
JigDFS for Implementing Secure Container
Communities

Jiang Bian
Department of Computer Science

University of Arkansas at Little Rock
Little Rock, U.S.
jxbian@ualr.edu

Remzi Seker
Department of Computer Science

University of Arkansas at Little Rock
Little Rock, U.S.
rxseker@ualr.edu

Srini Ramaswamy
Department of Computer Science

University of Arkansas at Little Rock
Little Rock, U.S.

srini@ualr.edu

Abstract—The globalization of the economy has given increase
to the number of shipping containers. The large number of
shipping containers arriving at major ports makes inspecting
every container impractical and therefore bears significant risks.
This paper describes a solution that would monitor containers’
integrity from the originating port to the destination port. Should
there be an intrusion to the containers en route, the system will
report the activity to its home station. The proposed system is
envisioned to be secure and intrusion resistant. The proposed
approach uses an implementation of Jigsaw Distributed File
System (JigDFS) to further protect the container communities.
This paper is the full version of extended abstract published at
CSIIRW-09 [1].

Index Terms—Cargo Container Security, Secure Distributed
Systems

I. INTRODUCTION

This paper is full version of the extended abstract published
at the fifth Annual Cyber Security and Information Intelligence
Research Workshop (CSIIRW-09) [1]. The security of cargo
containers used for international trade has received attention
due to potential threats. Right after the terrorist events of
September 11, 2001, the U.S. Transportation Security Admin-
istration (TSA) worked closely with Congress to significantly
strengthen security in air cargo through the 9/11 Bill. In the
bill, the TSA is to screen 50 percent of all cargo on passenger
planes by February 3, 2009, and 100 percent within three years.
Similarly, the U.S. Customs and Border Protection (CBP)
developed the Container Security Initiative (CSI) that aims
to ”extend the zone of security outward so that American
borders are the last line of defense, not the first.” The CSI
program aims to pre-screen containers at the port of origin
to identify the high-risk containers. Although such measures
are beneficial, they leave room for improvement. One such
improvement is to assure integrity of containers en-route. The
incidents of piracy that took place off the coast of Somalia
recently were important in showing the criticality of ensuring
containers’ safety en-route. A container compromised en-route
can contain an agent that is harmful to a nation’s well-being.
This paper proposes the Container Community Wireless Sensor
Network (CC-WSN), in which the integrity of smart containers
are monitored and these smart containers are wirelessly linked
to form a neighborhood watch program.

Smart containers are equipped with necessary sensors that
can detect any intrusion event. When an intrusion into a

container is detected, the container will report this event to its
neighbors. The containers in a container community exchange
their status to increase the level of information redundancy.
The resulting CC-WSN is attack hardened against attackers’
need to cover their tracks.

An intrusion event message is first divided into n slices
according to a chosen Information Dispersal Algorithm (IDA).
Then each slice is sent to a different neighboring node. An
investigator can reconstruct the original event message by
decoding the IDA. The main characteristic of an IDA is that
the original message can be recovered as long as k segments
are still alive, where k � n, where n is the actual number of
segments. To an attacker, each segment appears to be a chunk
of meaningless random data. Even if an attacker manages to
destroy (n - k - 1) segments of an event message, the alert
will still be available to the investigator.

Wireless signals are prone to jamming attacks and being
captured off air. The CC-WSN has an Active Status Polling
(ASP) mechanism to address the scenario of disrupting com-
munications and meanwhile intruding into containers. Since
containers are stacked on top of one another and close to one
another, an alternate communication channel can be considered
as a fall-back channel in the presence of heavy wireless
jamming. Each node in the CC-WSN will actively query its
neighbors’ security status and if no response or a false response
is received, the querying node will report an abnormal event
for the queried node. Authentication is important in ASP
communications to prevent man-in-the-middle attacks. Section
III discusses the man-in-the-middle attacks.

The Jigsaw Distributed File System (JigDFS) [2] is utilized
to further harden the CC-WSN system against attacks. JigDFS
is a secure distributed file system originally designed to provide
plausible deniability to help protecting users’ privacy. JigDFS
also uses an IDA to achieve high redundancy which helps the
system’s fault tolerance. The file segments are encrypted recur-
sively using keys generated by a hashed-key chain algorithm
to make tracing of the origin of each file or file segment more
difficult. In this version of CC-WSN, a table of containers
with their status is stored distributively among container nodes
using JigDFS. We will discuss the advantages of using JigDFS
in CC-WSN further in Section III. In general, JigDFS helps
concealing the path to each file slice and makes it difficult for

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3751

an attacker to trace every slice of the information and wipe
the intrusion event from the system thoroughly.

The rest of the paper is organized into four sections.
Section II gives a brief overview of related background such
as the Information Dispersal Algorithm, the concept of the
JigDFS, etc. In Section III, we present the overall design of
the proposed CC-WSN system. The last section presents the
conclusions.

II. RELATED WORK

A. Wireless Sensor Networks and Security

Wireless Sensor Networks (WSN) [3] [4] have wide range
of applications [5] [6]. Sensor nodes are deployed in a region
to track and monitor parameters of interest in the environment.

There is a wide spectrum of security threats for wireless
sensor networks. These threats include eavesdropping, spoof-
ing, impersonation, and denial-of-service (DOS) attacks. In
general, a wireless sensor node is resource limited, especially
in terms of battery life and computation power. Limited
resources makes it impractical to use strong encryption and
authentication at every node. Public-key infrastructure is nor-
mally considered resource intensive for WSN communications.
However, Watro et. al. have developed a lightweight PKI
system for WSNs named TinyPK [7], which can be utilized
in the CC-WSN depending on the sensitivity of the cargo.
Mostly, in both CC-WSN and JigDFS, symmetric encryption
and one-way hash function are used to protect the information.
Both of these procedures are computationally cheaper than
assymmetric encryption. However, the ASP mechanism in CC-
WSN utilizes pre-deployed public/private key pairs to generate
and verify the digital signature of ASP responses so that the
authenticity of messages can be ensured. Nevertheless, the key
pairs are pre-computed and pre-deployed into each sensor node
at the port of origin during pre-screening phase by using a
computer with enough resources.

B. Information Dispersal Algorithm and Jigsaw Distributed

File System (JigDFS)

Both the CC-WSN itself and the JigDFS use an Infor-
mation Dispersal Algorithm (IDA) to not only increase the
redundancy of the information, but also help assuring the
secrecy of data. The IDA is a special use of erasure codes

also referred as forward error correction (FEC) codes, first
introduced by Michael O. Rabin [8] to design a fault-tolerant
and transmission efficient information storage system. The
basic idea of erasure codes is to add redundancy to the original
data; this extra information allows the receiver or reader to
detect and correct data errors without the need to ask the
sender to resend the message. JigDFS uses an optimized Reed-
Solomon (R-S) code [9] known as Cauchy Reed-Solomon
code [10]. The encoder of an IDA splits the original file/data
into n segments and adds error correction codes into each
segment. While recovering, however, only k segments are
needed to reconstruct the complete file. Both the n and k are
set based on the configuration of the IDA, where k � n.
Although the overall size of the original message increases

due to the added redundancy, the length of each packet sent
to individual node will be reduced. A smaller packet size in
wireless communication means higher successful transmission
rate. Moreover, each file segment is further encrypted and
sliced by intermediate child nodes recursively. The file segment
tree created on the fly based on the hashed-key chain algorithm.
Such a design improves the anonymity of the file’s origin.

In CC-WSN, each container corresponds to a node in
JigDFS. A table of containers with their status is stored in the
JigDFS structure and shared by all nodes. When an intrusion
or an abnormal event is detected, the reporting node will not
only report this event to nearby nodes, but also try to update
the Container Status Table (CST) to indicate an change in its
status.

C. Juxtapose (JXTA) P2P Framework and Distributed Hash

Table (DHT)

JXTA is the most mature open source peer-to-peer protocol
framework started by Sun Microsystems. JXTA allows a wide
range of devices, from regular computers and cell phones
to wireless handhelds, chained together to communicate and
collaborate in a P2P manner [11] [12]. JXTA provides a set
of communication protocols and services, which construct the
underlying overlay network and infrastructure for both CC-
WSN and JigDFS. The services provided by JXTA and utilized
by JigDFS include:

1) discovering other peers and resources, provided by Ad-

vertisement and Discovery Service

2) exchanging linked peer lists with other peers, provided
by the Rendezvous Service

3) communications between peers, provided by the Pipes

and Endpoints

The Distributed Hash Table (DHT) algorithm is employed
in JXTA [13] to index resources and peers because of its prov-
able properties and excellent performance in a P2P network.
Basically, a DHT performs the functions of a hash table (i.e.
key-value pair table), but in a distributed manner. Just like a
traditional hash table, one can lookup a value based on its
key, however, the storage and lookups are distributed across
the overlay network. The JXTA uses a loosely-consistent DHT
walker mechanism to resolve inconsistency of the DHT within
the dynamic P2P network, which avoids the use of a stable
server or super-peer to ignite the communication.

III. CONTAINER COMMUNITY WIRELESS SENSOR
NETWORK

In CC-WSN, each container corresponds to a node in
the WSN. Every node cooperatively works with others to
tackle intrusion incidents. If an intrusion event is only logged
locally on the compromised container, an attacker could cover
his/her tracks by modifying the log or wipe the memory
on the computing element inside the compromised container.
Therefore, in CC-WSN, the Neighborhood Watch concept is
adopted to form a neighborhood of containers where each
container behaves as a responsible citizen of the community
and stays alert to any unusual activity. An unusual activity

3752

such as intrusion into a container is reported by a node to its
neighbors. The overall architecture of CC-WSN is shown in
Figure 1.

Fig. 1. Overall Architecture of CC-WSN

In the CC-WSN implementation, a centralized server is
located in the ship’s control room with sufficient computing
power. This server has the capability to gather real time
information from the sensor nodes and display the status of
containers to the ship’s staff. The staff can then report any
intrusion or abnormal activity to the port through a satellite
connection, if equipped, so that the intrusions can be handled
properly. The Wireless Access Point (WAP) in the system is
optional. Existence of one or more WAP(s) helps to ease the
burden of communication among nodes, but it also speeds up
the communication channels between the sensor nodes and
the centralized server, since the control room is wired with the
WAP. Considering the scenario without a WAP, when a node
reports an intrusion event, the message needs to be relayed
by the middle nodes and then be transmitted to server. Even
with a WAP, the intrusion alert should still be spread across
the network.

A. Intrusion Reporting in CC-WSN

When an intrusion is detected, the intrusion event message
will be split into n slices using an IDA and delivered to n
different nearest neighbors along with the Message Identifier
(MID) and Node Identifier (NID) information. The MID is
the hash value (SHA-256) of the entire message, which in-
cludes Event Type, Event Timestamp, Event Node Identifier
and Event Description. Since the combination of NID and
timestamp should be unique across the entire network, the MID

is unique. MID is used to identify whether a segment is a part
of a specific event message, but it is also used to verify the
integrity of the reconstructed message. The restored message
is genuine if the hash value of the restored message equals
the MID, otherwise, the message is corrupted. Moreover, like
in JigDFS, we use GISP [14], an implementation of DHT in
JXTA, to index message segments generated by the IDA. The
following five basic elements captured in the DHT:

1) [MID]: Message Identifier is the hash value of the
original message using SHA-256.

2) [t]: Timestamp of when the event took place.
3) [SID]: Segment Identifier is the hash value of the data

segment using SHA-256.
4) [NID]: The identifier of reporting node, which should

be unique across the whole community.
5) [MSG SEG]: The actual message segment.
Unlike in the traditional JigDFS implementation, each mes-

sage segment is much smaller in length than a file slice.
Therefore, in the CC-WSN implementation, the actual data
is stored in the DHT rather than a link that points to the
node where the particular file slice would be placed in the
case of traditional JigDFS implementation. The DHT is not
synchronously shared among all nodes, so that two or more
nodes can exchange their local DHTs to share/synchronize
information about the resources. As the actual data segment is
stored in the DHT, the data segments are passively mirrored.
By doing so, this implementation increases the difficulty for
an attacker to wipe all the records in the system, since the
message segments may have been duplicated and residing on
different nodes.

During investigation, an investigator can easily reconstruct
the original messages using the corresponding IDA decoder.
Because of the characteristic of IDA, the original message can
be recovered as long as there are k (i.e. based on the setting
of the IDA) uncorrupted slices left.

Figure 2 shows how a message (m) in CC-WSN is split
and delivered to its nearby nodes and later reconstructed at the
investigator’s computer at the destination port. Let us assume
that the IDA parameters are set to be n = 10 and k = 3. These
parameters mean that the IDA will split a message m into 10
slices and any 3 out of the 10 slices are needed to recover
the original message m. The IDA first adds the extra erasure-
code e and produces 10 unique message segments d1...d10

; then node C1 finds 10 nearest neighbors according to its
peer list (contains a list of peers C1 knows) and delivers a
unique piece di (1 ≤ i ≤ 10) along with a timestamp t and
the message unique id (MID = SHA256(m)) to each of
them. The nodes which received a message segment will then
record the segment (MSG SEG), SID, MID, NID and
T in a local database as well as in its local DHT. During
investigation, the investigator will issue a message data request
command REQ,NID (i.e. here NID is the node identifier of
where the command is issued) from the server in the control
room or any computer linked into the network. The request
command will then be propagated across the whole network.
Upon receiving the request command, the container node will

3753

Fig. 2. Split and reconstruct a message in the CC-WSN using an Information
Dispersal Algorithm

respond with a message segment package as follows:

{MID, t, SID,NID,MSG SEG}
The message segment package will be transmitted through
WAP, if exists, otherwise, the request will be passed by the
middle nodes according to the routing algorithm implemented
in the network (in our CC-WSN, routing depends on the
implementation of JXTA framework). Eventually, the message
segment package will be delivered to the requester. The mes-
sage segments are grouped based on their MID. The original
messages can then be reconstructed from any 3 segments in
each group.

B. Active Status Polling (ASP)

It is very likely that the attacker may have the knowledge
and equipment to block out one or more nodes’ communication
with others. If such an attack is sucessful, a node being
compromised will not be able to report the intrusion incident
even though it was detected. In CC-WSN, we introduce the
Active Status Polling mechanism to detect such attacks. Each
container node in CC-WSN will periodically and actively
poll nearby nodes for their status. If there is no response
or an invalid response is received from a polled node, the
polling node will file an abnormal activity event for the polled
node. Therefore, incidents in which the communications are
being blocked can be quickly identified and reported to the
investigator. The response messages are very simple and short,
such as ”ALIVE”, ”COMPROMISED”, etc., along with the
node identifier and a timestamp.

However, a man-in-the-middle attack can still be performed,
if the authenticity of the response messages is not ensured.

Therefore, in CC-WSN, all responses to ASP polling requests
have to be signed and encrypted. Before starting the trip at
the departure port, a public/private key pair is generated and
deployed at every container. The private key is known to
that specific container and authorized personnel such as an
investigator, while the public key is public to all other nodes.

Each message is signed with the sender’s private key to
ensure the authenticity and integrity of the message. For
example, let us assume that node Cj polled the status of node
Ci and Ci is going to respond with message m. The private
key of Ci is xi while the public key is gxi . Also, the signing
function is denoted as sign(), the encryption function is enc(),
and h() represents a one-way hash function. Ci first computes
the hash value of message m as h(m) and signs the message
using its private key xi and the signing function, sign(). The
computed signature is

Sm = signxi
(h(m))

then, Ci sends the entire response package to Cj as:

{m,Sm, i}
where i represents the node identifier. Moreover, note that the
message m itself also includes the NID and a timestamp.

When Cj receives the response from Ci, it can verify the
message signature Sm since the Ci’s public key gxi is known
to the public. Cj will report an abnormal activity for node i
if the signature is not valid or the message itself states that
node i is in an abnormal state. The explained approach voids
man-in-the-middle attacks, since the private key is unknown
to the attacker.

C. Encryption on ASP Responses

Although the ASP response messages are authenticated
by digital signatures, the messages themselves are sent in
plain-text. Depending on the sensitivity of the contents in
the containers, encryption may be used to further harden the
CC-WSN against attacks. As mentioned previously, normally
PKI infrastructure is considered computationally too expensive
to be used in resource limited environments such wireless
sensor networks. However, Watro et. al. have developed a
lightweight PKI system for WSNs named TinyPK [7], which
can be utilized in the CC-WSN. Moreover, depending on the
level of security desired and considering the fact that large
batteries can be placed in cargo containers, a device with more
computational resources (if suitable, even a fully configured
laptop) can be used in each container. If the sensor nodes
are computationally powerful enough, then one can use a
conventional PKI system to create a secure channel between
nodes. If so, node Ci will encrypt the ASP request with node
Cj’s public key; and upon receiving the message, Cj should
be able to decrypt the message without any difficulty. Then
Cj will encrypt the response message with Ci’s public key
and Ci can decrypt it with its private key. This way, all
communications between two peers can be secure and reliable.
Even when the system gets attacked, there is no way for

3754

attackers to decrypt the communication among nodes without
knowing the proper keys.

To be consistent with our previous notation, let us define
the private key of node Ci as xi and its public key as gxi ;
a PKI encryption algorithm PK ENCgxi (m) that transforms
a plain-text message into its cipher-text M using private key
is gxi ; and there exists a corresponding decryption function
PK DECxi

(M) that can decrypt the secret M back to m.
Assume that node Cj has been queried by node Ci, then it
checks its own state and responds to Ci with a ”ALIVE”
message along with a timestamp t and the NID of Cj denoted
as m. Therefore,

m = ”ALIV E + t + NID”

then the queried node Cj computes the digital signature of m
as follows:

Sm = signxj
(h(m))

Moreover, node Cj encrypts m with Ci’s public key gxi :

M = PK ENCgxi (m)

Finally, Cj sends the whole package Ph(m) including the
unique identifier of the message h(m), the encrypted message
M , the digital signature Sm, a timestamp t and node Cj’s NID
NIDj :

Ph(m) = {h(m),M, Sm, t, NIDj}
Upon receiving the message package Ph(m) from node Cj ,

Ci first decrypts the message using its own private key as:

m′ = PK DECxi
(M)

and then computes h(m′) and compares it with h(m) to ensure
the integrity of the message. If the message is authentic, node
Ci then verifies the message’s digital signature using node Cj’s
public key gxj . Finally, node Ci reads the plain-text response,
and acts accordingly.

D. Container Status Table (CST) in JigDFS

Through Active Status Polling, a node can quickly learn
the status of nearby nodes and detect whether they have been
compromised or not. There is another mechanism used in
CC-WSN to further protect the event logs generated by each
container. The system keeps a CST, as has been previously
mentioned, that contains a list of containers along with their
status. Moreover, the database file is stored in the secure
distributed file system JigDFS. JigDFS is designed to provide
strong encryption and a certain level of plausible deniablity.
Files in JigDFS are sliced into small segments using an IDA
and distributed onto different nodes recursively to increase
fault tolerance against node failures. Moreover, layered encryp-
tion is applied to each file with keys produced by a hashed-key
chain algorithm, so that the data and keys reside on different
nodes.

The plausible deniability of JigDFS may not seem to add
value directly to our CC-WSN. However, the design of the
deniability in JigDFS makes it hard to trace where a file was
uploaded into the system and from which node it was retrieved.

Moreover, the file segments can be moved around from node
to node. Combining these features further lowers the attacker’s
chance to cover all nodes that contain segments of a specific
file and wipe out the file entirely from the system.

Each container node is considered to be a node in JigDFS.
The CST can be retrieved and updated on/by any node in the
community. Therefore, when an intrusion is detected, not only
will the compromised node report the intrusion event as usual,
but it will also update the CST. The same process applies
to the Active Status Polling; the polling node that detects an
abnormal activity in the polled node will not only report the
event but also update the CST. The status of one particular
container node might be updated concurrently by two or more
nodes with different status. Even worse, an attacker can use a
compromised container to falsely update all other containers
to normal status. Therefore, the CST not only contains the
latest status of each container, but also keeps a history of
previously reported statuses along with other information such
as the NID of the node where the update is made, a timestamp,
etc. An investigator can then easily analyze the CST to not only
figure out which container is compromised, but also make a
good guess of which container is falsely updating the CST,
and therefore, has a good chance of being a compromised
container.

IV. CONCLUSIONS

In this paper, we proposed to deploy sensors and computing
elements into cargo containers to monitor and ensure the
integrity of containers. Moreover, all container nodes are
wirelessly linked to each other and work cooperatively to
tackle attacks. When an intrusion is detected, the compromised
container will report the event to its nearby neighbors. The
warning message is split into n slices using an IDA and each
message segment is sent to a different nearby node. The use
of IDA not only increases information redundancy, but it also
makes it more difficult for an attacker to cover all nodes to hide
his/her tracks. The ASP mechanism is introduced to prevent
the situation where the communications of the compromised
container is blocked by the attacker. Digital signatures are
used to ensure the authenticity and integrity of the responses
to the status polling to prevent man-in-the-middle attacks.
Furthermore, JigDFS, a secure distributed file system is used
to store the table of containers along with their status. Not
only the latest status of each container is stored in the CST,
but also the history of previously reported status updates along
with by whom and when the event was reported. Logging this
way reduces the risk that a compromised container can be used
by an attacker to falsely update the CST.

ACKNOWLEDGMENTS

This work is based, in part, upon research supported by the
National Science Foundation (under Grant Nos. CNS-0619069,
EPS-0701890 and OISE 0729792). Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of the funding agencies.

3755

REFERENCES

[1] J. Bian, R. Seker, and S. Ramaswamy, “Jigdfs in container communities
for international cargo security,” in The fifth Annual Cyber Security and
Information Intelligence Research Workshop (CSIIRW-09). ACM, 2009.

[2] J. Bian and R. Seker, “Jigdfs: A secure distributed file system,” in
Proceedings of 2009 IEEE Symposium on Computational Intelligence
in Cyber Security. IEEE, 2009.

[3] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51–58, 2000.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
2002.

[5] K. Chakrabarty, S. S. Iyengar, H. Qi, and E. Cho, “Grid coverage for
surveillance and target location in distributed sensor networks,” IEEE
Trans. Comput., vol. 51, no. 12, pp. 1448–1453, 2002.

[6] C. Gui and P. Mohapatra, “Power conservation and quality of surveil-
lance in target tracking sensor networks,” in MobiCom ’04: Proceedings
of the 10th annual international conference on Mobile computing and
networking. New York, NY, USA: ACM, 2004, pp. 129–143.

[7] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“Tinypk: securing sensor networks with public key technology,” in SASN
’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and
sensor networks. New York, NY, USA: ACM, 2004, pp. 59–64.

[8] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” J. ACM, vol. 36, no. 2, pp. 335–348,
1989.

[9] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
no. 2, pp. 300–304, 1960.

[10] J. Blmer, M. Kalfane, M. Karpinski, R. Karp, M. Luby, and D. Zuck-
erman, “An xor-based erasure-resilient coding scheme,” International
Computer Science Institute, Tech. Rep., August 1995.

[11] S. Oaks and L. Gong, Jxta in a Nutshell. Sebastopol, CA, USA: O’Reilly
& Associates, Inc., 2002.

[12] D. Brookshier, D. Govoni, N. Krishnan, and J. C. Soto, JXTA: Java P2P
Programming. Indianapolis, IN, USA: Sams, 2002.

[13] B. Traversat, M. Abdelaziz, and E. Pouyoul, “Project jxta: A
loosely-consistent dht rendezvous walker,” jxta-dht.pdf, 2007. [Online].
Available: http://www.jxta.org/docs/

[14] D. Kato, “Gisp: Global information sharing protocol ” a distributed
index for peer-to-peer systems,” in P2P ’02: Proceedings of the Second
International Conference on Peer-to-Peer Computing. Washington, DC,
USA: IEEE Computer Society, 2002, p. 65.

3756

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

