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Abstract— Wavelet neural network based on sampling theory 
has been found to have a good performance in function 
approximation. In this paper, this type of wavelet neural network 
is applied to modeling and control of a nonlinear dynamic system 
and some methods are employed to optimize the structure of 
wavelet neural network to prevent a large number of nodes. The 
direct inverse control technique is employed for investigating the 
ability of this network in control application. A variety of 
simulations are conducted for demonstrating the performance of 
the direct inverse control using wavelet neural network. The 
performance of this approach is compared with direct inverse 
control using multilayer perceptron neural network (MLP). 
Simulation results show that our proposed method reveals better 
stability and performance in reference tracking and control 
action.  

Keywords—wavelet, wavelet neural network, sampling theory, 
direct inverse control, nonlinear dynamic control 

 

I.  INTRODUCTION 
Although the use of linear control methods have been 

prevalent in the chemical process industries, they have their 
limitations especially when dealing with nonlinear plants in a 
wide operating region as commonly found in these industries. 
Many economically important units, such as reactors and high-
purity distillation columns, can be very nonlinear and very 
difficult to control adequately with linear controllers [9]. 
Complex steady state and dynamic behaviors create challenges 
that are tough for traditional linear controllers to handle.  

Analysis of nonlinear dynamics and design of globally 
stabilizing controllers for nonlinear systems are addressed in 
many textbooks. A universal requirement of the behavior of the 
closed loop system is that it should be stable. Unfortunately the 
stability issue is most often a complicated matter for nonlinear 
systems. 

When neural networks originally were proposed for 
controlling unknown nonlinear systems, one of the first 
methods being reported was on training a network to act as the 
inverse of the system and use this as a controller. 

The major characteristic of the direct inverse control is that 
they are intuitively simple and also simple to implement. One 
of the main problems of this technique is that they don’t work 

for systems with an unstable inverse, which often occur when 
using a high sampling frequency. This paper try to solve this 
problem using wavelet neural network based on sampling 
theory. 

As described in [1, 2], the wavelet neural network based on 
sampling theory, acts as a good approximator for any target 
function with properties of global convergence and avoiding 
overfitting. In this paper, this new wavelet neural network is 
applied as a direct inverse controller for investigation of its 
performance in identification and control of a nonlinear 
dynamic system. We compare its performance with commonly 
used MLP with Levenberg-Marquardt training. 

This work is divided in 4 sections. The first section briefly 
reviews the theory of multiresolution analysis and wavelet 
neural network based on sampling theory. The second section 
describes the procedure of designing the direct inverse control 
(DIC) based on wavelet neural network. In the third section, 
some methods are suggested for decreasing the number of 
nodes and improving the structure of wavelet network. In the 
forth section, simulation proves the performance of this new 
DIC controller for reference tracking and appropriate control 
action in comparison with MLP. 

II. THEORETICAL DESCRIPTION 

A. Review of Multiresolution Analysis 
In neural network learning, in order to take the full 

advantage of orthonormality of basis function, with localized 
learning, we need a set of basis functions which are local and 
orthogonal. 

Wavelets are new family of localized basis functions that 
have found many applications in large areas of science and 
engineering [4, 5]. Wavelets are universal approximator which 
can be used to approximate any arbitrary multidimensional 
nonlinear function. They have many powerful mathematical 
properties such as orthonormality, locality in time and 
frequency domains, different degrees of smoothness, fast 
implementations, and effective compact support. Wavelets are 
introduced in a multiresolution framework developed by Mallat 
[5]. We focus on the wavelet networks constructed from a 
multiresolution analysis (MRA) [5]. Consider a function ���� in �����, where ����� denotes the vector space of all 
measurable, square integrable one dimensional functions. In 
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addition, assume 	
 be the vector space containing all possible 
approximations of ���� at the resolution �. Then, the ladder of 
spaces 	
� ��� represents the successive resolution levels for ����. The properties of these spaces are as follows: 

1. (Nested)  	
 � 	
��� �� � �           (1) 
2. ���� � 	
 �� ��� � �� � 	
� ��� �� � ���                (2) 
3. (Density) ������� ! 	

�� " # �����                      (3) 
4. (Separation) $ 	

�� # %&'                                       (4) 
5. (Scaling) the function ���� belongs to 	
 if and only if 

the function ��()
���belongs to 	*                       
6. (Basis) There exists a function + � �� (called a 

scaling function or a father wavelet), with�+
, #(
 �⁄ +�(
� � ��, such that�.+*,/ � � �0 is a basis 
for�	*.                                             

The function�+ is called a scaling function of the 
multiresolution analysis (MRA). A family of scaling functions 
of the MRA is expressed as: 

 +
,��� # (
 �⁄ +�(
� � ��� � � � �            (5) 

Where�(
 and�1 correspond to the dilation and translation 
factors of the scaling function respectively while�(
2� is an 
energy normalisation factor. Let�34 be the orthogonal 
complement of�	
 to�	
�� �	
56
 # 	
��). Then the 
orthonormal basis functions corresponding to�34’s named 
wavelets and denoted by�748’s can be easily obtained 
from�+
,’s [3]. A family of wavelets may be represented as: 9
,��� # (
 �⁄ 9�(
� � ��� � � � �            (6) 

With�(
 � and�(
2� being the dilation, translation, and 
normalisation factor of the wavelets, respectively. Next������ 
can be expressed as: ����� # !
��	
 # :6)�56*56�; # 5
��6
         (7) 

Where�6
 < 6= for�� > �. Fig.1 illustrates the relation 
between�	
 and�6
 spaces in MRA. Equation (7) indicates that 
the wavelet basis generates decomposition of the��� space. It 
shows that any��� function is uniformly approximated using a 
wavelet series: 

���� # ∑ ∑ @
,9
,���,A�B,A)B
A�B
A)B             (8) 

If we start from the approximation of the function at 
resolution�� # &, then: 

���� # �*��� C ∑ ∑ @
,9
,���,A�B,A)B
A�B
A*            (9) 

Where 

�*��� # ∑ D*,+*,���,A�B,A)B           (10) 

����������������������������������E4�� # E4534 ����������������������������������������������������������������������������������������������F���� 
Figure 1. Embedded spacesE4’s for  
multiresolution representation  
of F����. 
 

 

We can conclude that any function����� � �� can be written as 
a unique linear combination of wavelets of different 
resolutions. This means that����� # :C G)���� C G*��� CG���� C : , where G
��� � 6
 is unique. Since�	
 # 6
 C6
)� C : and spaces�	
 can be generated by the scaling 
function�+��� � ��, there exists: �HI��� # ∑ �
,+�(
� � �� # ∑ �
,+
,B,A)BB,A)B          (11) 

Such that�J���� � �HI���J K & when�� L M. In fact (11) is just 
the presentation of wavelet networks with three layers. In an 
impact interval of interest, (11) can be written as: �HI��� # ∑ �
,+
,���NO,ANP             (12) 

Where�+
, # +�(
� � ��. A wavelet network is realized by 
taking��
,’s as the output weights, (
’s as the input weights 
and�+�� � �� as the activation function. 

Variety of approaches have been proposed for determining 
wavelet network parameters such as input weights�(
 and also 
output weights��
,’s. Here we use the approach based on 
sampling theory proposed by Zhang [2] for specifying 
appropriate resolution j. 

B. Wavelet �eural �etwork Based on Sampling Theory 
The wavelet neural network based on sampling theory first 

proposed by Zhang [2] and found to be a good approximator of 
band limited function with ability of global convergence and 
avoiding local minimum. But this wavelet neural network 
appeared to have some disabilities in avoiding of overfitting in 
training of non uniform noisy data. Then this neural network 
was modified by Hossaini asl [1] for this type of training data 
and become a good tools for modeling of nonlinear dynamic 
systems. In this part, this modified wavelet neural network is 
briefly described. For more details on this theory, please refer 
to [1, 2]. 

Suppose that the band limited function���Q� is sampled with 
sample time�R. Then the function can be written as follows: ��SR� # ��SR�T�� � SR�           (13) 

The Fourier transform of the discrete signal obtained by 
sampling f at intervals�R is: 

�UV�W� # �X∑ �U�W � �,YX ��∞,A)∞            (14) 

If the support of ��U is included in Z�[ R⁄  [ R⁄ \ then ���� # ∑ ���R���� � �R� R⁄ ��∞,A)∞                         (15) 

On the other hand, the frequency band of wavelet network that 
described in previous section is obtained as follows: 

] ^�_HI�W�^�@W∞)∞ ` ] ^�_HI�W�^�@W�abc)�abc C ()
d∑ ^�
,^�,      (16) 

So the energy of wavelet network is concentrated well in the 
following frequency band: Z�(
ef (
ef\             (17) 

The parameter�ef only depends on scaling function. Equation 
(17) means that the frequency band of wavelet network can be 
controlled by input weights. 
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Suppose�%�R �g��R�'’s are training data with �∑ |�g��R�|� i C∞,  then, by the sampling theorem, there exists 
a unique function����� to interpolate all training data. On the 
other hand, a wavelet network is a function in������ so a 
wavelet network represents a function in�jX if its Fourier 
transform has a support included in�Z� [ R⁄  [ R⁄ \. 

This means that the network �HI��� whose Fourier 
transform has a support in Z�[ R⁄  [ R⁄ \ is complex enough to 
recover a band-limited function. Therefore according to (16), 
the input weights can be calculated using following equation: (
 # [ �ef k R�⁄              (18) 

For constructing the structure of wavelet network, the property 
of energy concentration of wavelet in time domain should be 
employed. In wavelet network, the �lm node has the following 
input-output function: nopl # +�(
nqH � ��            (19) 

Where�nqH is the input,�(
’s are the input weights,�� is the �lm 
threshold and�+�r� is the scaling function. If the support of 
scaling function is limited to�s& tuv, then the��lm node of 
network has the following support: 

s()
� ()
�tu C ��v            (20) 

Assume the domain of interest for estimation of function is the 
interval�ZD e\, then the translations are found as follows: (
D � tu ` � ` (
e            (21) 

The output weights are found based on minimization of the 
following cost function: 

w��g �HI� # ∑ |�g��q� � �HI��q�|�xqA�            (22) 

Where�%�q �g��q�'’s are samples and��HI��q�’s are output of 
approximator. Without any additive term, this cost function is 
widely used in the training of networks because of convenient 
implementation.  

Three commonly used methods are direct solution method, 
iterative method and inner product method. In [1], the iterative 
method is employed for training the output weights. In this 
method the output weights can be calculated as follows: y�,��� # zg � +=kH{�,���           (23) 

{�,��� # {�,� C |}y�,�            (24) 

The column vector�y�,� denotes the error of interpolation by 
the wavelet network at��lm iteration, the column vector�{�,� 
represents the output weights at��lm iteration and the matrix�|} 
is the feedback matrix. The values of elements in the feedback 
matrix indicate that how much the errors in each data point 
would affect on output weights. The�+=kH matrix is: 

+=kH # ~+�NP���� : +�,���� : +�NO��=�� : ����������: �+�NP��=� : +�,��=� : +�NO��=��         (25) 

Where the subscript��* # s(�D � tuv and the subscript ��� # Z(�e\, which denote respectively, the minimum and 
maximum of translation�� obtained from (21). 

In [1], an intuitive approach for finding the appropriate 
feedback matrix was proposed. In this method the feedback 
matrix is constructed based on the�+ matrix. This method uses 
the receptive field of each node or scaling function in wavelet 
network. For detail information about calculating the 
appropriate feedback matrix, refer to [1]. 

For uniform sampled data, training wavelet neural network 
based on sampling theory shows quite acceptable results. 
However, for non uniform data, the algorithm encounters 
severe problems such as high overfitting error and deviation of 
estimated function from the actual target function. One of the 
reasons is that in the training of non uniform noisy data, the 
number of sub wavelet network that data are uniform within it, 
are intensively large because of equation that was proposed in 
[2]. To overcome this problem, a modified equation for 
calculating the number of sub wavelet network is proposed in 
[1].  By using this method, the number of sub wavelet network 
is decreased. 

Another technique that is suggested in [1], is the applying 
of wavelet thresholding into the training procedure. This 
technique causes the removing of nodes that represent the 
noise in the wavelet neural network. 

The final technique that is suggested in [1], is applying 
early stopping in the training procedure. This technique greatly 
improves the training procedure. By using this technique the 
profile of convergence of algorithm is monitored and therefore 
the stopping time is decided. 

III. DESIGNING OF DIC CONTROLLER 
In this section, the method of designing a DIC controller 

using the wavelet neural network based on sampling theory for 
nonlinear dynamic system is described. This theory of control 
is described in [3, 7, 8]. 

The scheme of direct inverse control with neural network 
is characterized by the controller being a network trained as 
the inverse of the system. “Inverse” was understood in the 
sense that the transfer function for the closed-loop system, 
consisting of controller and system equaled the time delay of 
the system. Assuming that the nonlinear dynamic system can 
be described by: ��Q C �� # GZ��Q�;  ��Q � S C �� ��Q� ;  ��Q � ��\      (26) 

The desired network is then the one that isolate the most recent 
control input,���Q� as shown below: 

���Q� # G�)�Z��Q C �� ��Q� ;  ��Q � S C �� ��Q� ;  ��Q � ��\     (27) 

Assuming such a network has somehow been obtained, it 
can be used for controlling the system by substituting the 
output at time�Q C � by the desired output, the reference, ���Q C ��. If the network represents the exact inverse, the 
control input produced by it will thus drive the system output 
at time�Q C � to���Q C ��. 
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There are two methods for establishing the inverse model, 
namely the general training and the on-line method, called the 
specialized training. 

Since this is the first time that the wavelet network based 
on sampling theory is employed as a controller of nonlinear 
dynamic system, we use off-line method for reasonable 
assessment of its performance. The most straightforward way 
of training a network as the inverse of a system is to approach 
the problem as a system identification problem as described 
below: 

a) Identification experiment is performed (generate 
training data). 

b) Wavelet neural network architecture is selected 
according to inverse of system. 

c) The wavelet neural network is trained offline. 

The wavelet neural network is then trained to minimize the 
criterion: 

w�� ��� # ��� ∑ Z���� � ���� ��\���A�             (28) 

As described in Part B of Section II, the iterative method is 
employed for training of wavelet neural network that leads to 
minimization of the objective function. 

IV. IMPROVING THE STRUCTURE OF DIC BASED ON 
WAVELET NEURAL NETWORK  

One of the main problems that may encounter in training 
of nonlinear dynamic system using wavelet neural network 
based on sampling theory, is generation of large number of 
nodes in each sub wavelet network. The main reason of this 
problem is the variation of density of data in each multi 
dimensional sub wavelet network. The sub networks that 
contains more dense training data, affect the other sub 
networks in case of resolution of scaling function. In this 
paper, three methods are suggested for solution of this 
problem. These methods are explained below: 

A. Decreasing �odes using Internal Thresholding  
In this method, we first cluster the training data into sub 

wavelet network and determine the scales and threshold of 
each sub network. Then by looking at the number of data and 
number of nodes in each sub wavelet network, a balance 
between these parameters could be set. In this approach, the 
balance is set by defining a threshold level and applying it 
on�+ matrix of each sub wavelet network. 

B. Decreasing nodes using feedback matrix 
After construction of the feedback matrix, there will be 

some rows that all of its elements are zeros. This means that 
none of training data contribute in training of the 
corresponding node. By this explanation, we could neglect that 
node in estimation of wavelet neural network. 

C. Decreasing nodes using wavelet thresholding 
After computing wavelet coefficients, the number of nodes 

is decreased using wavelet coefficient thresholding. This 
method is explained in [1] and includes two kind of hard 

thresholding and soft thresholding. In this paper, the hard 
thresholding is used due to its simplicity. 

In the next section, these methods are applied to training 
procedure and their effects on estimation of wavelet network 
will be investigated. 

V. SIMULATION 
In this section, the performance of wavelet neural network 

as a direct inverse controller is investigated and also compared 
to MLP with Levenberg-Marquardt training algorithm. A 
system that is chosen to be controlled is the model of spring 
that is an open-loop stable system with smooth nonlinearities 
[3]. The challenging part of this system is that the inverse of 
this system is also unstable. This system is described as shown 
below: �� �Q� C ���Q� C ��Q� C ���Q� # ��Q�                        (29) 

For finding the architecture of the DIC controller, first the 
structure of the system should be obtained. For this objective, 
the continuous model of the system should be discretized as 
shown below: 
��Q� � &����� � ��Q � �� C &����� � ��Q � (� # &���&� � ��Q � �� C&�(��� � ��Q � (�                (30) 

For approaching this model, the nonlinear term����Q�  in 
continuous model is neglected. Therefore the structure of 
system can be shown as Fig.2. According to the structure of 
the system and also description in section III, the difference 
equation model of the DIC controller is calculated as follows: ��Q C �� # GZ��Q� ��Q � �� ��Q� ��Q � ��\                       (31) ���Q� # G�)�Z��Q C �� ��Q� ��Q � �� ��Q � ��\         (32) 

According to (32), the architecture of DIC controller can be 
depicted as Fig.3. According to Fig.3, the structure of wavelet 
neural network is found. The next step is to execute a suitable 
experiment to generate training data that could represent all the 
states of the nonlinear dynamic system. After a lot of 
experiments, the best input signals for system that could excites 
approximately all the dynamic of system is found as 
multifrequency sinusoidal signal and uniform random signal. In 
this paper, the uniform random signal is employed as the 
identification signal for system. The input signal and the 
response of the system are shown in Fig.4.  In this experiment, 
the number of training data is chosen as 400 with amplitude 
value between [-2, 2]. As clearly depicted in Fig.4, the 
amplitude value of the system response is between [-1, 1]. The 
training procedure is first executed without using the three 
methods that were suggested in section IV. The reason is for 
demonstrating the performance of these methods in training of 
the network. During the training procedure, after each iteration 
of training, the wavelet neural network is cross validated using 
3 different response of the actual system to three signals. The 
results of training are shown in Fig.5 and Fig.6 as shown 
below: 

 
Figure 2. Discretized model of the system 
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Figure 3. Architecture of DIC controller 

 

 

 

 

 

 

 
 

Figure 4. Training data set 

 

 

 

 

 

 

 

 

 
Figure 5. Comparison between actual system and WNN inverse model 

 

 

 

 

 

 

 

 
Figure 6. Comparison of MSE of cross validation between 

actual system and WNN inverse model 

 

TABLE I. STATISTICS OF TRAINING 

Name            Value 

Root mean square error             0.25188 
Mean absolute error             0.1423 

Maximum absolute error             2.4129 
Number of nodes             56400 
Number of iterations             100 

As mentioned before, the WNN inverse model is validated 
with the response of the actual system to three input signals. 
These input signals are zero signal, step signal with amplitude 
value of 0.5 and also step with amplitude value of 1. Fig.6 
depicts the profile of variation of mean square error between 
WNN inverse model estimation and the actual system 
response of these three signals during training procedure. As it 
is clear, the MSE for three signals are decreased during the 
training procedure. This wavelet neural network has 4 inputs 
and one output. It also contains two sub wavelet networks 
for���Q � ��, two sub wavelet networks for���Q�, two sub 
wavelet networks for���Q C �� and also four sub wavelet 
networks for����Q � ��. The results of training are shown in 
Table I as below: 

In this training, the methods that were proposed in section 
IV are not used and the results of training show that the 
number of nodes that is generated exceeds 56400. Therefore, 
the three methods are added to the training procedure. After 
training, the total number of nodes decreases from 56400 to 
366 nodes. More detailed information about these methods is 
shown in Table II. According to this Table, by using these 
methods, the number of nodes is gradually decreased while 
there are just small increases in statistical errors while the 
structure of the network is greatly reduced. 

Now the reference signal should be designed according to 
training data. For determining of the domain that the reference 
can change within it, the density of training data should be 
considered. One can interpret that the reference to WNN is 
better to vary in the domain of [-1,1] and the control action 
from WNN controller varies in the domain of [-2, 2]. Now the 
WNN inverse model is ready for taking control the system. In 
this simulation, the WNN inverse model of third type in Table 
II (method I+II+III) is used for comparison with MLP with 
Levenberg-Marquardt learning algorithm. This neural network 
has two layers of nodes that use “tanh” as the activation 
function. This network is trained using Levenberg-Marquardt 
method in 500 iterations. Two experiments with two different 
references are applied to wavelet neural network and MLP. 
The results of control are shown in Fig.7 to Fig.10 as below: 

 
TABLE II. STATISTIC ERRORS OF THREE METHODS 

Name Method I Method I+II Method III 

 
Root mean 
square error 
 

     
    0.27251 

         
       0.30252 

   
   0.31277 

Mean absolute 
error 
 

    0.16052         0.20126    0.20493 

Maximum 
absolute error 
 

   1.9703        1.9852    1.9867 

Number of nodes    2032      458   366 
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Figure 7. System response to wavelet neural network as inverse controller 

 

 

 

 

 

 

 

 

 
Figure 8. System response to MLP as inverse controller 

 

 

 

 

 

 

 

 

 
Figure 9. System response to wavelet neural network as inverse controller 
 

 

 

 

 

 

 

 

 
Figure 10. System response to two layer Levenberg-Marquardt neural 

network as inverse controller 

According to Fig.7 to Fig.10, MLP controller has strong 
control action with high fluctuation resulting in larger 
overshoot. This is a quite common outcome when using this 
type of controller. This problem could be overcome by using a 

low-pass filter for cancellation of zeros that is described in [3]. 
On the other hand, the WNN controller has a reasonable 
control action without any oscillation and also similar to 
reference signal that results in more appropriate overshoot. It 
can be inferred from this comparison that the WNN inverse 
model is robustly stable system while MLP controller is poorly 
stable (because of existence of zero near the unit circle in 
transfer function of the discretized model) in dealing with 
nonlinear dynamic systems. Since the frequency band of WNN 
controller is controlled by its input weights that are determined 
using the sampling theory, this property of wavelet neural 
network based of sampling theory prevents the WNN 
controller to result in an unstable or poorly stable system. 

VI. CONCLUSION 
This work investigates the performance of wavelet neural 

network based on sampling theory in modeling and control of 
nonlinear dynamic systems and compares it with MLP neural 
network. For this reason, the technique of direct inverse control 
of an inversely unstable nonlinear system is employed. First 
some methods are suggested to prevent the generation of high 
number of nodes in wavelet neural network. The simulation 
results prove that the poor stability of the closed loop system 
that is one of the main problems in using the technique of DIC 
has been overcame. This is because the frequency band of 
wavelet neural network can be effectively controlled using 
sampling theory. Therefore we recommend the application of 
this powerful property of wavelet neural network based on 
sampling theory in implementation of other nonlinear dynamic 
control techniques.  
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