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Abstract— A hybrid Bayesian/ frequentist approach is pre-
sented for the Simultaneous Localization and Mapping Problem
(SLAM). A frequentist approach is proposed for mapping with
time varying robotic poses and is generalized to the case when
the robotic pose is both time varying and uncertain. The SLAM
problem is then solved in two steps: 1) the robot is localized with
respect to a sparse set of landmarks in the map using a Bayes
filter and a belief on the robot pose is formed, and 2) this belief
on the robot pose is used to map the rest of the map using the
frequentist estimator. The hybrid methodology is shown to have
complexity linear in the map components, is robust to the data
association problem and is provably consistent.

I. INTRODUCTION

The problem of simultaneous, localization and mapping
is considered in this paper. In the proposed method, the
environment is split into a small set of sparse landmarks/
features and the rest of the (dense) environment. The
philosophy behind the hybrid method amounts to the
following two steps: 1) localize with respect to the landmarks,
i.e., form a belief on the pose of the robotic system based on
observations of the landmarks using a Bayes filter such as an
EKF(the Bayesian sub-problem), and then, 2) map the rest
of the environment based on the belief on the robotic pose
using the frequentist mapping technique (the frequentist
sub-problem). This formulation has linear complexity in the
map components, is robust to the data association problem
and provably consistent.

There are two main categories of approaches to SLAM:
recursive and trajectory based.
In the recursive Kalman filter/ Information filter based
approach [1]–[5], the map is appended to the filter as a
parameter and the joint pose-map pdf is estimated using the
Kalman recursion in either the covariance or the information
matrix form. The Kalman filter scales quadratically as the
size of the environment since the correlations between all the
map elements need to be maintained in order for the map to
be consistent [1] owing to the nature of the SLAM problem.
The EKF SLAM based approach can only extract sparse
maps since it is not robust to the data association problem in
dense maps. In the SEIF (sparse extended information filter)
based approach, the information form of the Kalman update
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is used and the sparsity of the information filter used to
obtain nearly contant time SLAM algorithms [4]. However,
the SEIf based filter tends to get overconfident and the latest
research has concentrated on alleviating this problem by
either having exact sparsity by keeping track of the trajectory
[5] or enforcing sparsity by solving an approximate problem
involving “kidnapping and relocalizing” the robot [6]. In
the approach outlined in this paper, due to the frequentist
update of the map, the correlations between the various map
elements need not be maintained for consistency, which is
in contrast to the result in [1] which asserts that maintaining
correlations is key to consistency. The difference is due to
the frequentist problem formulation which obviates the need
to keep track of the correlations between the various map
components. In addition, it is also shown that the hybrid
formulation is robust to the data association problem in dense
maps. In our opinion, the hybrid methodology proposed can
most fruitfully be used in conjunction with sophisticated
EKF/ SEIF based SLAM algorithms, wherein the SEIF/ EKF
solve the Bayesian sub-problem of the hybrid formulation,
in order to scale to really large, dense environments such as
cities, ocean floors and planetary terrain.
The RBPF based SLAM algorithms, which falls under the
broader category of trajectory based SLAM, on the other
hand keep track of the whole trajectory of the robot which
decorrelates the observations of the various map components.
These methods have become very popular over the past few
years and efficient techniques have been developed to form
sparse landmark based maps as well as dense occupancy
grid maps [7]–[10]. Another trajectory based method, called
Consistent Pose Estimation (CPE) [11] relies on maintaining
a graph on the poses at which various scans of the map were
made and then, optimizing the inter-node distances such that
the likelihood of the observed data is maximized given the
statistics of the observation process [12]–[14]. However, these
trajectory based methods keep track of the whole vehicle
trajectory and thus, their state space grows unbounded over
time. The CPE methods also require multiple passes over the
same data to solve the pose optimization problem and thus,
are essentially an offline batch processing method. For long
term SLAM in large environments, it is still necessary to
truncate the data at some finite time in the past [3] due to
the constraints on the memory requirements, which may lead
to the loss of consistency. In contrast, the method presented
here is purely recursive and does not require the belief to
be maintained over the entire vehicle pose history in order
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to decorrelate the map components, while being provably
consistent.

It can be seen from the previous discussion that the main
problem with the Bayesian formulation of the SLAM problem
is the fact that computational complexity and consistency are
at cross purposes, and alleviating one of the problems tends
to worsen the other. In fact, starting with the important paper
[1], the consistency of the SLAM algorithms, both RBPF and
EKF/ SEIF based, has increasingly come under scrutiny in
recent years [6], [15]–[17]. It was found that the RBPF based
filters tend to lose consistency as time increases because of
their inability to forget the past [16], [18], and the EKF based
methods need stabilizing noise for consistency [15]. Also,
neglecting the weak off-diagonal elements in SEIF based
methods can lead to inconsistent results [6]. The method
proposed in this paper first localizes with respect to a sparse
set of landmarks in the map using a Bayes filter such as an
EKF to obtain a belief on the pose of the robot, and then,
maps the rest of the environment, based on the belief, using
a frequentist approach. The frequentist part of the algorithm
has complexity linear in the map and is provably consistent
given that the Bayesian part of the problem is consistent.
The complexity of the Bayesian part of the formulation
can be kept under control owing to the sparseness of the
set of landmarks/ features and using suitable sophisticated
feature-based SLAM methods [19]. Further, the frequentist
part of the formulation is immune to the data association
problem, while the Bayesian part can be expected to be
robust owing to the sparseness of the features/ landmarks and
thus, the hybrid formulation is robust to the data association
problem.

A valid question at this point is: why use the hybrid
method? Why not localize using the EKF/ SEIF, and map
the rest of the environment using a Bayesian method such
as the occupancy grid OG method [20], as proposed in the
DenseSLAM approach [21]. The answer to this question
is that it may be impossible to maintain consistency in the
Bayesian approach without maintaining correlation between
map components, even under the “first localize - then
map” philosophy adopted here! A simple counterexample is
provided at the end of Section 2.4 to prove this. The other
methods close to the work presented here, in philosophy,
is [22], and other Expectation-Maximization (EM) based
methods [23]. In these papers, a frequentist approach, the
Baum-Welch algorithm [24], is used to find the ML estimate
of a sparse set of landmarks and the vehicle trajectory, and
then, this ML estimate is used to construct an OG map of
the environment. However, the method used is an offline
batch processing algorithm. The frequentist method proposed
here is a recursive stochastic approximation algorithm and as
such, different from the Baum Welch algorithm. In fact, it is
well known in the Hidden Markov Model (HMM) literature
that the recursive joint state-parameter estimation problem
in HMMs cannot be robustly solved by modifying the B-W
algorithm [25] (in the SLAM problem, the map is considered
to be the unknown parameter). In fact, the use of frequentist

estimators based on recursive ML (RML) or recursive least
squares (RLS) is standard practice in the Hidden Markov
Model literature [25], and an application of this methodology
in the SLAM context is made in the reference [18]. These
methods usually need to evaluate the filter derivative which is
an O(N2) operation, where N is the number of particles used
to represent the pdf of the state. This is usually impractical
and only through recent advances in the particle filtering
community [17], the above operation can now be done with
O(NlogN) complexity. In contrast, the method presented
here does not require the filter derivative, and if the Bayesian
part of the hybrid formulation is implemented using a particle
filter, the complexity of the frequentist algorithms is O(N),
where N is the number of particles used to represent the robot
pose pdf. This is accomplished by using (i) a probabilistic
description of the map as the parameter in the methodology,
instead of the deterministic description common in general
joint state-parameter estimation algorithms [17], [18], [25],
(ii) utilizing the “first localize -then map” philosophy, and
(iii) by exploiting the structure of the resulting problem to
intuitively define a frequentist estimator that is provably
consistent.

An earlier version of this paper was presented at ACC 2008
[26]. The current paper extends the method to dense maps
and solves the data association problem in such maps. The
rest of the document is organized as follows. In section 2,
we present the hybrid approach to the SLAM problem. In
particular, in section 2.1, we present a frequentist alternative
to Elfes’ OG method to mapping with known poses. In section
2.2, we generalize the method to mapping with uncertain
poses wherein the robot pose is specified by a time varying
probability density function (pdf). In section 2.3, we present
the hybrid method to solve the SLAM problem. In section 3,
we present simulation experiments wherein large environments
with multiple cycles are mapped using the hybrid methodol-
ogy.

II. THE HYBRID BAYESIAN/ FREQUENTIST

METHODOLOGY

A. Frequentist Mapping

Consider a single autonomous agent and let its state be
denoted by the variable s (also sometimes called the robotic
pose), and let the state of the environment be denoted by the
variable Q = {q1, · · · , qM}, where qk are components of the
environment (for instance, these would be the individual grid
cells in a grid cell decomposition of the environment). The
state and the environment are assumed to be discrete-valued
random variables. The environment is assumed to be stationary
and uncorrelated, i.e.,

p∗(Q) =
M∏

i=1

p∗(qi), (1)

where p∗(qi) represents the “true” probability that the com-
ponent qi can take one of D possible values. For instance,
in the OG approach, this would correspond to the “true”
probability that a particular grid in the map is occupied or
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not. It can be anticipated that an overwhelmingly large part
of most environments can be modeled in this fashion. In fact,
any deterministic environment trivially satisfies the above as-
sumptions. The probability of observing the ith environmental
component in the state q̂i, where q̂i can take one of D values,
and given that it is observed from the pose s, is given by:

p(q̂i/s) =
∑

q1,··· ,qN

p(q̂i/q1, · · · , qN , s)p∗(q1) · · · p∗(qN ). (2)

The above equation can be rewritten as:

p(q̂i/s) =
∑

qi

p∗(q̂i/qi, s)p∗(qi), (3)

p∗(q̂i/qi, s) =
∑

q1,.,qi−1,qi+1,.,qN

p(q̂i/q1, ., qN , s)p∗(q1)..p∗(qi−1)p∗(qi+1)..p∗(qN ). (4)

The above may be compactly written in matrix form as the
equation

P̂i(s) = A∗
i (s)P

∗
i , (5)

where the vector P̂i(s) stacks the observation probabilities
p(q̂i/s), and the matrix A∗

i (s) is the true observation model
of the ith component when observed from pose s. The above
equation is the fundamental equation for the frequentist
approach and provides an avenue for estimating the true
environmental probabilities P ∗

i . Suppose we make repeated
observations of the ith component from pose s. We could
count the number of times that we observe the ith component
in its various states, and form a consistent estimate of the
observation probability vector P̂i(s) by averaging, i.e.,

P̂i(s) = Ez[1(q̂i/s, z)] ≡ Ez[ci(s, z)]

= lim
N

1
N

N∑

t=1

1(q̂i,t/s, zt). (6)

In the above, given an observation z, the observation vector
ci(s, z) = [1(q̂i/s, z)] ( 1(.) denotes the indicator function)
enters a one into the q̂i component, and zero in every other
component at time t (for instance, in the occupancy grid
representation it will enter a 1 into the “occupied” entry if the
grid cell is observed to be occupied, or a 1 into the “empty”
entry otherwise). The above equation is correct due to the Law
of Large Numbers. Then, using the knowledge of A∗

i (s), we
can obtain the true environmental probabilities P ∗

i as

P ∗
i = A∗

i (s)
−1P̂i(s). (7)

Next, we may relax the assumption that the observations are
made from the pose s and have that the observations are made
from the time varying poses {st}, with true observation models
A∗

i (st). Again, if we keep track of the relative frequencies
of observations of the ith component in its various different
states, then the estimate of the true probabilities P ∗

i can be
recovered asymptotically using a time averaged observation
model as follows:

P ∗
i = Āi

−1
P̂i, (8)

P̂i =
1
N

N∑

t=1

ci(st, zt), (9)

Āi =
1
N

N∑

t=1

A∗
i (st). (10)

If we interpret the frequency of seeing the ith map component
in its q̂i level during the course of the mapping experiment as
a probability, and if we interpret the frequency of the robot
being in a state s as a probability, then it follows using the
simple rules of conditional probability that:

p(q̂i) =
∑

qi,s

p∗(q̂i/qi, s)p∗(qi)p(s)

=
∑

qi

[
∑

s

p∗(q̂i/qi, s)p(s)]p∗(qi). (11)

Provided that the state st converges to some stationary dis-
tribution, the left hand side p(q̂i) in the above equation is
given by Eq. 9, and the matrix [

∑
s p∗(q̂i/qi, s)p(s)] is given

by Eq. 10, and hence, the estimation equations for the time
varying pose case follow. The true environmental probabilities
can then be recovered recursively using the following estima-
tor if A∗

i (st) is positive definite (which is true under mild
conditions).
Estimator E1:

Pi,t = ΠP{Pi,t−1 + γt(ci(st, zt) − A∗
i (st)Pi,t−1}, (12)

where P represents the space of probability vectors in �D,
and ΠP(.) denotes a projection onto this compact set. The
sequence {γt} is usually of the form at−α, α < 1, where a and
α are design parameters, we have usually used α = −1 adn
a = 0.1 in our simulations. However, there still remains the
problem of using the “true” observation models A∗

i (s) in order
to form the estimates. We have an estimate Pi(t) of the map
probabilities for the different components and these estimates
are used in Eqs. 4 -5 to form the observation models Ai(s)
as an approximation of the true observation models. These
models can be inferred from the model of the particular type
of sensor used for sensing the environment [20].

B. Frequentist Mapping with Uncertain Robotic Poses

In this section, we relax the assumption that the pose of
the robot is known perfectly. Instead, we assume that we are
given a belief, i.e., a probability distribution, on the possible
poses of the robot. Given the belief on the pose of the robot,
bt(s) at time t, and a reading zt of the environment, the
frequentist mapping method is now used to map the (dense)
environment Q. However, it is immediately apparent that there
is an inherent “data association” problem associated with the
mapping problem in this scenario. The observation, q̂i, of
an environmental component qi is no longer certain, since it
varies with the pose of the robot. Consider the simple situation
illustrated in Fig. 1. The map component q1, given reading
z2, is empty or occupied depending on whether the robot is
at pose s1 or s2 respectively. Thus, given the uncertainty in
the pose of the robot b(s) and the reading of the environment
z, the observation of the ith component of the environment q̂i
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q1
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q3

q2

q3

Fig. 1. The problem of data association

is given by the probability vector (derived using the rules of
conditional probability, and Bayes rule)

c∗i (b(s), z) ≡ [p(q̂i/b, z)] =
∑

s

[1(q̂i/s, z)]
p∗(z/s)b(s)

p∗(z/b)
, (13)

p∗(z/s) =
∑

q1,··· ,qN

p(z/s, q1, · · · qN )p∗(q1) · · · p∗(qN ), (14)

where p∗(z/b) =
∑

s p∗(z/s)b(s) is the factor used to
normalize ci(.) and p∗(z/s) is the true likelihood of the
observation z given that it is made from pose s. In order
to derive the above expression, note that using the thorem
of total probability, p(q̂i/b, z) =

∑
s p(q̂i/s, b, z)p(s/z, b).

We can expand the term p(s/z, b) using Bayes rule which
gives us p(s/z, b) = p∗(z/s)b(s)

p∗(z/b) , and using the fact that
p(z/s, b) = p(z/s), Eq. (13) above follows.
As in the perfect pose information case, averaging over all
observations z (which can be formed by a time average due
to the Law of Large Numbers), allows us to estimate the
probability of observing state q̂i given the belief state b(s),
i.e.,

p(q̂i/b) = Ez[c∗i (b, z)] ≈ 1
N

N∑

t=1

c∗i (b, zt). (15)

Note that the above probabilistic description of the observa-
tion solves the “data association” problem: we are no longer
certain if the observed value of the ith map component is
in its kth level, instead we associate a probability with this
observation. The probability of observing the map component
qi at level q̂i, given the belief on the pose b(s) is also given
by

p(q̂i/b) =
∑

s

b(s)
∑

q1··· ,qN

p(q̂i/q1, · · · , qN , s)

p∗(q1) · · · p∗(qN ), (16)

which can be written in compact matrix form as follows:

P̂i(b) = A∗
i (b)P

∗
i , (17)

where P̂i(b) = [p(q̂i/b)], and

A∗
i (b) =

∑

s

A∗
i (s)b(s). (18)

Note here that this equation is exactly analogous to the
frequentist mapping equation 5, wherein the exact pose

knowledge s has been replaced by the belief on the pose
of the robot b(s). The observation model A∗

i (s) is replaced
by the averaged observation model with the averaging being
done with respect to the belief on the pose of the robot.
Thus, similar to the case with perfect pose information, if we
were to remain in the belief state b(s) and make repeated
observations of the ith component of the environment, we
would be able to recover the left hand side of the above
Eq. 17, P̂i(b), by averaging the (probabilistic) observations
of the ith component, ci(b, zt) (cf. Eq. 15). Hence, the true
environmental probabilities may be recovered asymptotically
by inverting Eq. 17. Generalizing the situation to the case
when we have a time-varying belief on the pose of the robot,
bt(s), the true environmental probabilities can be estimated
recursively using the following analog of frequentist estimator
E1 .
Estimator E2

Pi,t = ΠP{Pi,t−1 + γt(c∗i (bt, zt) − A∗
i (bt)Pi,t−1)}, (19)

As in the pure mapping case, the estimator is actually run
by using the current estimate of the true observation models/
observation likelihood. In other words, the above algorithm
is run using ci(bt, zt, Pt) and Ai(bt, Pt), where the current
estimate of the map probabilities Pt is used, instead of the
true map probabilities P ∗, in Eq. (13) to form ci(bt, zt, Pt),
and in Eqs. (16)-(17) to form Ai(bt, Pt).

C. Hybrid Bayesian/ Frequentist SLAM

At this point, we formulate a hybrid methodology to gener-
alize the frequentist mapping methodology to the simultaneous
localization and mapping (SLAM) case. It is assumed that the
system localizes itself with respect to a sparse, well separated
set of features/ landmarks Θ = {θ1, · · · , θK} . Then, the
belief (or probability distribution) over the pose-features pair
is formed recursively using a Bayes filter (such as a Kalman
filter in the Linear Gaussian case):

bt(s,Θ) = p(zθ
t /Θ, s)

∑

s′
p(s/s′, ut−1)bt−1(s′,Θ), (20)

where zθ
t represents the noise corrupted observation of the

landmarks Θ at time t, and ut−1 denotes the control acting on
the system at time t− 1. The identification and recognition of
these features and landmarks in an autonomous fashion is a
challenging problem in itself, but can be solved using suitable
feature-based SLAM algorithms [2], [4], [5]. Given the joint
distribution of the pose-landmark pair, the belief on the pose
of the vehicle is formed by marginalizing the dependence on
the landmarks, and is output to the frequentist part of the
mapping algorithm. The frequentist part of the method, i.e.,
Estimator E2, is now used to map the rest of the (dense)
environment using the belief output from the Bayesian part
of the methodology. Thus, the hybrid methodology can be
represented as the following algorithm:

Given a reading of the map zt, and given that the Bayesian
part of the hybrid problem formulation is solved using a
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Hybrid SLAM

Given b0(s), initial map occupancy probabilities Pi(0), and
reading of environment z1, t = 0. Do till convergence

• Bayesian: Extract the readings of the landmarks, zθ
t , from

the raw sensor readings zt, and form the belief on the state
of the robot, bt(s), using Eq. (20) and marginalizing over
the landmarks.

• Frequentist: Take the rest of the data zQ
t . Isolate each

component of the (dense) map Q that is observed given
zQ

t (cf. Eq. 13), and the belief bt(s) from the step above.
Update the map probabilities of each component using
the belief bt(s) in the frequentist estimator E2 (cf Eq.
19).

End

particle filter, the computational complexity of the frequentist
estimator in updating any map component is O(N) where N is
the number of particles used to represent the belief state. The
Bayesian part of the formulation inherits the computational
complexity of whatever method is used to solve that part of
the problem. Also, note that each map component is updated
completely independent of the others and hence, the method
has complexity linear in the map components, i.e., O(M),
where M is the number of map components. Contrast this with
the O(M2) complexity of the Kalman filter based approach.
In order to make this clear, suppose that there are M +N total
components in a map. At the basic algorithmic level, in the
Kalman filter based approach, the computational complexity
is O(N + M)2. In the Hybrid formulation, suppose that N
is the number of features that is used to localize the robot
and M is the rest of the map. Then, at the basic algorithm
level, the computational complexity of the hybrid approach is
O(N2) + O(M). Thus, if N << M , then the hybrid for-
mulation possesses orders of magnitude better computational
benefits compared to Bayesian methods such as the EKF.
Moreover, due to the sparseness of the landmark/ features,
the data association problem for the Bayesian sub-problem is
significantly simpler. In conjunction with the robustness of the
frequentist estimator to the data association problem, this leads
to significantly improved robustness of the hybrid formulation
to the data association problem.
Due to the paucity of space, we cannot provide the proof of
the above method in this paper. Also, that the frequentist part
of the hybrid technique is necessary can be proved through
a simple counterexample which is left out as well due to the
space constraints here. The interested reader may find these
items in the extended technical report on the first author’s
webpage.

III. EXPERIMENTS

The hybrid SLAM methodology has been applied to mul-
tiple simulated large scale maps and the results bear out the
theoretical guarantees that the method possesses. The robot
model used in the simulations was that of a differential drive
vehicle [27]. The dimensions of the robot were as follows: a

(a) Original map (b) Raw odometry map

(c) Final map after one round (d) Final map after two rounds

(e) Residual error plot (f) x error and 3σ envelop

(g) y error and 3σ envelop (h) φ error and 3σ envelop

Fig. 2. Mapping using noisy 2-D sensor (Map 1)

wheel radius of 25 cm, and a width of 50 cm. Experiments
were performed for two different kinds of sensors: a) a noisy
2-D sensor with both range and bearing errors (such as a sonar)
with σr = 0.2 m and σθ = 0.6 deg, and b) an accurate 1-D range
sensor such as a SICK laser range sensor with σr = 0.01 m and
σθ = 0.05 deg. The process noise in the wheel encoders was σu

= 0.5 rad/s. The average robot wheel speed was 5 rad/sec and
the integration time step for the EKF was 0.5 sec. Here, we
give representative results for a large map of dimensions 220m
x 40m (Fig. 2(a)). The corners of the corridors in the map
were the features used for localization and were assumed to
be reliably identified. Due to their sparseness, they are at least
20m apart, we do not consider the data association problem.
The robot localizes itself with respect to these features using
an EKF and then, based on the belief on the robot pose output
by the EKF, it maps the rest of the environment using the
frequentist estimator E2. The robot loops every corridor from
left to right before continuing on to the next corridor and
repeats this process twice, i.e., makes two rounds or laps of
the map. The length of the robot run was approximately 2.5
Km. The results of the mapping runs are shown in Figs. 2 and
2. For Map 1 (the 220m x 40m map), the results for the run
with the noisy sensor are shown in Fig. 2 and for the accurate
laser sensor in Fig. 3. In Figs. 2/3, Subfigure (a) shows the
original map along with the true robot path overlaid with the
estimated robot path, Subfigure (b) shows the raw odometry
data, Subfigures (c) and (d) shows the estimated map, along
with the features and their estimates, after the completion of
one and two rounds/ laps respectively, Subfigure (e) shows the
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(a) Original map (b) Raw odometry map

(c) Final map after one round (d) Final map after two rounds

(e) Residual error plot (f) x error and 3σ envelop

(g) y error and 3σ envelop (h) φ error and 3σ envelop

Fig. 3. Mapping using accurate laser sensor(Map 1)

total error in the map, which is the fraction of grids that have
not converged to their true occupancy values, as a function of
the number of laps the robot makes, Subfigures (f)-(h) show
the error in the x, y, and θ co-ordinates of the robot along
with their associated 3σ bounds. The method has been tested
on several other large maps with multiple loops as well but we
cannot present all these results her due to the space constraints.
These figures give us an idea as to how well the algorithm
is performing and also give us valuable practical insight into
the algorithm. One of the reasons we chose such an example
is because of the well-known challenge maps with multiple
cycles pose to SLAM algorithms which is evidenced from
the raw odometry plots (Subfigure (b) in the plots). These
plots show that the scale and difficulty level of these mapping
problems is on par with known datasets such as the ones on
OPENSlam.org, except that our data was simulated instead of
being from a real experiment. The algorithm had no problems
in closing large loops as the ones shown here and we did not
have to make any heuristic corrections when such a loop was
closed. In fact, the size of the map, or the number of cycles in
it, is really not a problem for this algorithm as long as the EKF
remains consistent. However, if the EKF loses consistency then
the guarantees of consistency for the frequentist part of the
hybrid formulation are no longer valid. Thus, sophisticated
Kalman/ Information filter based methods for feature-based
SLAM can play an important role in ensuring the consistency
of the hybrid formulation for maps on a much larger scale
such as cities, planetary terrains etc., where the order of the
distances are in hundreds or thousands of kilometers, and
consequently, the number of features/ landmarks increases
by several orders of magnitude when compared to the maps
shown here. It can also be seen from the total map error
plots (Subfigure (e) in the plots) that the mapping algorithm
converges exponentially. In fact, it is our conjecture that
this can be rigorously established, and is supported by the
experimental evidence. Hence, we may conclude that the
preliminary results show sufficient evidence of the efficacy/
applicability of the methodology proposed here.
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