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Abstract— The classical paradigm of line and curve detection 
in images, as prescribed by the Hough transform, breaks down 
in cluttered and noisy imagery. In this paper we present an 
"upgraded" and ultimately more robust approach to line 
detection in images. The classical approach to line detection in 
imagery is low-pass filtering, followed by edge detection, 
followed by the application of the Hough transform. Peaks in 
the Hough transform correspond to straight line segments in 
the image. In our approach we replace low pass filtering by 
anisotropic diffusion; we replace edge detection by phase 
analysis of frequency components; and finally, lines 
corresponding to peaks in the Hough transform are statistically 
analyzed to reveal the most prominent and likely line segments 
(especially if the line thickness is known a priori) in the context 
of sampling distributions. The technique is demonstrated on 
real and synthetic aperture sonar (SAS) imagery. 

Keywords— Edge detection, Hough transform, line detection, 
phase symmetry, anisotropic diffusion 

I. INTRODUCTION

HE inspection and maintenance planning of underwater 
sensor training ranges is considerably more cost 

effective and efficient if it can be performed by Autonomous 
Underwater Vehicles (AUVs).  Therefore, the ability of an 
AUV to detect, track, and inspect the cable components of 
these ranges is of interest to the Navy. 
 Our initial goal is to detect prominent straight line 
segments. Lines in imagery vary in appearance, e.g., 
thickness, intensity (color), and geometry. It is necessary to 
formulate a general definition for cable-like objects which 
can be used to detect arbitrary cables in imagery collected by 
various sensors. We define cables as straight line segments, 
which have coherent structure, and whose intensity may be 
very close to that of the background (i.e., low SNR). 

A.  Contributions 
This paper proposes an algorithm for the automated 

detection of cable-like objects in cluttered and noisy 
imagery. Most of techniques which are used in the algorithm 
are well known in the literature. Features used to classify the 
most statistically significant cable-like segments are 
introduced.    

B. Outline 
The remainder of this paper is as follows: Section II will 
provide some background information on the image 
processing techniques used in this work, review the 

mathematics behind these techniques, and identify the 
uniqueness of each. Section III will describe the methods 
used to analyze line segments and establish criteria for 
identifying cables and discuss the results. Section IV follows 
with a conclusion and a few thoughts on future work. 

II. IMAGE PROCESSING TECHNIQUES

In this section we present an overview of the relevant image 
processing techniques used in the line detection algorithm. 
Most of these procedures are "off-the-shelf" techniques 
widely known/used by the image processing and computer 
vision communities. These are used to detect candidate line 
segments in the image which may or may not be portions of 
a cable. The last subsection proposes three measures, or 
features, which may be used to determine if a line segment is 
likely to be a cable. 

A. Anisotropic Diffusion 

Nonlinear anisotropic diffusion filters are iterative, "tunable'' 
filters introduced by Perona and Malik [13], [14]. Gerig et 
al. used such filters to enhance MRI images [6]. Sapiro and 
Tannenbaum used a similar technique to perform edge 
preserving smoothing of MRI images [16]. In the extreme 
case, such smoothing might produce a profile of radio 
frequency  inhomogeneity in the images. Others have shown 
that diffusion filters can be used to enhance and detect object 
edges within images [1], [13], and [14].  Perona and Malik 
formulated the anisotropic diffusion filter as a diffusion 
process that encourages intraregion smoothing while 
inhibiting interregion smoothing. Mathematically, the 
process is defined as follows:   

( , ) ( (( , ) ( , )))I x t c x t I x t
t

∂ = ∇ ∇
∂

 (1) 

In our case, ( , )I x t is the image. x refers to the image 
axes and t refers to the iteration step. ( , )c x t is called the 
diffusion function and is a monotonically decreasing 
function of the image gradient magnitude:  

( , ) ( ( , ) )c x t f I x t= ∇  (2) 

It allows for locally adaptive diffusion strengths; edges 
are selectively smoothed or enhanced based on the value of 
the diffusion function. Although any monotonically 
decreasing continuous function of I∇ would suffice as a 
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diffusion function, two functions have been suggested:  

2( , )( , ) exp I x tc x t K
∇= −  (3) 

11( , )
( , ) 1 , 0

I x t
c x t

K

α

α

−+∇
= + >  (4) 

where K is referred to as the diffusion constant or the flow 
constant.  An example of the anisotropic diffusion technique 
of Equation (4) for noise removal is shown in right image of 
Figure 1 below for the original image, left. 

B. The Detection of Edges and Lines 
Edge detection refers to algorithms which aim at 

identifying points in a digital image at which the image 
brightness changes sharply, or more formally has 
discontinuities. Images contain step edges, line features and 
many feature types that are somewhere between the two. 
There are many methods for edge detection, but most of 
them can be grouped into two categories, search-based and 
zero-crossing based. The search-based methods detect edges 
by first computing a measure of edge strength, usually a 
first-order derivative expression such as the gradient 
magnitude, and then searching for local directional maxima 
of the gradient magnitude using a computed estimate of the 
local orientation of the edge, usually the gradient direction. 
The zero-crossing based methods search for zero crossings 
in a second-order derivative expression computed from the 
image in order to find edges, usually the zero-crossings of 
the Laplacian or the zero-crossings of a non-linear 
differential expression, as will be described in the section on 
differential edge detection following below.  
As a pre-processing step to edge detection, a smoothing 
stage, typically Gaussian smoothing, is almost always 
applied as here we use the anisotropic diffusion technique 
discussed above. Edge detection methods that have been 
published mainly differ in the types of smoothing filters that 
are applied and the way the measures of edge strength are 

computed. As many edge detection methods rely on the 
computation of image gradients, they also differ in the types 
of filters used for computing gradient estimates in the x- and 
y-directions. 

 Traditional gradient based edge operators are tuned to 
detect step edges, and hence are unable to properly detect 
and localize other feature types. More adaptive non-gradient 
based techniques show certain promise in the areas of edge 
and line detection for Sonar based imagery. 

1) Phase Symmetry and Congruency 

The Phase Congruency [8], [9] detector is used as a tool to 
identify the different feature types found in images. It was 
noted that there is a continuum of feature types between step 
edges and ramps, and that most images have a broad 
distribution of all these feature types. It is concluded that in 
typical images gradient based operators detect and localize 
only a small fraction of features correctly.  

In general the edge detection literature has concentrated 
on the detection of step edges. The principal criterion is 
usually the good detection and localization of step features 
in the presence of noise. This is typified by the work of 
Sobel [15], Marr and Hildreth [10], Canny [4], and many 
others. A very limited amount of work has been done on the 
detection of other kinds of features. Some exceptions to this 
are the line detection work of Canny [3], the detection of 
peaks and roofs by Perona and Malik [13], [14], the 
detection of steps and bars by Wang and Jenkin [19], and the 
catalog of feature types developed by Aw, Owens and Ross 
[2]. The emphasis on the detection of step edges is 
misplaced. Images contain a wide variety of edge types, 
many of which are somewhere between a step and a ramp. 
This method shows that one can describe a continuum of 
feature types between step edges and lines, and that most 
images have a broad distribution of all these feature types. 
The emphasis of computer vision research on the detection 
of step edges has resulted in edge detectors that fail to find, 
and/or incorrectly localize, valid features that are recognized 
by the human eye. 

One approach to detecting relevant image features is to 
detect symmetry and asymmetry in image phase. The phase 
of the image along a given axis is computed by considering 
the transition of gray scale values along that axis. Points of 
symmetry and asymmetry correspond to salient image 
features such as lines (steps) and edges. Points of symmetry 
may be detected in the frequency domain as points where the 
frequency components attain a minimum or maximum. 
Similarly points of asymmetry may be detected in the 
frequency domain as points where the frequency 
components contain an inflection point.  An example of the 
Phase Symmetry edge detection operation is shown for a 
sonar image in Figure 2. 

Fig. 1. Left, original sonar image showing speckled noise. Right, the 
result of completing ten iterations of equation (4).
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2) Hough Transform 
In automated analysis of digital images, a problem that 

often arises is the detecting of simple shapes, such as straight 
lines, circles or ellipses. In many cases an edge detector can 
be used as a pre-processing stage to obtain image points or 
image pixels that are on the desired curve in the image 
space. Due to imperfections in either the image data or the 
edge detector, however, there may be missing points or 
pixels on the desired curves as well as spatial deviations 
between the ideal line/circle/ellipse and the noisy edge 
points as they are obtained from the edge detector. For these 
reasons, it is often non-trivial to group the extracted edge 
features to an appropriate set of lines, circles or ellipses. The 
purpose of the Hough transform is to address this problem 
by making it possible to perform groupings of edge points 
into object candidates by performing an explicit voting 
procedure over a set of parameterized image objects [17]. 
The simplest case of Hough transform is the linear transform 
for detecting straight lines. In the image space, the straight 
line can be described as y mx b= +  and can be graphically 
plotted for each pair of image points ( , )x y . In the Hough 
transform, a main idea is to consider the characteristics of 
the straight line not as image points x or y, but in terms of its 
parameters, here the slope parameter m and the intercept 
parameter b. Based on that fact, the straight line 
y mx b= + can be represented as a point ( , )m b  in the 

parameter space. However, one faces the problem that 
vertical lines give rise to unbounded values of the 
parameters m and b. For computational reasons, it is 
therefore better to parameterize the lines in the Hough 
transform with two other parameters, commonly referred to 
as r and  (theta). The parameter r represents the distance 
between the line and the origin, while  is the angle of the 
vector from the origin to this closest point. Using this 
parameterization, the equation of the line can be written as  

cos
sin sin

ry xθ
θ θ

= − + .   (5) 

which can be rearranged to cos sinr x yθ θ= +  [17].  It is 
therefore possible to associate with each line of the image, a 
pair ( , )r θ  which is unique if [ ]0,θ π∈  and r ∈ℜ  , or if 

[ ]0, 2θ π∈  and 0r ≥ . The ( , )r θ  plane is sometimes 
referred to as Hough space for the set of straight lines in two 
dimensions.  This representation makes the Hough transform 
conceptually very close to the two-dimensional Radon 
transform, whereby an infinite number of lines can pass 
through a single point of the plane. If that point has 
coordinates 0 0( , )x y  in the image plane, all the lines that go 
through it obey the following equation: 

0 0( ) cos sinr x yθ θ θ= +  (6) 

This corresponds to a sinusoidal curve in the ( , )r θ  plane, 
which is unique to that point. If the curves corresponding to 
two points are superimposed, the location (in the Hough 
space) where they cross correspond to lines (in the original 
image space) that pass through both points. More generally, 
a set of points that form a straight line will produce sinusoids 
which cross at the parameters for that line. Thus, the 
problem of detecting collinear points can be converted to the 
problem of finding concurrent curves. The linear Hough 
transform can be simply visualized as the integration of 
image values along all possible lines which fit in the image, 
i.e., all possible combinations of r and θ.

Given the image of Figure 3, the series of peaks and 
values in the Hough transform image of Figure 4 correspond 
to the summations along the high (bright return) and low 
(shadow) of ripples which are  clustered at about 45° from 
the horizontal, or 180-45=135° using our angle convention. 
Similarly, the cable in at about 85° from the horizontal, 
which produces a peak at about 180-85= 95°. Therefore 
long, straight, bright lines produce peaks in the Hough 
domain, while long, straight and dim lines (such as shadows) 
produce valleys. It is worth noting that had the cable run 
parallel to the ripples it would not be discernable as a 
separate peak in the transform domain. 

Fig. 3. Sonar Image with sand ripples.

Fig. 2. An example of the Phase Symmetry edge detection operation for a 
SAS Image. The original image is on the left with the Phase Symmetry 
result on the right. 
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C.  Line Segment Analysis 

Peaks in the Hough transform of the phase symmetry image 
provide a strong indication for the presence of straight line 
segments. However it is not generally guaranteed that the 
top peak of the Hough transform corresponds to the cable.  
Other linear objects such as anchor drag marks, bottom 
texture, or even spurious objects, coincidentally, forming a 
line will produce peaks in the Hough transform. Therefore, 
further processing and analysis is required to determine if a 
given peak in the Hough transform does, in fact, correspond 
to a straight cable segment. 

  In this section three measures are demonstrated for 
selecting cables from the top peaks in the Hough transform. 
Figure 5 (top left) shows the image of a highly textured 
background containing cable-like and other spurious objects. 
Figure 5 (top right) shows the corresponding phase 
symmetry transformed image. Computing the Hough 
transform of the phase symmetry image and plotting the line 
corresponding to the top peak in the transform (measure #1) 
produces the blue line in Figure 5 (bottom).  The red line in 
the same image corresponds to the densest line, exceeding 
some minimum length (measure #2), of the top twenty peaks 
from the Hough transform. However, neither of these lines 
corresponds to the cable. The measure which produced the 
green line segment (measure #3), which does indeed 
correspond to the cable is computed as follows:  

1. Find the top n-peaks in the Hough transform 
2. Determine the most dense line segments (exceeding 

some  minimum length) corresponding to each peak 
3. Compute the ratio of the mean intensity of the line 

segment to the mean intensity of its immediate 
neighborhood (see Figure 6) 

4. Choose the line segment which corresponds to the 
highest such ratio 

The green line segment in Figure 5 above exactly 
corresponds to the red rectangle in Figure 6 which produced 
the highest ratio measure mentioned above.  
Intuitively, the ratio measure is an attempt to discard 
coincidental line structures. This measure can be justified in 
the context of sampling distributions. That is, if the phase 
symmetry image is assumed to be a two-dimensional 
random field, with mean fμ and variance 2,σ  and a sample 

of it is taken along a line. 

Then what is the likelihood that the sample mean value, sμ ,
is much greater than fμ ? It turns out, by the central limit 
theorem, that the distribution of sμ is the normal 
distribution, regardless of the distribution of the random 
field itself [18].  

The mean and variance of this normal distribution are 

fμ and 2 nσ , respectively, where n is the sample size. 
Therefore, it is extremely unlikely that the mean of any line 
segment (of appreciable length) will be much greater than 
that of its immediate neighborhood, suggesting an unnatural, 
possibly manmade cable-like object. Figure 7 (bottom) 
shows the detection of a cable in a large, high resolution 
image. In this case, the densest line segment (measure #2, 
red line) also produces the highest ratio value (measure #3, 
green line). The top peak in the Hough transform (measure 

Fig. 6. A cable-like line region of interest, the red box defines the target 
measure and the blue box defines the neighborhood  

Fig. 5. Example of the cable detection results for measures one (blue 
line), two (red line), and three (green line).

Fig 4. Hough Transform of the image of Figure 3.
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#1, blue line) corresponds to a false detection.  

Next, we examine an image which contains two cables of 
different thickness (see Figure 9). The right image shows 
that measures #1 and #2 both detect the longer, thinner 
cable, however measure #3 results in the detection of the 
thicker, but less prominent cable. This is because the width 
of the rectangle (red rectangle in Figure 6 above) exactly 
matches the width of the cable detected by the green line, 
resulting in very high sample mean.  

Upon decreasing the width of the inner rectangle measure #3 
agrees with measures #1 and #2, as seen in the bottom image 
of Figure 9. This suggests that if the expected cable width is 
known, more accurate detections are possible. The plot 
below (Figure 8) compares the density ratios for cable and 
not cable-like regions of interest calls. 

Table I lists the means, maximums, and minimums for the 
cable and non-cable like object calls. As shown, the cable 
density ratios are on average greater than non-cable ratios.  

III. REVIEW OF THE APPROACH 

Detection of straight line segments in images is 
considered a classical problem in image processing. A 
standard technique for detecting straight line segments 
involves the use of the linear Hough transform. However, 
due to the presence of spurious objects and textures common 
in seafloor imagery combined with very low SNR, 
straightforward application of the Hough transform does not 
yield reliable detection. Therefore lines in the image 
detected by the Hough transform are treated as "lines of 
interest" analogous to "objects of interest" in mine detecting 
CAD/CAC algorithms. These lines of interest are further 

Fig. 9. Detection within a varied cable thickness image.

Fig. 8. Plot of the density ratio measure (measure #3) distributions for 
cable and non-cable like regions of interest. 

Table I. Statistics for the cable call density ratios for the regions of 
interests in the imagery data. 

Not Cable Cable 
Mean 1.92 4.37 
Max 3.12 8.75 
Min 1.27 1.98 

Fig. 7. Cable detection in a large high resolution image (Left: original, 
Right: de-noised, Bottom: detection). 
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analyzed and classified as either cable or not cable based on 
their structure and the background statistics in their 
surrounding area. 
The cable detection algorithm may be divided into five 
steps:  

1.Noise Reduction  
2.Edge and Line Enhancement  
3.Thresholding  
4.Line Detection  
5.Classification  
Figures 10 through 12, below, show the original image, 

followed by the noise-reduced image (1). The phase 
symmetry image, shown in Figure 11 on the left, highlights 
coherent structures in the image. Candidate lines obtained 
via the Hough transform are shown in Figure 11 on the right, 
overlain on the image. Finally, three detected segments, 
using three different measures for classification are shown in 
Figure 12. 

IV. CONCLUSIONS

In this study we have presented an approach for detecting 
cable-like objects in imagery. Since this approach proved 
successful in cluttered imagery we believe that the same 
approach (or a simplified version of it) can be readily 
applied to most imagery where the cable exhibits some 
response. The approach was tested on available imagery 
which contained cables of opportunity. Other environments 
may present a greater challenge to our approach, Therefore, 
future work should involve the use of imagery with the 
greatest combination of cable orientations and backgrounds. 
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Fig. 10. The original image and step one of the cable detection procedure. 

Fig. 11. Steps two and four of the cable detection procedure.  

Fig. 12. Step five of the cable detection procedure. 
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