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Abstract—In this paper a reinforcement fuzzy learning scheme
for robots playing a differential game is derived. A differential
game may be considered a Markov decision process in continuous
time, with continuous states and actions. The robots receive
reinforcements from the environment after they take an action;
and this reinforcement is then used to adapt a fuzzy controller
that stores the experience accumulated by the robot. Every cal-
culation is done in a physical system based on microcontrollers to
control the movement of the robots and sensors to measure their
position and angle in a 2D-plane. Filters are also implemented
to approximate the derivatives of the states. Experiments of a
pursuer-evader game are provided in order to show the feasibility
of the technique. It should be noted, though, that the technique
may also be used in a multi-game environment.

Index Terms—Differential games, learning, pursuer-evader
games, intelligent systems.

I. INTRODUCTION

Game theory is the study of decision making [1] in order
to solve conflicts. It was introduced by von Neumann and
Morgenstern [2]. Each player is given a utility function (the
reward or penalty it receives) of its own strategy and the strate-
gies played by all the other players (or a subset of them). In
the general approach, the game and the strategies are discrete,
therefore, matrices with strategies and payoffs (the rewards
or penalties) may be assembled. Another way of viewing a
game was introduced by Isaacs [3] and is called differential

games. Differential games investigates how decision making
takes place over time [4] considering continuous domains,
i.e., when there is not a small number of strategies at each
player’s disposal. In order to represent this game, we need to
model the dynamic equations that are related to the process
under investigation. These equations are typically differential
or difference equations.

Learning in games has been largely studied in the last
couple of decades. It already includes several books [5], [6]
and recent research papers abound in the specialized literature
[7], [8]. However, little attention has been given to learning
in the differential game domain [9]. In the case of differential
games, one of the most popular learning approaches has been
the use of reinforcement learning and Q-learning [9], [10].
However, there is a disadvantage in this technique when we
deal with continuous processes such as the ones considered in
differential games. Since they are based on the construction of
tables, several different actions must be considered coupled

with states in order to describe the possible behaviours of
the players. This could lead to a proliferation of updates that
would make the approach unfeasible for implementation in a
microcontroller. Moreover, it is not easy to discretize the action
space as well as the state space [11].

In order to avoid this problem, one could use a fuzzy
controller. It is well known that a fuzzy system is a universal
approximator [12]. Therefore, we propose in this work a
fuzzy controller that is updated by a reinforcement learning
algorithm. The advantages of such approach are:

• A fuzzy controller can deal with noisy data [12] and
uncertainties [13].

• Reinforcement learning updates is an adequate way of
updating the fuzzy rules on line [13].

• A fuzzy controller such as presented here can be easily
implemented in a microcontroller.

The paper is divided as follows. Section II briefly introduces
the notation of a differential game. In section III we present
the control structure for the system. Section IV reviews the
learning techniques used in games in general and introduces a
fuzzy algorithm for learning in differential games. In section
V, we describe the system that will be used in the simulations
as well as how it relates to the notation in section II. Section
VI describes the experimental environment we built. In section
VII, experiments are presented. And, finally, section VIII
presents our conclusions.

II. DIFFERENTIAL GAMES

In the general, nonzero-sum, N -player differential game, a
player i tries to choose a control signal ui to minimize the
cost equation [14]

Ji = qi(x̄(T )) +

T∫
t0

gi(x̄(s), u1(s), · · · , uN (s), s)ds (1)

subject to the state dynamics

˙̄x(s) = f(x̄(s), ū1(s), · · · , ūN (s), s), x̄(t0) = x̄0 (2)

where x̄(s) ∈ R
m is the state vector of dimension m, T is

the terminating time (or the time where the terminal state is
reached), qi(·) is the payoff of the terminal state and gi(·) is
the integral payoff for player i ∈ N .
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Fig. 1: Architecture of the control system

Functions qi(·) and gi(·) are chosen in order to achieve
an objective. Function f(·) determines the dynamics of the
system. They could be represented by inequalities [14]. We
also assume that one agent (or player) has access to the states
of the other players involved in the game at all times. This is
called the perfect information assumption.

If the game under study is (as it is for this paper) between
only two players, the system dynamics may be written [15]

˙̄x(s) = f(x̄(s), δ̄p(s), δ̄e(s), s), x̄(t0) = x̄0 (3)

where δ̄p and δ̄e are the strategies played by each player. The
payoff, now represented as P (δ̄p, δ̄e), is given in the form

P (δ̄p, δ̄e) = q(t∗, x̄(t∗)) +

t∗∫
t0

g(x̄(s), δ̄p, δ̄e, s)ds (4)

where t∗ is the first time the states x̄(t) intersect a given final
condition. In this case it is also assumed that the player who
uses strategy δ̄p wants to minimize the payoff P (·), whereas
the player using strategy δ̄e wants to maximize it. Therefore,
the objective of the game is to find control signals δ̄∗p and δ̄∗e
such that [16]

P (δ̄∗p , δ̄e) ≤ P (δ̄∗p , δ̄∗e ) ≤ P (δ̄p, δ̄
∗
e ), ∀ δ̄p, δ̄e (5)

In section V we are going to present a simple model that
fits the equations presented above. However, before doing that,
we need to describe the control structure in section III and
to establish in section IV how a robot could learn how to
play a game using a fuzzy inference system. Lastly, notice
that in the simulations the positions of the robots are noisy,
which presents no theoretical problem since fuzzy systems are
intrinsically designed to deal with noise.

III. SYSTEM STRUCTURE

Figure 1 shows the proposed structure for the controller
[17]. In this section, we are going to focus on the structure of
each block, more specifically the controller and the evaluator.

We assume that the controller in figure 1 is a fuzzy con-
troller. More specifically, it is a fuzzy controller implemented
by Takagi-Sugeno (TS) rules with constant consequents [18].
It consists of M rules with n fuzzy variables as inputs and

one constant number as consequent. Therefore, each rule is of
the form [11]

Rl : IF x1 is F l
1, · · · , and xn isF l

n (6)
THEN u = cl (7)

where xi are the values passed to the controller, F l
i is the fuzzy

set related to the corresponding fuzzy variable, u is the rule’s
output, and cl is a constant that describes the center of a fuzzy
set.

Therefore, if we use the product inference for fuzzy im-
plication [12], t norm, singleton fuzzifier and center-average
defuzzifier, the output of the system is [11]

u(x̄) =

M∑
l=1

((
n∏

i=1

μF l
i (xi)) · ωl)

M∑
l=1

(
n∏

i=1

μF l
i (xi))

(8)

where cl in (7) is represented by ωl for the controller. Through-
out the paper, the membership functions used are triangular.

For the evaluator, we also assume a TS system with
constant consequents [17]. However, it must be noted that this
is not the only possible choice. A time-delay neural network
(TDNN) could be used instead [11]. There are advantages and
disadvantages in this choice for both cases. We chose the fuzzy
system just for its simplicity. Therefore, just as in the case of
(8), the output of the evaluator is [17] an approximation to the
value of the state V (·)

V̂ (X̄) =

M∑
l=1

((
n∏

i=1

μF l
i (xi)) · ζl)

M∑
l=1

(
n∏

i=1

μF l
i (xi))

(9)

where cl in (7) is represented by ζl.

IV. LEARNING

In the context of Game Theory, learning may be under-
stood as strategy adjustments [19]. These adjustments may be
function of several different sets of variables.

Different types of continuous-time models of learning have
been proposed for games. In the case of games in extensive
form, Arslan and Shamma [19] describe some models dis-
cussed in the literature, including the well known replicator

dynamics, where one player tries to approximate the way the
other (or others) will play in order to decide which strategy is
more profitable for it to play. However, in the special case
of differential games, the learning techniques presented in
the literature are very different. Most of them are based on
reinforcement learning [20].

Let us consider a game between two players as described
in (3) and (4). Notice that the approach presented here may be
used for any number of players, but, for simplicity sake, we
present the technique for just two-player games. In this case,
the learning dynamics may be described by

˙̄δp = fδ̄p
(x̄, δ̄p, δ̄e) (10)

˙̄δe = fδ̄e
(x̄, δ̄p, δ̄e) (11)
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Notice, also, that the functions f(·) must take into consid-
eration the cost (4) in such a way that the saddle point in (5) is
reached. Also, the strategy adjustments in (10) and (11) will be
functions of the strategies played by both players at a given
time as well as their states. Therefore, we assume that the
players play their strategies synchronously. Also, we assume
that they know the noisy state of the other player as well as
its own state.

The problem of (10) and (11) is that the strategies played
by each player are continuous. This means that the strategy
vectors δ̄p and δ̄e should have dimensions of infinity. Another
approach would be to try to discretize the action space and
then use a Q-learning algorithm to calculate the strategy
vectors. Although, there is another problem. We would have
to discretize the state space as well and this is not very easily
done for most of the differential games. In order to avoid these
potential problems, we use the architecture shown figure 1.

In this figure we see the addition of two blocks called
evaluator. This block is used to approximate the value function
for reinforcement learning [11]. It could be implemented by a
time-delay neural network [11] or a fuzzy system [17]. The
learning is practically the same for both cases. The value
function for approximation of the reinforcement rewards has
the format

V (k) = E{
∞∑

i=k

γi−kr(i + 1)} (12)

where γ ∈ [0, 1) is known as the forgetting factor and r(·) is
the immediate external reward from the environment. Notice
that we can rewrite (12) in a recursive fashion as

V (k) = r(k + 1) + γV (k + 1) (13)

With this approximation in hands, we may compare it with
the expected reward such that we generate a prediction error
of the prediction V̂ (k) [17] that is the output of the evaluator
so that

Δ = [r(k + 1) + γV̂ (k + 1)] − V̂ (k) (14)

as shown in figure 1. This difference error is then used to train
the evaluator. Supposing it has parameters ζ in (9) are to be
adapted, the adaptation law would then be [11]

ζ(k + 1) = ζ(k) + αΔ
∂V̂ (k)

∂ζ
(15)

where α ∈ (0, 1) is the learning rate for the adaptation.
Observe that we do not want α to be too big in order to avoid
instability in the generated system. Also the partial derivative
in (15) is easily calculated to be from (9)

∂V̂ (k)
∂ζ

=

n∏
i=1

μF l
i (xi)

M∑
l=1

(
n∏

i=1

μF l
i (xi))

(16)

The controller in figure 1 is a fuzzy controller implemented
by Takagi-Sugeno rules with constant consequents [18]. Ob-
serve that to its generated control signal u(k) is added a

random white noise v(0, σ). This is done in order to promote
exploration of the action space [11]. With the noisy signal
u′(t), taking ω in (8) as the parameters to be adapted, we may
establish the controller update law [17]

ω(k + 1) = ω(k) + βΔ[
u′(k) − u(k)

σ
]
∂u(k)
∂ω

(17)

where β ∈ (0, 1) is the learning rate for the controller
adaptation. Note that we want β < α, meaning that we want
the controller to converge slower than the evaluator. This is
done in order to avoid instability in the controller. Also notice
that the initial fuzzy controller can give a bad performance for
the player. The partial derivative in (17) is easily calculated to
be from (8)

∂u(k)
∂ω

=

n∏
i=1

μF l
i (xi)

M∑
l=1

(
n∏

i=1

μF l
i (xi))

(18)

Notice that the partial derivatives in (16) and (18) are
rigorously the same and need to be calculated just once. Also
notice that at no time we have a “desired” trajectory and,
therefore, we have no error signal. The update laws in (15)
and (17) are based on a “forecasted” improvement of the cost
function (equation (4)).

In the next section, we describe the game we will solve
with the technique described so far.

V. PURSUER EVADER MODEL

Let us focus on one of the models of pursuit-evasion
generated in the work by Isaacs [3] also known as the “game
of two cars” model [21]. Let us consider the models for the
pursuer and evader to be

ẋp = Vp cos(θp)
ẏp = Vp sin(θp)

θ̇p =
Vp

Rp
δp (19)

In the same way, the model for the evader may be described
as

ẋe = Ve cos(θe)
ẏe = Ve sin(θe)

θ̇e =
Ve

Re
δe (20)

where Vp is the pursuer’s speed, Ve is the evader’s speed and
Vp > Ve; Rp is the radius of turning of the pursuer, Re is
the radius of turning of the evader and Rp > Re; θp is the
orientation of the pursuer and θe is the orientation of the
evader; |δp| ≤ 1 is the control signal for the pursuer and
|δe| ≤ 1 is the control signal for the evader. In words, the
pursuer is faster, but the evader can make sharper turns.

Now, we assume a coordinate frame centered in the pursuer
with its y′-axis in the direction of the pursuer’s velocity vector
[16] as shown in figure 2. The pair (x′, y′) is the relative
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Fig. 2: Relative position for the evader with respect to the
pursuer

position of the evader in this coordinate frame. One then may
find that the differential equations for this game are of the form

ẋ′ = Ve sin ψ − Vp

Rp
y′δp (21)

ẏ′ = Ve cos ψ − Vp +
Vp

Rp
x′δp (22)

ψ̇ = − Vp

Rp
δp +

Ve

Re
δe (23)

where ψ = θe − θp.
The game finishes when (and if) the evader is captured.

Under optimal play, capture time is then found by solving the
equation [21]

min
δp

max
δe

(
dP

dt
) = min

δp

max
δe

[Px′(Ve sin ψ − Vp

R
y′δp) +

Py′(Ve cos ψ − Vp +
Vp

R
x′δp) +

Pψ(− Vp

Rp
δp +

Ve

Re
δe)]

= −1 (24)

where P is the cost function of the game and Px′ and Py′ are,
respectively, its partial derivatives with respect to x′ and y′.

The optimal control for the pursuer and evader is found
such that [16]

δp = sgn(λx′y′ − λy′x′ + λψ) (25)
δe = sgn(λψ) (26)

where λx′ , λy′ and λψ are lagrange multipliers. As noted by
Merz [21], there are more than 20 qualitatively different forms
of solution for such problems given different values of the
parameters Vp, Ve, Rp and Re. Since we are interested in
learning and not in the different solutions of (24) given the
control signals in (25) and (26), in next section we are going
to set the parameters to fixed values and assess how the control
signal for the pursuer adapts.

Noise

Camera
+

Fuzzy Controller 

Computer Mobile
Robots

Bluetooth

Position
+

Orientation

Fig. 3: Experimental system used for implementing the differ-
ential game

VI. EXPERIMENTAL SYSTEM

In order to implement the mathematical model of section
V in an experimental set up we built some robots (depicted in
figure 3 in our lab). This robot is equipped with a Motorola
68HC11 microprocessor and two motors that may drive the
robot forward or backward. By changing the PWM duty cycle
in each motor, it is also possible to turn the robot to the right
and to the left.

Figure 3 actually depicts the whole system for the experi-
ment and it may be divided in the following modules:

• Sensory - a camera and the filtering system coupled to it;
• Communication - after receiving the information from the

sensors, it has to be sent to the robots;
• Controllers - implemented directly in the robots.
Equations (19) and (20) require that we know the positions

and orientations of each one of the robots. Therefore, the
camera has to measure the states of all the robots. So, a
webcamera is used to read the positions (in pixels) and the
orientations (in radians) of each robot. The positions and
orientations are measured by the use of a colour code. Each
robot has two rectangles over it as shown in figure 4. A system
implemented in the computer station runs filters that locate
the center of such rectangles. By making use of this data,
the position and the orientation may be acquired. Obviously,
the data is intrinsically noisy (gaussian white). However, the
fuzzy controllers are able to deal with such noise. Moreover,
the camera is not synchronous and the time elapsed between
measurements is not constant. These are nonlinear effects (or
noise) and the controllers have to deal with them as well.

The message is then sent from the camera to a computer.
The computer, on its turn, assembles a packet with the posi-
tions and orientations of each robot. This message is finally
sent to the mobile robots through a bluetooth link. Notice that
both robots receive the same set of data. However, each one
of them will then handle the information differently. There is
no protocol that guarantees the delivery of the messages and
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some packets may not be received correctly. Indeed, this is the
case in our experiments.

Both robots have embedded controllers that will determine
the strategy that each one of them will execute. The pursuer is
supposed to run the controller structure defined in Sect. III. The
evader, however, runs a simpler control law that only guides
it towards a fixed target as shown in figure 4.

The constants Ve, Vp, Re and Rp in equations (19) and
(20) are found by using a least squares algorithm and then are
supposed to be constant for the rest of the experiment.

VII. EXPERIMENTS

In this section we are going to assess how the structure
presented in sections III and IV may be used to solve the
problem described in section V and VI. Again, we assume
that just the pursuer adapts its strategy while the evader plays
a hardwired optimal strategy. It is expected that eventually the
one who is learning will improve its response for capture time
in (24).

Let us start by finding the values of the parameters of the
model presented in section V according to the identification of
the system. Calculating the steady state value for the speed of
the difference equations presented in (19) and (20) for a unit
step input, we find that Ve = 11.235 and Vp = 19.800. In the
same way, finding the steady state values for ωe and ωp for
unit step inputs, we find that Re = 49.17 and Rp = 100.56.
Therefore, the pursuer is almost twice as fast as the evader;
and the radius of turning of the pursuer is twice that of the
evader. Notice that each one knows the (noisy) orientation of
the other by checking its evolution over time.

The reinforcement function r(·) in figure 1 returns how well
the control actuated so that the game came closer (or farther)
to a solution. Since the objective of the game for the pursuer
is to minimize the time to capture and capture is related to
distance, it is clear that the reinforcement should be related to
the variation of distance. Let us then define a function distance

D(x̄′) =
√

x′2 + y′2 (27)

and based on this function, let us define a variation of the
distance

ΔD(x̄′(k + 1)) ≈ D(x̄′(k + 1)) − D(x̄′(k)) (28)

r

)max(d

a

d

b

max
V0)max(d

1

V

Small Big 

d

1

),min( bar

Fig. 5: Sets for calculation of the reinforcement signal

Observe that we can define, based on (28), an approximation
of the derivative of the distance when the step size Δt is small
(which is our case) such that

Ḋ(x̄′(k + 1)) =
ΔD(x̄′(k + 1))

Δt
(29)

The reinforcement is then the output of a fuzzy system with
only one rule [17]

r(k + 1) = min[μsmall(ΔD(k + 1)), μbig(Ḋ(k + 1))] (30)

As previously, the membership functions for these two cases
are triangular. An example of such functions is depicted in Fig.
5. The center of the derivative of the distance is the maximum
approach speed, calculated as the difference Ve−Vp (equations
(19) and (20)).

The reinforcement signal in (30) means that if the pursuer
is getting closer to the evader at the maximum possible speed,
the reinforcement is improved. Notice that if the pursuer is
approaching the evader at Vmax in figure 5, the reinforcement
signal is determined only by the distance. Also, notice that
the reinforcement is not simply an error signal as in [11] and
[17]. The distance and its derivative alone cannot represent
error. Also, usually one requires errors to go to zero and in
the case presented in (30), this is not what we want, since we
require the approach speed to be the maximum. Furthermore,
the pursuer does not have a “desired” path to follow, just a
“desired” behaviour (catching the evader).

The input variables for the controller are the angle differ-
ence ε = θ−ψ (both angles defined in Fig. 2) and its derivative,
i.e., ε̇. In order to define the fuzzy controller, ε and ε̇ are set
to be our fuzzy variables. Notice that this defines a “PD-like”
type of control. Each one of the fuzzy variables has five fuzzy
sets labeled: negative big (NB), negative small (NS), zero (ZE),
positive small (PS) and positive big (PB). In order to avoid too
much noise in the calculation of the derivative ε̇, a low-pass
filter was implemented for the camera. Since the time step is
not constant, the noise is amplified and outliers may become
common, making it more difficult for the fuzzy controller to be
efficient. The filter implemented is a simple discrete running
average low-pass filter.

The evaluator has the same inputs as the controller. The
output is the predicted reinforcement for the game that the
evaluator seeks to approximate. In order to avoid too much
time for the controller to converge due to errors in the
evaluator, it is advisable to perform an off line training for
a previous convergence of the evaluator [17]. This is just an
introductory learning phase and we simulate 100 instances
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TABLE I: Initial values for the control signal

angle rate
angle NB NS ZE PS PB

NB 1.5000 1.0000 0.5000 0.2500 0.2500
NS 1.0000 0.5000 0.2500 0.2500 0.1250
ZE 1.5000 1.0000 0 -1.0000 -1.5000
PS -0.1250 -0.2500 -0.2500 -0.5000 -1.0000
PB -0.2500 -0.2500 -0.5000 -1.0000 -1.5000

TABLE II: Final values for the control signal

angle rate
angle NB NS ZE PS PB

NB 1.3592 0.9442 0.6582 0.7440 0.2500
NS 0.9783 0.4072 2.2847 2.2105 0.1250
ZE 1.4988 0.4933 -0.3137 -0.4743 -1.4989
PS -0.1250 -1.7160 -1.9857 -0.4134 -0.9737
PB -0.2500 -0.7555 -0.6608 -0.9753 -1.3260

of the game for this to take place. During this phase, the
learning rate α in (17) is set to 0.1 for a fast adaptation. Also,
throughout the simulations we use γ in (14) as 0.95 that is a
small forgetting factor, meaning the evaluator uses only around
20 past signals for adaptation.

The initial control surface is shown in Fig. 6. This figure
represents the fuzzy table shown in table I.

We then run the game with the robots with random initial
positions that satisfy the constraints of the game. Namely,

• the distance from the evader to the target is smaller than
the distance from the pursuer to the target;

• the evader is supposed to be in front of the pursuer, i.e.,

Fig. 6: Initial control surface of the fuzzy controller

Fig. 7: Control surface of the fuzzy controller after learning

angle θ in Fig. 2 is supposed to be in the interval [−π
2 , π

2 ];
• in the initial positions, if the optimal solution is played,

the pursuer is able to catch the evader before it reaches
the target.

The learning rate β in (17) is set to 0.01. At the same time,
the evaluator continues to adapt at a learning rate of 0.1. After
learning takes place, the control surface changes to the one
shown in Fig. 7 that corresponds to the table II.

The surface shown in Fig. 7 changes in a very important
way if compared to the initial control surface in Fig. 6. First
of all, the area where the control signal is on the bounds,
i.e., δp = {−1, 1}, is significantly increased. Since we know
from (25) that the optimal solution is in the set {−1, 0, 1}, this
is very suggestive. (Although, notice that we do not use this
information in our training). Moreover, the inclination of the
curve changes considerably. It is much sharper in Fig. 7. Also,
the absolute value of the control signal increases or remains
the same at every point of the surface, thus making the pursuer
catch the evader more quickly.

Let us now see how effective the learning is. Let us define
initial conditions for the evader (xe = 50, ye = 110 and θe =
0o) and for the pursuer (xp = 15, yp = 30 and θp = 72o)
that were never presented during the training phase. Figure 8
shows that with the initial controller of table I the pursuer does
not intercept the evader before the evader reaches the target.
In fact, the pursuer “overshoots” the evader due to its higher
speed. As it is not able to turn sharply, it misses the evader.
In Fig. 9, however, we show the pursuer catching the evader
after learning takes place and it uses the learnt values of table
II.

One advantage of this method compared to genetic algo-
rithms, for example, is that the convergence happens in a much
faster way. Learning takes, in total, only 50 experiments with
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Fig. 8: Pursuer not able to catch the evader before learning

Fig. 9: Pursuer catching the evader after learning

random initial states.

VIII. CONCLUSION

In this paper we showed a method for learning in differential
games. A fuzzy controller adapted by reinforcement learning is
presented. An architecture derived from [11] and [17] is shown
to be suitable for learning in a continuous environment.

An experiment of a modified version of the game of two

cars is described. We suppose that only one of the players
(the pursuer) adapts its behaviour. The evader is supposed

to play its optimal strategy. Results show that the pursuer
learns to catch the evader in an effective way. The controller
implemented in actual robots using the scheme described in
section IV is superior to the initial controller. Also, we show
that the controller is resilient to noise. Moreover, adaptation
may continue in order to deal with changes in the robots’
dynamics.
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