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Generalized Sampling based Motion Planners with
Application to Nonholonomic Systems

Suman Chakravorty, S. Kumar

Abstract—In this paper, generalized versions of the probabilis-
tic sampling based planners, Probabilisitic Road Maps (PRM)
and Rapidly exploring Random Tree (RRT), are presented.
The generalized planners, Generalized Proababilistic Road Map
(GPRM) and the Generalized Rapidly Exploring Random Tree
(GRRT), are designed to account for uncertainties in the robot
motion model as well as uncertainties in the robot map/
workspace. The proposed planners are analyzed and shown to be
probabilistically complete. The algorithms are tested by solving
the motion planning problem of a nonholonomic unicycle robot
in several maps of varying degrees of difficulty and results show
that the generalized methods have excellent performance in such
situations.

I. INTRODUCTION

In this paper, generalized versions of the traditional
probabilistic sampling based planners, the probabilistic
roadmap (PRM) and the rapidly exploring random tree
(RRT), are presented. The traditional techniques are modified
to take into account uncertainties in the robot motion model
as well as uncertainties in the obstacle locations in the
map. The algorithms are analyzed to show that they are
probabilistically complete. Experiments are performed on an
idealized planar holonomic point robot and the initial results
show that the performance of the generalized planners, in
terms of their probability of success, is significantly improved
when compared to the traditional techniques.

Motion Planning of robots while avoiding obstacles in the
workspace has been an active area of research for the past
several decades. Classical motion planning can be roughly
divided into three different deterministic approaches [1]: cell
decomposition, roadmaps and potential field methods. The
cell decomposition and roadmap techniques are deterministic
methods in the sense that the environment of the robot is
sampled/ discretized in a deterministic fashion. However, the
problems are PSPACE-Hard [2] and in order to circumvent
this computational complexity, randomized sampling based
methods known as probabilistic roadmaps (PRM) were
introduced [3], [4]. In recent years, there has been a lot
of research into accounting for robot dynamics in motion
planning, also known as kinodynamic planning. The rapidly
exploring random tree (RRT) is a randomized sampling based
planners that take into account the dynamics of the mobile
robot [2], [5] while building a tree of dynamically feasible
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trajectories in the free space of the robot.

All the methods mentioned so far assume that a perfect
model of the robot as well as the environment is available.
However, this is generally never true. If the uncertainties in the
robot and the environment can be modeled probabilistically,
the robot motion planning problem can be formulated as a
Markov decision problem (MDP), or more generally as a
partially observed Markov Decision Problem (POMDP) [2]
under sensing uncertainty. However, MDPs/ POMDPs are
virtually intractable for anything but small to moderate state
spaces. One approach to resolving the issue is through the
use of hierarchical methods, an approach that is seen in most
biological systems. In recent years, a variety of methods
to solve such large MDPs in a hierarchical model-free
fashion have been developed, and the field of research is
known as hierarchical Reinforcement Learning (Hierarchical
RL) [6], [7]. These methods, instead of taking actions at
every time step, allow for temporally abstraction policies.
Moreover, if it is assumed that these temporally abstract
policies can terminate only at one of a few “distinguished”
states, then the original large MDP can be transformed
into a significantly smaller semi Markov Decision Problem
(SMDP) that needs to be solved only at the distinguished
states and thus, drastically reduces the computational burden
of the Dynamic Programming algorithms used to solve the
problem. However, three issues are key in the formulation
and solution of any SMDP: a) how to choose the landmark
states, b) how to design the local options and c) how to
estimate the cost of operation and probability of success of
the options? We answer the questions above by proposing
the generalized probabilistic roadmap (GPRM) which: a)
randomizes the selection of the landmark states, b) designs
the local options using traditional feedback control system
design techniques and c) evaluates the cost of operation and
probability of success of the local options through Monte
Carlo simulations. Further, we propose the generalized RRT
(GRRT) algorithm, which though it does not fit in the SMDP
framework, generalizes the RRT algorithm to robustly handle
uncertain robot motion models as well as map uncertainty.
This method can be used to rapidly plan dynamically feasible
“safe” trajectories, and for extremely large maps, can be used
as the options in the GPRM framework.

The methodology advocated in this paper for robot motion
planning is an integrated planning and control technique and
as such, is related to the sequential composition methods
[8]–[10] for deterministic robotic systems. In these methods
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a global control policy, (for stabilization, tracking etc.), is
designed by concatenating local policies that have smaller
(local) domains of operation. These papers thus advocate the
design of local planners using traditional control techniques
and stitching them together using a higher level graph that
shows the interconnection of these local policies to form
a global policy. Our method takes uncertainty into account
and the construction of the higher level graph required for
planning is entirely different in our approach in that it is
based on the construction of an SMDP.

The rest of the paper is organized as follows. In sec-
tion II, we present the GPRM and the GRRT algorithms.
In section III, the methodology is applied to the motion
planning of nonholonomic unicycle robot in several clut-
tered maps with uncertainty in the motion model as well
as in the map. Owing to the paucity of space the anal-
ysis of the algorithms is left out of this paper, the inter-
ested reader can see the complete analysis in the complete
technical report on the first author’s webpage at http :
//dnc.tamu.edu/wiki/index.php/SumanChakravorty.

II. GENERALIZED SAMPLING BASED MOTION PLANNERS

In this section, we present the generalized sampling
based motion planners, the generalized probabilistic roadmap
(GPRM) and the generalized rapidly exploring random tree
(GRRT), which extend the traditional PRM and RRT algo-
rithms to systems with uncertainty.

A. Uncertainty Model

The generalized sampling based algorithms require an un-
certainty model for both the motion of the robot as well as a
model for the map uncertainty. In the following, we outline
the models that are used in this paper.
We assume that the dynamics of the mobile robot are specified
by the following white noise perturbed stochastic differential
equation:

ẋ = f(x) + g(x)u + h(x)w, (1)

where x represents the state of the robot, w represents the
white noise perturbation and u represents the control input to
the robot. The above is a non-parametric model of uncertainty
in the robot motion model and will be used throughout this
paper for the lower level control law designs.
We assume that the uncertainty in the map is specified through
a binary occupancy value, i.e., p(O/y), the probability that
there is an obstacle at the point y in the map. The occupancy
values in the map can be considered to be the output from
a mapping algorithm. However, in this paper we shall not
consider the mapping algorithm and assume that a map with
binary occupancy values is provided to the planner by some
suitable mapping algorithm. The state of the robot consists of
x = (q, q̇) where q represents the configuration of the robot
and q̇ represents the generalized velocities. The free region
in the map induces a free region in the configuration space,
say Cfree. This means that any state whose configuration is
in Cfree is safe. This in turn induces a free space in the state

space of the robot, say Xfree. From now on, we will assume
that for GPRM and GRRT, we are sampling equilibrium states,
i.e., states wherein the velocities are zero, in the free state
space Xfree.
Further, we shall assume in this paper that the state of the robot
is known perfectly. The case of imperfect state observation will
be considered in future research.

B. Generalized Probabilistic Roadmap (GPRM)

In motion planning, the objective is to plan the path of
a robot from a start state to an end state. The Probabilistic
RoadMap (PRM) attempts to accomplish this by a) randomly
sampling the state space of the robot, b) connecting every
sampled point with its k-nearest neighbours using some
local open loop planner such as a straight line planner while
checking for collisions. The end result of the PRM is a graph
or roadmap on the workspace of the robot that contains the
feasible connections between the sampled points in the state
space. The problem is solved if there exists a path on the
graph that connects the start and the goal states. In the case
of systems with uncertainty, it may be impossible to find a
path that succeeds with probability one and hence, we are
interested in finding paths that have a success probability
above a pre-specified minimum threshold pmin.

The pseudo-code for the generalized probabilistic roadmap
(GPRM) algorithm is shown below. As can be seen from the

Algorithm 1 Algorithm GPRM
• Given x0, the starting point, xg , the goal point of the

robot and pmin, the minimum probability of success
• Initialize the GPRM with the nodes x0 and xg

1) Sample the equilibrium states in Xfree probabilisti-
cally using a uniform distribution

2) Grow the GPRM by connecting every sampled point
in the domain with its k-nearest neighbours using
suitable obstacle-free feedback controllers

3) Evaluate the cost of every connection in the result-
ing graph using Monte Carlo simulations

4) Plan on the resulting graph using the evaluated edge
costs from step 3

5) Evaluate the probability of success, ps, of the re-
sulting path from step 4. If ps > pmin, end; else go
to step 1

• End

pseudo-code, Steps 2-3 and 5 are different from the traditional
probabilistic roadmap (PRM) algorithm. In the following, we
discuss these steps of the algorithm in detail.

First, we discuss Step 2 in detail.
Given the robot dynamics as defined in the previous section
and some equilibrium point xg in the state space of the robot,
there exists a feedback controller u(., xg) such that the robot
can be controlled into a neighbourhood of the point xg with
some (high) probability, in the presence of the stochastic
disturbance forces and in the absence of any obstacles in the
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map. Note here that the equilibrium point of the robot xg

corresponds to some location in the map that the robot needs
to reach. Let Ωxg

denote a neighbourhood of the point xg ,
the above then implies that the probability of the state of the
robot, p(x(t)), is concentrated mostly in the region Ωxg

as
t → ∞.
The following notes are in order here.

• Due to the stochasticity of the system, it is impossible
to control the robot exactly to the point xg even in the
absence of obstacles.

• The use of a feedback controller to connect nodes is the
analogue of the step in traditional PRM wherein near by
nodes are connected using some local open loop planner,
such as a straight line planner. In the case of stochastic
systems, a feedback controller is necessary because the
uncertainty can carry the robot away from its prescribed
path in which case the open loop planner breaks down as
it no longer has a plan for the deviated path. In fact, it
is the entire premise of the field of feedback control that
the use of feedback grants robustness to such uncertainty.

• The feedback controller is designed for a workspace
without any obstacles as otherwise the controller design
is quite complicated owing to the constraints imposed on
the robotic system by its workspace.

Next, we detail step 3.
The feedback controller that we design for controlling the
robot from one node to another is for an obstacle free map
and hence, there is no guarantee that the controller will
actually succeed in connecting the two nodes in the presence of
obstacles. Thus, we need to test the controller through repeated
simulations to evaluate its probability of success. This can be
stated precisely as follows.
Given a start node xi and a target node xj , we may evaluate
the probability of success of the local controller, u(:, xj), in
connecting the nodes as follows. Recall that we are never sure
to be at either landmark xi or xj due to the uncertainty in the
system. Hence, the feedback controller to control the system
from xi → xj is turned on when the state of the robot enters
some pre-specified neighbourhood of xi, say Ωi, and turned
off when the state of the robot enters some neighbourhood of
the node xj , say Ωj , at which time the feedback controller to
get it to one of the neighbouring nodes of xj is switched on.
Let one particular instance of a trajectory, say the N th, that
goes from Ωi → Ωj under the feedback controller u(:, xj) be
x

(N)
0 , · · · , x

(N)
t(N), where t(N) denotes the time the controller

terminates. The time t(N) is called a stopping time and is
also random since it depends on the particular realization. The
probability of success of the N th realization is given by

p(N)
s = (1 − p(O/x

(N)
0 )) · · · (1 − p(O/x

(N)
t(N))), (2)

where recall that p(O/x) is the occupancy probability that
there is an obstacle at the point x in the state space of the
robot. In addition, we can find the cost of the plan from xi

to xj , c
(N)
ij , in terms of physical variables such as fuel, time

etc. Then, if we do repeated simulations, the probability of
success and cost of the controller u(:, xj) in controlling the

robot from xi to xj can be approximated as

pij
s ≈ 1

T

T∑

N=1

p(N)
s , (3)

cij
s ≈ 1

T

T∑

N=1

c
(N)
ij , (4)

and due to the law of large numbers, it follows that as T →
∞, the above estimates converge to the true values of the
parameters.
Given the probability of success of a controller in connecting
nodes xi and xj and the cost in successfully connecting them,
the cost of the edge connecting the nodes xi and xj in the
graph is given by

cij = pij
s cij

s + (1 − pij
s )cF , (5)

where cF is some heuristically defined, suitably high cost of
failure. The above equation allows us to evaluate the edge
costs in the graph that is formed by connecting any node to
its k-nearest neighbours.

Next, we explain the rationale behind step 5. In traditional
PRM, if we find a path from the start node to the goal node,
the planning problem is solved. However, in the presence
of uncertainty, we have to make sure that the probability of
success of the path planned on the graph is above the minimum
threshold value of pmin. Thus, it is not necessary that if there is
a path from the start node to the goal node, it has the minimum
required probability of success. This has to be tested. Thus,
once a minimum cost path is found on the graph according to
the edge costs as defined above, the probability of success of
the path is given by the product of the success probabilities of
the individual segments of the path, which in turn is known
from step 3. Thus, if the success probability is higher than the
threshold, the planning problem is solved; else, more points
have to be sampled in the state space, or the nodes connected
to more of its neighbours, in order to make sure that the
success probability is higher than the given threshold. The
central reason that we need to do this is because the probability
of success of a path is given by the product of the probabilities
of the individual segments of the path whereas the cost of a
path on the graph, using which we search on the graph, is the
sum of the costs of the individual segments. That this method
is probabilistically complete, i.e., it converges to a solution,
give that one exists, as the number of sampled nodes go to
infinity, is shown in the analysis section of this paper

C. Generalized Rapidly Exploring Random Trees (GRRT)

The traditional Rapidly Exploring Random Tree (RRT)
algorithm attempts to connect a start point and an end point
in the workspace of a robot by growing a tree using random
sampling as follows: a) randomly pick a point in the state
space of the robot, b) find the nearest node on the tree
according to some pre-specified metric, c) connect the nearest
node on the tree to the sampled node using some local
planner while checking for collision, and d) add the new
node to the tree if the robot does not collide with obstacles.
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The tree is grown in this fashion till a feasible path is found
from the start point till the goal point. Due to uncertainty
it might not be possible to find a path that succeeds in
connecting two points with probability one. Hence, in the
current scenario we require that the path have a minimum
pre-specified probability of success pmin.
We now present the generalized version of the Rapidly
Exploring Random Tree (RRT) algorithm, the GRRT. The
pseudo-code for the algorithm is presented below: Steps 2,

Algorithm 2 Algorithm GRRT
• Given start state x0 and goal node xg. Initialize tree with

x0, set p(x0) = 1.
• Repeat until the tree reaches goal node xg:

1) Generate node x at random (x is an equilibrium
state in Xfree)

2) Connect x to the node x∗ on the tree, using local
feedback control, that satisfies:

x∗ = arg max
i

p(xi)p(xix), (6)

where p(xix) is the probability of successfully
transitioning from xi → x under the local feedback
law.

3) Set p(x) := p(x∗)p(x∗x).
4) If p(x) > pmin, then add node x to the tree with

label p(x), else go to Step 1.

• End.

3 and 4 in the algorithm are different from the traditional
RRT algorithm. In the following, we discuss the details about
these differences starting with Step 2 in the algorithm.

Step 2 is common with the GPRM algorithm. The nodes
(or more precisely, the neighbourhoods of the nodes) are
connected by local feedback controllers that have been
designed using control techniques, and the probability of
success of the controller evaluated as in the GPRM algorithm.
The reason we chose the node as in Eq. 6 has to do with
the proof of completeness of the resulting algorithm. In fact,
the choice can be thought of as the “nearest node” metric
that is used to select the node in the tree that is connected
to the newly generated node. Hence, x∗ as defined in Eq.
6 is the best node in terms of the probability of success of
transitioning from x0 → x∗ → x, where recall that x0 is the
root node.

Next, we detail steps 3 and 4. Step 3 labels any newly
generated node with the “probability of success” of the robot
moving from the root node to that particular node. We only
want to keep nodes in the tree that have a success probability
(of transitioning to it from the root node) more than the thresh-
old of pmin. Hence, we have included the tree pruning in step
4. Note that given the probability of success, p(xi, xj) of tran-
sitioning from any parent node xi to its children xj in the tree,
the probability of success of a path x0, x1, · · · , xN is given by
p(x0, x1)p(x1, x2) · · · p(xN−1, xN ) = p(xN−1)p(xN−1, xN ),
according to the labeling convention that we have used, where,

recall that p(x) represents the probability of successfully
transitioning form the root node to node x.

D. Connection to Markov Decision Processes (MDP)

It is well known that most sequential decision making
problems under uncertainty may be posed as Markov Decision
Problems (MDP). Thus, it would behoove us to know what
connection, if any, exists between the Genralized smapling
based motion planners presented above and MDPs.
First, we provide a very brief overview of Markov deci-
sion processes (MDP) and semi-Markov decision processes
(SMDP). More comprehensive treatments of these topics can
be found in [11], [12]. We shall only consider discrete-time
finite state MDPs here. Let s denote the state of a finite MDP,
s ∈ S, S being a finite set. Let u denote the control action
which can take a discrete number of values. The MDP is
characterized by a transition probability function, p(r/s, u),
which is the probability that the system will transition from
state s to r under control u, at the end of one time step. The
goal of the MDP is to solve the infinite horizon discounted
optimal control problem given by

μ∗(s0) = arg min
μ={u0,u1,··· }

E[
∞∑

t=0

βtc(st, ut)/s0)], (7)

where μ = {uo, u1, · · · } is an infinite horizon control policy,
c(s, u) is the cost that the system incurs in taking control
action u at state s and β < 1 is a given discount factor. It is
well known that the optimal control policy corresponding to
the problem posed above is stationary and is given by [11],
[12]

u∗(s) = arg min
u

{c(s, u) + β
∑

r

p(r/s, u)J∗(r)}, (8)

where J∗(s) is the optimal cost-to-go function and is found
as the solution of the Bellman fixed point equation/ Dynamic
Programming equation:

J∗(s) = arg min
u

{c(s, u) + β
∑

r

p(r/s, u)J∗(r)}. (9)

It is very well known that the (Bellman) operator underlying
the above equation is a contraction operator with contraction
factor β and thus, the solution can be found through successive
approximations [12] which is the basic principle behind value
and policy iteration [12].
Semi-Markov Decision Processes (SMDP) offer a method
for temporal abstraction in MDPs. In addition to the set of
primitive controls, u, available at every state s, assume that
there are available also a set of options/ policies Πs which
can execute for variable periods of time before terminating
stochastically at some state r with probability distribution
β(.). Note that the controls (or the primitive controls) are
also options that execute for one step and then, necessarily
terminate. The optimality equation for SMDPs may be shown
to be

J∗(s) = min
π∈Πs

{cπ(s) +
∑

r

pπ(r/s)J∗(r)}, (10)
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where cπ(s) is the expected discounted cost of executing
policy π starting at state s, and pπ(r/s) is the generalized
discounted transition probability function of an MDP and is
given by

pπ(r/s) =
∑

N

pπ(r, N/s)βN , (11)

where pπ(r, N/s) denotes the probability that the policy π
terminates after exactly N steps at state r, given that the
policy started executing at the state s. The above optimality
equation is a generalization of the Bellman equation to the
case of SMDPs and inherits the contraction property of the
Bellman operator. Thus, policy and value iterations may be
used to solve the optimality equation for SMDPs.
Thus, although most problems of sequential decision
making under uncertainty are well-posed as a Markov
Decision Problem (MDP), the solutions techniques for
MDPs suffer from the curse of dimensionality and thus, are
computationally intractable for anything but small maps. The
SMDP framework described above is a hierarchical approach
to the solution of MDPs. In this approach, at every state, a
set of options are defined. Using the terminology of Sutton
et. al. [6], [7], [13], [14], options are stationary policies (or
local controllers) on the state space of the problem that can
execute for varying lengths of time, and thus, provide a means
for temporal abstraction in the problem. We further assume
that the options, once executed, can only terminate in the
neighbourhood of one of the landmark states. The situation is
shown in Fig. 1. Under the framework of options, the Markov
Decision Process (MDP) on the primitive states underlying
the planning problem is transformed into a semi-Markov
Decision Problem (SMDP) on the landmark states. Since the
number of landmark states is orders of magnitude smaller
when compared to the number of ”primitive” states in the
MDP, the computational complexity of SMDP (hierarchical)
planning is greatly reduced when compared to the complexity
of the original ”primitive” planning. The hierarchical planning
formulation requires answers to the following questions: a) a
scheme for the selection of the landmark states in the state
space, b) a design scheme for the local controllers/ options
and c) knowledge of the generalized cost and transition
functions associated with the options/ local controllers in
order to solve the higher level SMDP.

To the perceptive reader, it will be clear by now that the
GPRM methodology provides the answers to the above three
questions by: a) picking the landmarks at random (random
sampling of the state space), b) utilizing feedback control
techniques to design local controllers and c) evaluating the
local options for their costs and success probabilities using
Monte Carlo simulation. In fact, it is clear that the traditional
PRM methodology is a method of constructing SMDPs for
purely deterministic systems. We believe that randomization
is the key to breaking the curse of dimensionality in SMDPs.
There is ample evidence of this in the robotic motion planning
literature, in the deterministic setting, through the empirical
success of the PRM and RRT techniques on very high
dimensional planning problems. Also, it has been shown that

naive randomization does break the curse of dimensionality
in discrete decision processes (DDPs) [15], which are MDPs
with a continuous state space but finite set of actions. It can
be seen that the GPRMs proposed in this paper are more
sophisticated cousins of the DDPs and hence, we could expect
that the GPRMs also break the curse of dimensioanlity, in
some sense, while having better performance than DDPs in
practice. Of course, this is conjecture and a rigorous proof of
these statements will be the course of our future research.

III. NONHOLONOMIC UNICYCLE ROBOT

In this section, we apply the sampling based motion plan-
ners to the motion planning of a unicycle model whose
equations of motion are given by

ẋ = vcos(θ), (12)

ẏ = vsin(θ), (13)

θ̇ = ω, (14)

where (x, y, θ) represents the pose of the robot and the
velocity v and the angular velocity ω represent the control
inputs to the problem. In this case, our sampled poses are
in the (x, y, θ) spaces and the job of the local feedback
controllers is to stabilize the robot about any of these
equilibrium configurations. Due to the nonholonomy of
the sytem, linear control techniques are not applicable to
the stabilization problem. Thus, suitable nonlinear control
techniques are used to design feedback laws. We chose a
dynamic feedback linearization based controller design that
has been treated in detail in the reference [16].
Uncertainty was added to the robot motion model by adding
white noise to the robot dynamics equations above with the
intensity of the white noise being approximately 30% of
the maximum allowable vehicle linear/ angular speed, i.e.,
the noise in the x, y equations had intensity equal to 30%
of the maximum allowable linear speed while the noise in
the θ equation had intensity equal to 30% of the maximum
allowable angular speed.

The results of our numerical simulations on a candidate
map is shown in Fig. 3. We have tested our algorithms on
several other maps of varying degrees of difficulty but cannot
show here due to the paucity of space. These results are
available in the extended technical report on the first author’s
webpage. In the Figure, subfig. (a) represents the tree of
feasible trajectories built by the GRRT algorithm, the feasible
trajectories shown without any noise in the system. Subfig.
(b) shows the final bundle of trajectories from the start state
to the goal state under the sequence of feedback controllers
encoded in the tree. Note that there are multiple trajectories
because of the uncertainty in the motion model. Similarly,
Subfig. (c) shows the graph built by the GPRM algorithm,
however, the edges between the nodes on the graph are only
virtual, i..e, they are not the actual trajectories. Subfig. (d)
represents the final bundle of trajectories form the start to the
goal point encoded in the GPRM graph. It can be seen from
these plots that the performance of the method is excellent
and it successfully navigates quite complicated maps under
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Feedback controllers: LQ 
Techniques, feedback
linearization etc.

Landmark states

Option to take agent from 
one landmark to next

C, p(F): cost, 
prob. Of failure of 
option

Fig. 1. Schematic of Hierarchical Planning

Fig. 2. Performance of GRRT/ GPRM on unicycle robot: Map4

motion as well as map uncertainty.

Thus, in this section, we have shown the application of
the generalized sampling based motion planner to an under-
actuated nonholonomic robotic system. As can be seen from
the results, the planners have excellent performance in quite
complicated maps, in the presence of motion uncertainty as
well as uncertainty in the map. the next step would be to test
the planners on larger maps as well as include dynamics into
the planning equations. Also, we would like to experiment

with the planners on more generic robotic systems than the
mobile robot systems considered in this paper.
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