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Abstract—This paper presents a practical optimization proce-
dure for object detection and recognition algorithms. It is suitable
for object recognition using a catadioptric omnidirectional vision
system mounted on a mobile robot. We use the SIFT descriptor to
obtain image features of the objects and the environment. First,
sample object images are given for training and optimization
procedures. Bayesian classification is used to train various test
objects based on different SIFT vectors. The system selects the
features based on the k-means group to predict the possible object
from the candidate regions of the images. It is thus able to detect
the object with arbitrary shape without the 3D information. The
feature optimization procedure makes the object features more
stable for recognition and classification. Experimental results are
presented for real scene images captured by a catadioptric omni-
vision camera.

I. INTRODUCTION
Summarizing the object recognition task that asks “what

is the object in the image?” actually we mean that “does it
corresponds to any model that we know?” If not, the object is
new to our database. Otherwise, it is recognized as an existing
object. For human beings, the database corresponds to the
memory in our brain. But for a robot, there is usually no prior
knowledge of the objects for recognition. Thus, it is mandatory
to establish the object models prior to the recognition tasks.
For our purposes, object recognition consists of two basic

steps– identifying and localizing the object. Identification
determines the nature of the imaged objects. For instance, we
may want to know whether there is a ball among the objects
in an image, or whether the only object we are looking at is
indeed a ball. Localization determines the position of the object
in a view. In this work, we use a mobile robot to explore the
environment for object identification (see Fig. 1).
A real-world environment is usually highly complicated,

uncertain, and contains many scattered features. We use a cata-
dioptric omnidirectional camera to find stable and interested
features, which can be recognized from a nearby robot. In this
paper, multiple rules are adopted. Firstly, the object is separated
from its background, similar to the work presented in [1].
Secondly, we use active vision to find the stable features. Some
researchers such as Ballard [2] also uses similar approach
to simplify visual perception. Finally, we use active vision
to gather more information for object recognition. This is
particularly important in the real-world ambiguous situations.
In addition to the use of active vision, we propose a method

to optimize the number of keypoints in the object database as

Fig. 1. The experimental setup for object recognition using our mobile robot.
The robot has the knowledge of several object models, which is used for object
identification and localization in an unknown environment.

well as the environment images. Like the previous approaches
on object recognition, our model illustrates the objects by a
set of interested features with spatial proximities [3], [4], [5].
Object recognition is still an open problem in computer

vision, and the reasons for this are numerous. Its applications
to robotics are very popular and evolve rapidly. Thus, it has
attracted a number of robotics researchers to deal with the
related issues. The first question is how to extract the high level
features. The second question is how to reduce the features
to keep the object characteristics more stable. The aim of this
work is to deal with the object recognition problem for mobile
robot applications. Towards this aim, the problem can be stated
as follows. Given:
1) The list of feature descriptors from a given classification
model.

2) The list of feature descriptors detected in a real-world
scene.

3) A list of constraints that model features must satisfy.
Find a mapping between the object model features and the
environment image features such that the constraints satisfied
by the model features are satisfied by the corresponding image
features. The major contribution of this work is to improve
the stability of feature detection algorithms in the real-world
environment.

II. PREVIOUS WORK

In this paper, we use the keypoints to refer to the image
features detected by SIFT (Scale Invariant Feature Transform)
descriptor [6]. Image features have been successfully used
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for object recognition purposes [7], [8], [9], [10]. One of the
reasons that SIFT is very successful in object recognition is
that it uses a large number of points to represent the object.
This makes the system bear to noise, and solve the problem
of occlusions. However, there is a major drawback. Because
the matching stage needs a lot of CPU time to compute the
vector correspondences, a significant amount of computation
in the recognition process is focused on matching the observed
features with the object model feature database.
When performing an object recognition task, many of the

acquired features look very similar. There are several reasons
for this. First of all, these are the features corresponding
to the same feature point on the object seen from different
viewpoints. Secondly, there are similar features on repetitive
structures of the same object. Finally, there might be am-
biguous features on different objects. Some researchers have
previously considered performing object recognition on mobile
robots. Kragic and Bjorkman [11] adopt a combination of
foveal and peripheral vision that uses structure from stereo and
bottom-up visual saliency to identify objects. Gould et al. [12]
construct a vision system which does perform targeted object
detection. Therefore, the vision system highlights tracking
of previously recognized objects and depends on reasonably
reliable recognition in its surrounding view. Ekvall et al. [13]
propose a system utilizing the top-down information to lead
their visual system by training a resiliency-like visual map to
shoot some objects. Their object recognition system is also
based on SIFT features.

III. SYSTEM OVERVIEW

In this paper, we use a feature based method to extract
the characteristics of an object, and make the characteristics
more stable. Here we assume that the object images are given.
Therefore, the object database must contain the features and
the classification parameters have to be trained from the object
images in advance. The first problem is to select a feature
detection method. Secondly, the features must have sufficient
characteristics to represent the object.

A. Feature Detection and Clustering
We focus on feature detection and its stability in this

section. As described in the introduction, the object model has
to be constructed before the object detection task. Because
the catadioptric omni-vision system is used, there are two
problems related to the feature detection. One is that there are
too many features in the real scene image if we use all of the
features for classification and generate the constraint (object
model). There contain too many similar features to represent
different object models– a feature might be selected by several
objects. This might have an impact on the uncertainness of
object classification in both the training and detection steps.
The other problem is that the image is distorted when captured
from the catadioptric omni-vision system.
To solve these two problems, we select a stable feature

detection method and optimize the object features to obtain
the independent features. In our implementation, the SIFT

Shiny region Dark region

Fig. 2. The object image (left figure) and the features (right figure).

descriptor is used to detect the image features. Based on the
detection results, the features are optimized to represent an
object model.
For mobile robot applications, the environment is usually

complicated for object searching and robot navigation. The
image features are scattered all over the places in a real-
world scene. Even a single object as shown in Fig. 2 has
many detected features. There are a lot of features can be
detected using SIFT feature detection, but some features are
located at trivial positions. For this problem we use the k-
means algorithm to roughly separate the SIFT features to
several subgroups [14]. We use the cluster algorithm to cluster
the SIFT feature set into k subgroups. The derived centroids
become internal nodes. Recursively, the clusters are subdivided
in the same manner until they consist of less than k elements.
We then use our feature optimization method to optimize
the features based on the subgroups [15], [16]. The feature
optimization procedure is discussed in the section IV.

B. The Mobile Robot Platform
The mobile robot platform shown in Fig. 3 was used in this

work. The robot is equipped with several sensors including
a catadioptric omni-vision system, encoders, a stand-alone
computer and sonars.
In this paper we focus on object recognition with only the

omni-vision system. As mentioned in section III-A, the fea-
tures might locate at some trivial positions. This phenomenon
is caused by the catadioptric omni-vision system, which cap-
tures the visual information of the environment around the
camera axis in one image on 360 degrees of circumference.
We use SIFT to detect the features in the environment, and the
features will distribute any place of the image. As mentioned
above, we need to separate the features to several subgroups.
Make some groups concentrate on the objects.
In order to easily process the omnidirectional image cap-

tured from the omni-vision system, we transform the omnidi-
rectional image to a rectangular, panoramic image through a
coordinate transformation. It converts the polar coordinates to
the rectangle coordinates, which is also called “image warping”
as shown in Fig. 4.

IV. CHARACTERIZATION AND SIMPLIFICATION OF THE
OBJECT RECOGNITION

Object recognition using the SIFT descriptor has a main
drawback that the processing time needed increases with the
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Fig. 3. The mobile robot platform used in the experiments. The encoders
and the catadioptric omni-vision system mounted on the top of the robot are
used for object searching.
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Fig. 4. The image warping technique used in this work.

number of features stored in the database. We therefore use
a feature optimization procedure to enhance and reduce the
cluster features corresponding to the object. In the object model
training stage, we need to find the stable features of the object
first. In this work we use the SIFT descriptor for the pure object
image. Suppose we have stable SIFT features of an object, we
can then adopt the Bayesian classification to train the object
model.
First, suppose the prior feature vector probability distri-

butions of an object is a normal distribution and can be
represented as follow:

p(x|μ) ∼ N(μ, Σ) (1)

TABLE I
AN EXAMPLE OF THE FEATURE MATRIX, WHERE AN OBJECT CONTAINS n

FEATURES AND EACH FEATURE HAS 128 DIMENSIONS.

Features Object 1 · · · Object m
1 10 19 7· · · 9 64 9 12 · · · 1 4 5 2 · · · 14

2
... · · ·

...
...

... · · ·
...

n 5 12 3 · · · 4 · · · 6 18 3 · · · 8
mean 9 · · · 6
variance 0.21 · · · 0.37

where μ and
∑

are the mean and variance of the SIFT
features, respectively. In other words, we assume every object
is represented by an normal distribution but with different
mean and variance. Secondly, we assume there are stable SIFT
features and each SIFT feature has 128 dimensions. Third, we
use all features to derive a set of feature vectors from an object
image. In other words, a set represents all the feature’s vectors
of one object image. Fourth, we use a matrix to represent all
sets of objects. The form of the matrix is shown in Table I.
Our goal is to find the object model using discriminant

functions and distinguish the objects through Bayesian clas-
sification. The Bayesian classification equations are given as
follows:

P (wi|x) =
p(x|wi)P (wi)

p(x)
(2)

p(x) =
c∑

i=1

p(x|wi)P (wi) (3)

where p(x|wi) is the likelihood of wi with respect to x, and c
is the the total number of objects that we know. As mentioned
before we assume that each object has a Gaussian distribution,
so p(x|wi) must be a Gaussian. The Gaussian parameters are
calculated using the matrix obtained from all sets of feature
vectors (see Table I). Therefore, we get the likelihood functions
of all objects.
It is easily to calculate the distribution of an object. For

example, suppose an object has n features. We calculate the
vector mean of all features which belong to the object. The
calculation of variance is carried out similarly. Refer to [17]
for more details. Finally, different objects are distinguished by
the discriminant function given as follow:

gi(x) = ln p(x|wi) + lnP (wi) (4)

In this section we assume that we have stable SIFT features
to calculate the object model. In the next section, there is a
number of procedures to make the SIFT features more stable
without loss of the characterization of the object.

V. OPTIMAL FEATURE TRANSFORM

A. Outlier Rejection
The characterization of an object is not enough if we use all

of the features detected from an object to train the discernment
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function. Suppose the SIFT features detected from an object
image have the form:

Dtraining = {v1, v2, · · · , vn} (5)

where Dtraining is a set of SIFT features, vi represents
a feature point. We separate the features to several groups
through k-means cluster. This can be computed as follows.⎧⎨

⎩
k(Dtraining) = {k1, k2, · · · , kn}

ki =
{

ci

ri

}
(6)

where each ki is a group of features, and ci is the center of the
cluster, ri is the maximum radius of the cluster, which cover
all the features which belong to this cluster.
Suppose a group has n features. The following equation is

minimized to make the cluster stable:

J(v, k) =
n∑

i=1

|vi − ki|2 (7)

where J(v, k) is the target function, feature vi belongs to the
cluster ki.
For the definition of outliers features, we hypothesize a

feature which belongs to a cluster ki and calculate the distance
between the feature position to the ki cluster center. We also
calculate the other distances Dbetween distance between the ki

cluster and the nearest cluster knearest, for knearest �= ki. If the
distance is less than the maximum radius of cluster knearest,
we define this feature is as an outlier. This can be stated as
follow:

Dbetween distance = ‖ci − cnearest‖2 (8)

where ci is the distance between the feature position and its
cluster owner. cnearest is the distance between the feature’s
cluster owner center and the nearest cluster center. Equation
(8) is to calculate the distance between a cluster and its nearest
cluster. In order to reject the outlier features, we modify
the radius of each group radius in advance. We assume the
maximum radius cannot cover the features of other group. The
new radius of the cluster can be expressed as:

Rnew =
Rold × Dbetween distance

Rold + Rnearest
(9)

where Rnearest is the maximum radius of the nearest group.
Rold is the maximum radius of this group. Dbetween distance

is calculated from equation (8). We remove the outlier features
of each group, the constraint is:{ ‖vi − ci‖ < rnew , inlier

‖vi − ci‖ > rnew , outlier (10)

The procedure is shown in Fig. 5 and the pseudo code of this
procedure is given in Section V.-C. Some features of the object
might still not be stable, for the features located at shiny or
dark positions in an image. In order to delete this kind of
features, we select the features which are on a suitable region
of the histogram.

B. Brightness Histogram Constrains
As mentioned before, we need to limit the features on a

suitable region using the histogram constraint. Suppose I is a
histogram of the image,

I =
1
q

q−1∑
j=0

f(x, y) (11)

where f(x, y) is the gray value of a image position (x, y) and
q is the maximum gray value. Then the feature v i which maps
to this region is a reliable feature.

C. Pseudo-code of the Optimal Feature Transform
To obtain the optimal features from input SIFT features, the

optimal feature transform steps are as follows:
1) Separate the features to each group.
2) Reduce the features using the radius parameter.
3) Histogram sampling (select the middle region).
4) Save the features and feature vectors.

Algorithm 1 The pseudo-code of optimal feature transform
1: cluster all SIFT features use k-means
2: k-means()← allfeaures(fi)
//separate the features to each group

3: for fi = 0 to fi = max do
4: if fi → cluster ki then
5: cluster ki + = 1
6: end if
7: //calculate each group’s maximum radius
8: if distance fi is maximum distance then
9: Maximu distanceki ← fi’s distance
10: end if
11: end for//calculate the new radius of each group
12: for ki = 0 to ki = max do
13: new radius ki ← {radius ki + radius knearest}/2
14: end for//kill the outliers
15: for fi = 0 to fi = max do
16: if distance fi ≥new radius ki then
17: kill fi

18: end if
19: end for//brightness histogram constrains
20: for fi = 0 to fi = max do
21: gray value fi → gi

22: if dark region ≤ gi or gi ≥shiny region then
23: kill fi

24: end if
25: end for//save remaining features
26: matrix ← features, vectors

VI. PROCEDURE OF THE PROPOSED SYSTEM
Summarizing the object recognition for a mobile robot, it

is realized by the following steps:
1) Input the object images.
2) Derive the optimal feature transforms of object images.
3) Train and generate the classification parameter.
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Feature detection

Fig. 5. We utilize the SIFT to detect the features and employ the k-means cluster. The top-left image is an object image with 2003 SIFT features. In the
top-right image, only the features and the clusters are shown(k = 20). The bottom-right image is with the modified radius. The bottom-left image shows the
reliable regions and choosing 89 stable features.

4) Capture the environment image from catadioptric omni-
vision camera.

5) Derive the optimal feature transforms of the images.
6) Select one of the objects which we want to search for.
7) Perform object detection and recognition.

Fig. 6 gives a flowchart of the our approach.

Object feature training Object detection

Inputting object image Inputting environment image

SIFT feature detectionSIFT feature detection

K-means clusteringK-means clustering

Optimal feature transform of objects

Generating Baysian classification parameter

Optimal feature transform

Predicting object

Fig. 6. Flowchart of the proposed system.

VII. EXPERIMENTS

This paper used a catadioptric omni-vision system mounted
on a mobile robot to search the object in an unknown environ-
ment. First, we trained and optimized the sample image of the
objects. In the experiment, the robot navigated in a complex
environment (as shown in Fig. 1). We selected an object which
we would like to search for. If the environment map is known,
then the object can be localized using the robot navigation
information. The object models are shown in Fig. 9. Fig. 10
shows an example of search results.

Fig. 7. The object search result, the lines illustrate the matching between the
object sample and the environment images.

TABLE II
PERFORMANCE ANALYSIS. DUE TO THE TABLE SIZE WE ONLY SHOW

RESULTS OF OBJECT 2 (OBJECT NUMBER REFER TO FIG. 9). THE OTHER
OBJECTS ARE ALSO WORK USING OUR METHOD.

Object 2 Full features Optimal features
Image size 1632 × 326 1632 × 326
Total features 2003 89

Average features matching error 22.7% 11.1%
Accuracy rate 40% 65%

The above experiment uses 6 books as the test data set to
illustrate our object recognition algorithm. It is fairly difficult
to recognize these similar objects in an unknown environment.
The feature matching errors are reduced as shown in Fig. 8.

The analysis (see Table II) was carried out to illustrate that the
optimization step increased the accuracy rate compared to the
non-optimization features. In the experiments, object image
may be small when the mobile robot is far away from the
object. This may decrease the object features and cause the
low accuracy results.
The processing time of the object search algorithm is

about 2 second per frame from capturing an environment
image to finding the object. More results can be found in
http://vision.ee.ccu.edu.tw/poolllz/Projects.html.
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(a) object model database 1. (b) object model database 2.

Fig. 9. Each object has 2 or 3 images for the experiments. In our system, the omni-vision system is installed higher than the ground plane. One could think
the object model is as a planar image on the ground due to the far distance between the omni-vision system and the object.

Error matching features

Fig. 8. The top image shows the SIFT feature matching without feature
optimization. The bottom image shows the feature matching with the feature
optimization. The comparison indicates the feature matching error decreased
by using the feature optimization procedure.

Fig. 10. The object search result.

VIII. CONCLUSIONS AND FUTURE WORK

We have proposed an optimal feature transform for object
recognition with a mobile robot in an unknown environment.
The results demonstrate that the accuracy rate increases with
the optimal feature transform method. In the future work, SVM
will be implemented instead of Bayesian classification. For
real-time applications, the GPU based SIFT method [18] is
a best manner to decrease the CPU computation time, which
will also be considered.
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