.e., the first DF 
selected by FFS in the fourth frequency range. Fig. 4 shows the 
good separation of the two classes performed by this DF. 

Figure 4. Faultless (blue) and damaged signals (red) around feature 181 
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B. Second series of experiments: classification of C1, C3.1, 
C3.2, C3.3 
The goal of this series of experiments is to classify the 

signals into four classes C1, C3.1, C3.2, C3.3. These 
experiments aim to distinguish between faultless and damaged 
bearings, and to recognize the different levels of severity of the 
same type of damage. 

Repeating the experiment 10 times, once again, both LDC 
and QDC classifiers, using the FFS algorithm, have selected as 
the best range for this classification problem the fourth range, 
i.e., the range [151, 200] Hz as in this range we succeeded in 
obtaining the highest mean accuracies. In particular, 
considering all the 200 features, LDC and QDC achieved the 
maximum accuracy of 99.76 % with 101 features and 99.93 % 
with 89 features, respectively. 

In this case, we considered 10 features as RDFs for both 
LDC and QDC. Actually, we wish to remark that, in order to 
adopt a uniform approach in all experiments, and taking into 
account the plots of accuracy versus number of DFs, we 
verified that choosing 10 RDFs is a good compromise both in 
this case and in the following cases. Indeed increasing the 
number of features brings to negligible improvements of the 
accuracy. 

Table V shows, for each frequency range, the results 
obtained with the first 10 features (i.e., the RDFs); the accuracy 
is very close to the maximum one. Table VI shows the list of 
the 10 RDFs for the fourth frequency range. 

TABLE V. CLASSIFICATION OF C1, C3.1, C3.2, C3. ACCURACY FOR LDC
AND QDC IN THE FIVE FREQUENCY RANGES (10 FEATURES)

Range Frequency 
range 

Accuracy of LCD 
(mean over 10 trails) 

Accuracy of QDC 
(mean over 10 trials) 

1 1-50 Hz 94.10 % 97.43 % 
2 51-100 Hz 90.70 % 92.40 % 
3 101-150 Hz 93.07 % 95.50 % 
4 151-200 Hz 99.73 % 99.87 % 
5 201-250 Hz 89.70 % 90.96 % 

TABLE VI. CLASSIFICATION OF C1, C3.1, C3.2, C3. LIST OF THE 10 RDFS
USING LDC AND QDC FOR THE FOURTH FREQUENCY RANGE

LDC 131, 182, 181, 31, 23, 73, 130, 32, 123, 138 

QDC 131, 181, 123, 182, 73, 31, 120, 138, 48, 132 

C. Third series of experiments: classification of C1, C2, C3, 
C4, C5 
The goal of this series of experiments is to classify the 

signals into five classes C1, C2, C3, C4, C5. These experiments 
aim to recognize the different types of damage regardless of 
their severity. 

Repeating the experiment 10 times, once again, the LDC 
and QDC classifiers have both selected as the best frequency 
range for this classification problem the fourth range. 
Considering all the 200 features, we found that, in the fourth 
frequency range, LDC achieved a maximum accuracy of 
94.30 % using 86 features, while QDC obtained a maximum 

accuracy of 95.00 % using 102 features. The accuracy obtained 
by LDC and QDC considering only the RDFs (10 also in this 
case) for each frequency range is shown in Table VII. 

TABLE VII. CLASSIFICATION OF C1, C2, C3, C4, C5. ACCURACY FOR 
LDC AND QDC IN THE FIVE FREQUENCY RANGES (10 FEATURES)

Range Frequency 
range 

Accuracy of LCD 
(mean over 10 trails) 

Accuracy of QDC 
(mean over 10 trials)

1 1-50 Hz 61.72 % 64.74 % 
2 51-100 Hz 63.79 % 63.90 % 
3 101-150 Hz 56.21 % 57.41 % 
4 151-200 Hz 91.01 % 92.41 % 
5 201-250 Hz 58.88 % 761.73 % 

The list of the 10 RDFs and an example of the related 
confusion matrices are shown, respectively, in Tables VIII-X. 
From Tables IX and X we notice that the main part of the error 
(48.25 % for the QDC classifier, which achieves the best 
classification accuracy) is due to the misclassification of class 
C3, which is often recognized as C2 and vice versa. The 
following experiment will allow us to understand where this 
error is exactly placed, in other words we will expand the class 
C3 in its subclasses and then we will search the subclass(es) 
which account for most error (we wonder if C2 is misclassified 
with all the elements of class C3 or perhaps only, or mainly, 
with the elements of a subclass, i.e., C3.1, C3.2, C3.3). 

TABLE VIII. CLASSIFICATION OF C1, C2, C3, C4, C5. LIST OF THE 10
RDFS USING LDC AND QDC FOR THE FOURTH FREQUENCY RANGE

LDC 181, 182, 123, 137, 77, 131, 81, 82, 131, 105 

QDC 181, 182, 123, 137, 77, 81, 131, 82, 132, 26 

TABLE IX. CLASSIFICATION OF C1, C2, C3, C4, C5. LDC CONFUSION 
MATRIX FOR THE TEST SET (10 FEATURES)

Estimated labels Total 
C1 C2 C3 C4 C5 

True 
labels 

C1 439 8 3 0 6 456 
C2 3 375 60 18 0 456 
C3 1 44 385 26 0 456 
C4 0 34 27 395 0 456 
C5 3 2 1 0 450 456 

Total 446 463 476 439 456 2280 

TABLE X. CLASSIFICATION OF C1, C2, C3, C4, C5. QDC CONFUSION 
MATRIX FOR THE TEST SET (10 FEATURES)

Estimated labels 
Total 

C1 C2 C3 C4 C5 

True 
labels 

C1 446 1 2 0 7 456 

C2 0 408 33 15 0 456 

C3 1 64 347 40 0 456 

C4 2 24 10 420 0 456 

C5 1 0 1 0 454 456 

Total 450 497 393 475 461 2280 
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D. Fourth series of experiments: classification of C1, C2, 
C3.1, C3.2, C3.3, C4, C5 
The goal of these experiments is to classify the signals into 

seven classes C1, C2, C3.1, C3.2, C3.3, C4, C5. These 
experiments aim to recognize not only the different types of 
fault but also the different degrees of severity. 

LDC and QDC, using the FFS algorithm and repeating the 
experiment 10 trials, achieved the maximum performance on 
the fourth frequency range. When using all the 200 features, 
LDC and QDC achieved the maximum accuracy of 95.30 % 
with 110 features and 97.88 % with 73 features, respectively. 
With 10 RDFs, the LDC and QDC classifiers achieved the 
accuracy shown in Table XI. We chose 10 RDFs to keep the 
complexity at an acceptable level. The 10 RDFs and the related 
confusion matrices are shown, respectively, in Tables XII-XIV. 

TABLE XI. CLASSIFICATION OF C1, C2, C3.1, C3.2, C3.3, C4, C5.
ACCURACY FOR LDC AND QDC IN THE FIVE FREQUENCY RANGES

Range Frequency 
range 

Accuracy of LCD 
(mean over 10 trails) 

Accuracy of QDC 
(mean over 10 trials)

1 1-50 Hz 69.84 % 74.08 % 

2 51-100 Hz 65.64 % 69.45 % 

3 101-150 Hz 65.68 % 68.30 % 

4 151-200 Hz 91.10 % 94.38 % 

5 201-250 Hz 60.93 % 63.81 % 

TABLE XII. CLASSIFICATION OF C1, C2, C3.1, C3.2, C3.3, C4, C5. LIST
OF THE 10 RDFS USING LDC AND QDC FOR THE FOURTH FREQUENCY RANGE

LDC 131, 123,181, 77, 182, 137, 81, 136, 73, 82 

QDC 131, 123, 181, 77, 182, 81, 82, 31, 32, 173 

TABLE XIII. CLASSIFICATION OF C1, C2, C3.1, C3.2, C3.3, C4, C5. LDC
CONFUSION MATRIX FOR THE TEST SET (10 FEATURES)

Estimated labels 
Total

C1 C2 C3.1 C3.2 C3.3 C4 C5 

True 
labels 

C1 354 13 2 1 0 0 5 375 

C2 2 297 56 0 0 20 0 375 

C3.1 0 60 287 4 0 24 0 375 

C3.2 1 0 2 367 0 0 5 375 

C3.3 0 0 0 0 375 0 0 375 

C4 0 20 13 0 0 342 0 375 

C5 4 1 2 13 0 0 355 375 

Total 361 391 362 385 375 386 365 2625 

From Tables XIII and XIV, we can observe that the main 
part of the error (48.07 % for the QDC classifier) is due to the 
misclassification of class C3.1, which is sometimes recognized 
as C2 (39.10 %), and vice-versa (8.97 %). This means that the 
classification system cannot distinguish correctly between 
indentation on the inner raceway and light indentation on the 
roll. 

On the other hand, the fourth series of experiments resulted 
in a better accuracy than the third series of experiments. This 
suggests that one could achieve the objective of the third series 
of experiments by appropriately exploiting the fourth series of 
experiments. More precisely, we can classify the data into 
seven classes and then put together C3.1, C3.2 and C3.3 to 
obtain C3, thus returning to the five-class problem. In this way, 
considering the results obtained by the QDC classifier, the 
confusion matrix for the five-class problem becomes the one in 
Table XV and the accuracy becomes 94.06 %. This accuracy is 
higher than the one obtained during the third series of 
experiments (92.41 %). We remark that we still use the same 
number of RDFs. 

TABLE XIV. CLASSIFICATION OF C1, C2, C3.1, C3.2, C3.3, C4, C5. QDC
CONFUSION MATRIX FOR THE TEST SET (10 FEATURES)

Estimated labels 
Total

C1 C2 C3.1 C3.2 C3.3 C4 C5 

True 
labels 

C1 369 2 1 1 0 1 1 375 

C2 1 341 14 0 0 18 1 375 

C3.1 0 61 298 0 0 16 0 375 

C3.2 0 0 0 372 0 1 2 375 

C3.3 0 0 0 0 375 0 0 375 

C4 1 8 19 0 1 346 0 375 

C5 4 1 0 2 0 0 368 375 

Total 375 413 332 375 376 382 372 2625 

TABLE XV. CLASSIFICATION OF C1, C2, C3, C4, C5. QDC CONFUSION 
MATRIX FOR THE TEST SET (10 FEATURS). 

Estimated labels 
Total

C1 C2 C3 C4 C5 

True 
labels 

C1 369 2 2 1 1 375 

C2 1 341 14 18 1 375 

C3 0 61 1045 17 2 1125 

C4 1 8 20 346 0 375 

C5 4 1 2 0 368 375 

Total 375 413 1082 382 383 2625 

E. Fifth series of experiments: classification of C2, C3.1 
Once identified where the main part of the error is 

(misclassification of C2 with C3,1 and vice versa rather than 
C2 with C3) we tried to cope with this problem with a 
dedicated classifier. The goal of this series of experiments is 
thus to classify the signals into two classes C2 and C3.1, so as 
to solve the main problem met in the previous series of 
experiments. 

Repeating the experiment 10 times, once again, LDC and 
QDC achieved the maximum performance in the fourth 
frequency range. When used with 10 RDFs, the LDC and QDC 
classifiers achieved the accuracy shown in Table XVI. 

To improve the result obtained by the LDC and QDC 
classifiers, we resort to classifier fusion [9,13]. More precisely, 
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we use different classifiers and then appropriately combine 
their responses. We used nine classifiers (Table XVII). The 
MLPs used are characterized by one hidden layer and 
logarithmic sigmoid transfer functions. 

TABLE XVI. CLASSIFICATION OF C2, C3.1. ACCURACY FOR LDC AND 
QDC IN THE FIVE FREQUENCY RANGES (10 FEATURES)

Range Frequency 
range 

Accuracy of LCD 
(mean over 10 trails) 

Accuracy of QDC 
(mean over 10 trials) 

1 1-50 Hz 71.84 % 73.21 % 
2 51-100 Hz 65.81 % 68.88 % 
3 101-150 Hz 68.36 % 67.14 % 
4 151-200 Hz 91.85 % 91.95 % 
5 201-250 Hz 83.00 % 83.99 % 

In particular, we also introduced another method of feature 
selection, IFS (Individual Features Selection). This method 
takes into account the accuracy achieved by features used 
singularly and not combined together (like in forward feature 
selection). The nine classifiers were combined by means of the 
majority rule achieving an accuracy of 94.35 % (Table XVII) 
(mean over 10 trials). Table XVIII shows an example of the 
related confusion matrix. 

TABLE XVII. CLASSIFICATION OF C2, C3.1. CLASSIFIER FUSION

Classifier Neurons in the 
hidden layer 

Number of 
features 

Feature 
selection 

Accuracy 
(mean) 

LDC --- 20 --- 91.97 % 

LDC --- 10 --- 91.85 % 

QDC --- 20 --- 92.16 % 

QDC --- 10 --- 91.95 % 

MLP 20 20 FFS (LDC) 89.52 % 

MLP 20 20 FFS (QDC) 90.86 % 

MLP 20 15 FFS (QDC) 90.19 % 

MLP 40 10 IFS (LDC) 89.78 % 

MLP 40 10 IFS (QDC) 88.88 % 
9-classifier 
Combiner --- --- --- 94.35 % 

TABLE XVIII. CLASSIFICATION OF C2, C3.1. CLASSIFIER FUSION.
CONFUSION MATRIX FOR THE TEST SET

Estimated labels
Total 

C2 C3.1

True 
labels 

C2 489 42 531 

C3.1 18 513 531 

Total 507 555 1062 

We wish to point out that the obtained accuracy is higher 
than that of the best of the nine classifiers and furthermore, in 
this way, we can also significantly increase the robustness of 
the resulting classification system. 

IV. CONCLUSIONS

In this paper we have presented an automatic method, based 
on classification techniques and classifier fusion, for 
diagnosing defects of rolling element bearings. 

The proposed method has been applied to experimental 
data, registered by four accelerometers, and related to four 
different defects with different severities on rolling element 
bearings. The method has proved to be highly sensitive both to 
different defects and to different degrees of severity for the 
considered defects. We achieved an accuracy on the test set 
greater than 94 % for all the classification cases taken into 
consideration (sometimes reaching almost 100 % accuracy). 
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