
Fixed Time Template Matching
Robert Finis Anderson, Haim Schweitzer

Department of Computer Science
University of Texas at Dallas

Richardson, TX USA

Abstract—The problem of finding a match for an image
(‘template’) within a larger image is known as template matching.
It is key to a variety of Computer Vision applications. Currently
known template matching algorithms run in fixed time, or are
guaranteed to find the best match. We present a novel algorithm
which in many cases can guarantee that the best match is found.
In other cases it finds a good approximation to the best match.
This algorithm runs in fixed time (a.k.a. hard real time). It finds
an optimal match very quickly when a good match exists.

Index Terms—Machine Vision, Template Matching, Machine
Vision Applications, Real Time

I. INTRODUCTION

Template matching is a building block for many high level
Computer Vision applications. Its runtime is often unfeasibly
slow in raw form [1]. There has been much research into
accelerating template matching for various applications. These
methods can be viewed as occupying one of two groups. In one
group, algorithms are capable of running in fixed time but are
not guaranteed to find the best match according to the chosen
error measure (for example [2], [3], [4], [5], [6], [7]). Recent
research into template matching has produced a second group
which guarantees finding the best match [8], [9], [10], [1],
[11], [12]. We observe that the run-times of these algorithms
are data-dependent.

In a hard real-time environment all tasks must be completed
within a given time limit, and it is the responsibility of a
scheduler to ensure that this happens [13]. If the amount of
time required for a task is unpredictable, the system must be
designed assuming that the task will run in worst-case time to
guarantee that the task will complete before the deadline [13].
Therefore, the greater the worst-case run-time, the more CPU
time will be wasted. Previous work in algorithms guaranteed
to produce the best match did not take this into consideration.
According to results shown in [8] the cost of matching a 64x64
template to a location in a 512x512 image varied by a factor
of over 1000. The results of [10] show variations in run-time
by a factor of 50, and [1] shows variations of 10 or more.

We present an algorithm which satisfies the goal of guar-
anteed run-time in template matching. It does this by taking
advantage of available computing power to produce the best
answer it can find within an allotted time. In many cases the
algorithm finds the best possible match, and otherwise returns
a close approximation. The algorithm does this by keeping
an ‘answer set’ of current potential best matches. When the
algorithm is stopped, it evaluates the current ’answer set’ and
returns the best match from that set.

Other algorithms can be pre-tuned to run faster and less
accurately, or slower and more accurately (e.g. [14]), and
it is always possible to subsample the search space with
a corresponding loss in detail. This is the first algorithm
to progressively search for the best possible match while
maintaining the capability of running in fixed-time.

This paper is organized as follows. Section II describes
the workings of the algorithm, including a brief proof of its
correctness. Section III measures its performance in average
cases for different situations. Lastly, we present concluding
remarks and directions for future developments.

II. THE EARLY TERMINATION ALGORITHM

Throughout this paper we make use of the l2 norm based
distance measure (i.e. the Euclidean distance) between tem-
plate and image subwindow. We denote the l2 norm of a vector
x by |x|.

Let the template to be detected be represented by a vector
λ ∈ �n. We consider each subwindow yi of the search image
I a potential match. I contains m pixels. The subwindows may
overlap, and all contain n pixels. For convenience we define
Y = {y1, y2, . . . ym} to be the set of all potential matches.
The error for the ith candidate (or sub-window) is:

Ei = |λ − yi|2

The purpose of template matching is to attempt to find the
yi which minimizes Ei. The algorithm we propose is based
on ideas described in [15]. In the next section, we briefly
review the idea of using two bounds to accelerate template
matching [15].

A. Bounds

Let the projection of λ and yi onto orthogonal subspaces W
and C be yw

i , λw and yc
i , λ

c. Applying the triangle inequality

| x | − | z | ≤ | x − z | ≤ | x | + | z |
to the rightmost term in

|λ − y| = |λw − yw| + |λc − yc|
we get:

|λw − yw
i |2 + (|λc| − |yc

i |)2 ≤ |λ − yi|2 (1a)
|λ − yi|2 ≤ |λw − yw

i |2 + (|λc| + |yc
i |)2 (1b)

This represents upper and lower bounds on the error Ei. Note
also that since xw · xc = 0 for arbitrary x, we also have

|λc|2 = |λ|2 − |λw|2 (2)

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
1396

In our implementation W actually represents a set of mutually
orthogonal vectors (which we will call kernels in keeping with
other work in this field, i.e [10]) which is in turn a subset of
an arbitrarily ordered set of mutually orthogonal kernels W ′.
We use W to represent the first d vectors from the set W ′.
During the course of the algorithm, each yi is progressively
projected onto more and more of the set W ′, with C rep-
resenting orthogonal complement of W (that is C = W⊥).
Furthermore, we define ld(yi) = |λw − yw

i |+(|λc| − |yc
i |) and

ud(yi) = |λw − yw
i | + (|λc| + |yc

i |) as the lower and upper
bounds after the projection of y and λ on the first d kernels.
When we write l(yi) without an explicit value for d, we mean
the highest d currently evaluated for yi.

For our algorithm to work efficiently, it should be possi-
ble to quickly compute the projection of the image on the
kernels. In our implementation, we make use of the Walsh
Projection Kernels [9], [12], [10]. We order the Walsh Kernels
by ’sequency’ [16], a concept related to visual frequency in 2
dimensions.

B. Initialization

At initialization the algorithm requires two parameters:
k (the number of members allowed in the set A, defined
later) and d0 (the initial number of orthogonal kernels onto
which all subwindows yi are projected). These values are not
strongly data dependent, and d0 can effectively be set to 0
for all purposes. Experimental results show that the algorithm
performs well with k in the range of 3 to 50 for our data,
which should extend to other applications. See section III for
more details on k.

The algorithm is initialized by computing the Walsh pro-
jections up to kernel number d0 for all yi, then computing the
corresponding ld0(yi) and ud0(yi) for each. Then algorithm
then separates the data into two sets A, B ⊂ Y . If yk is the yi

with the kth smallest value of l(y), then

A = {yi s.t. l(yi) ≤ l(yk)} (3)

B = Y \ A (4)

Thus, |A| = k. If there exists a l(yi) = l(yk) and there are
already k elements in A, one is arbitrarily chosen and placed
in B. A represents our current best guess at the optimal answer
set. These steps are represented in lines 1-3 in fig 1. The
algorithm maintains these properties at all times throughout
its operation.

C. Iteration

The Early Termination Algorithm makes use of both the
upper and lower bounds in eq. 1 to quickly estimate the yi

with minimum Ei. At each iteration the algorithm computes
one more projection for one candidate, checks a condition, and
potentially updates A and B. Since all the components of W ′

are mutually orthogonal, if we have yw
i for the first d vectors

in W ′, then yW
i for the first d + 1 vectors is equivalent to yw

i

plus the projection of yi on the d + 1st vector. Using this fact
along with eq. 2 we are able to quickly calculate ld+1(yi) and

EARLY TERMINATION ALG.(λ, Y, k, d0)
1 CalcInitialKernels(Y, d0)
2 InitA(Y, k)
3 InitB(Y, A)
4 while ! earlyTerm

do
5 Find yu, yk+1

6 if u(yu) ≤ l(yk+1)
7 then return yexact = arg minyi

E(yi),
yi ∈ A

8 else if l(yu) ≤ l(yk+1)
9 then compute l(yu)n+1

and compute u(yu)n+1

10 else Swap(yu, yk+1)

11 return arg minyi
e(yi), yi ∈ A

Fig. 1. The Dual Bound Early Termination Algorithm

ud+1(yi) using ld(yi) and ud(yi), respectively, along with the
projection of yi on the d + 1st vector in W ′.

In the pseudo code in fig. 1, yu = arg maxyi
u(yi), yi ∈ A,

and yk+1 = arg minyi l(yi), yi ∈ B. They thus represent
the candidate with the largest upper bound in A, and the
candidate with the lowest lower bound in B accordingly. The
Swap(yu, yk+1) function removes yu from A and yk+1 from
B, then places yu in B and yk+1 in A. Steps 5 through 10
continue until the condition on line 6 is satisfied, or until the
algorithm receives a signal to early terminate. Since only one
answer is required, we return only the match in A with the
lowest Ei on line 7.

D. Analysis and Correctness

Conceptually the algorithm is trying to separate the sets A
and B; as soon as it is shows that ∀yi ∈ A, ∀yj ∈ B, E(yi) ≤
E(yj), it terminates automatically.

Theorem: The algorithm is guaranteed to find the can-
didate with the lowest match value if allowed to run to
completion.

Proof: (Sketch) At the end of each iteration in the algo-
rithm, there are guaranteed to be k candidates in A. Addition-
ally, ∀yi ∈ A, E(yi) ≤ u(yu); thus we are always guaranteed
k matches in A with an error below u(yu). Therefore, if the
condition on line 6 in fig 1 is satisfied, and u(yu) ≤ l(yk+1),
then it must be true that ∀yi ∈ A, E(yi) ≤ u(yu) ≤ l(yk + 1).
Thus we have k candidates guaranteed to have a match value
less than or equal to the value of the k + 1st smallest lower
bound. Suppose ∃yi ∈ B, yj ∈ A | E(yi) < E(yj) and the
above condition holds. This would mean that l(yi) < l(yk+1).
Therefore yi is guaranteed to be in A by the condition in eq. 3.
Since A∩B = ∅, this is clearly impossible since yi is already
in B1. The procedure on line 7 guarantees that the algorithm

1It may be true that ∃yi ∈ B, yjinA | E(yi) = E(yj). This cannot
be avoided, as there may be multiple candidates with the same match value,
though in practice this is quite rare.

1397

returns the smallest among these k.
In terms of memory the algorithm stores at most a single

copy of each candidate, with the associated numerical bounds.
While all the kernel projections of the template are typically
pre-computed and stored, the projections of the various can-
didates (yi) are evaluated once and the magnitude of their
variation from the template is evaluated before the projection
is discarded. Thus the overall memory complexity of the
algorithm is O(m) assuming that the template is much smaller
than the image (n
 m).

The worst case run-time is more difficult to analyze. The
algorithm is guaranteed to terminate, given that one of the
following two conditions holds:

a) ∃d s.t. ld(yi) = E(yi) = ud(yi)
b) We default to calculating E(yi) explicitly when d is

greater than a certain threshold D.
Although the first condition is true for Walsh Projections, we
make use of the latter, to lower the computational cost, as
even the best methods for calculating the Walsh Projections
require at least 2 operations per pixel per kernel [10], and
thus it is currently cheaper to default to direct computation at
some point. We call this maximum number of projections D.
In practice very few candidates are ever computed explicitly.

Theorem: The algorithm is guaranteed to terminate.
Proof: (Sketch) At every iteration the algorithm must

either return an answer (line 7), update the bounds of a given
yi to a higher d (line 9), swap a candidate between A and B
(line 10), or go into early termination (line 11). First, note that
there cannot be an unlimited number of updates — as noted
previously, there is always a value for d for which the bounds
are equal to the actual match value, and the candidate cannot be
updated anymore. If we call this maximum value D, then this
step (line 9) can happen at most O(mD) times. At this point,
all candidates are fully evaluated, and it is trivial to find the k
smallest and satisfy line 6. Next, note that the swap operation
can only happen a limited number of times. The reason is that
by the definition of A, on the first iteration, l(yu) < l(yk+1).
This can only change if one of those bounds is recalculated
at a higher d, and we have previously shown that is limited
as well. This can lead to at most one swap, since we know
that only one value has changed. Thus the swap function can
also be called at most O(mD) times. The other two options
represent termination for the algorithm; therefore the algorithm
is guaranteed to terminate after O(mD) steps.

The average run time of the algorithm is examined exper-
imentally in Sec III, and is shown to be much lower than the
upper bound given above.

E. Early Termination

As noted above, the algorithm automatically terminates with
a guaranteed optimal answer at line 7 if permitted to run long
enough. Early termination operates by a different mechanism.
The Early Termination Algorithm assumes it will be given a
small amount of early warning before its time is up. Since
in practice k is small (≈ 3 − 50), and we perform very little
processing on those candidates, the advance warning time can

be very short. The run-time of this step is not data-dependent,
and will always be Θ(k).

When the algorithm receives the early termination message,
it computes an approximate answer

yapprox = arg min
yi

e(yi), yi ∈ A (5)

where e(yi) is the expected value of yi, defined as the average
of the lower and upper bounds on E(yi):

e(yi) =
u(yi) + l(yi)

2
= |λa − ya|2 + |λb|2 + |yb|2 (6)

This is represented on line 11 of fig 1. In practice, we find
the minimum of 2e(yi) for yi ∈ A. This equates to a single
arithmetic operation per candidate in A since we already
have u(yi), l(yi) ∀yi ∈ A. Finding the minimum value in
A consumes another arithmetic operation (plus one potential
swap operation) per candidate. These steps can be combined
for a total cost of at most 3k operations, independent of the
input data. Since in most practical cases k
 m this cost is
negligible. When the expected value e(yi) is in line with the
actual value of E(yi), the minimum expected value will be the
best match currently in A. Experimental evidence shows that
this is typically very close to the optimal match (see Sec.III).

F. Implementation

Our implementation of the algorithm uses a heap data
structure to represent the sets A and B described in section
II, as it is a natural fit for finding the respective minimum and
maximum of the two sets. Heap construction is O(m), and
removal of the min (or max) node, or insertion of a new node,
is only O(log(m)).

The Walsh projections are implemented using integral-
image based methods [17]. A Walsh kernel w is composed
of rectangular regions (each of which is uniformly positive
or negative). The projection of the image p (of the same
dimensions as w) on w can be expressed as follows:

p′w =
∑

i,j

p(i, j)w(i, j) = 2
∑

w(i,j)=1

p(i, j) −
∑

i,j

p(i, j)

= 2Rw − α00

where α00 is the projection of p on the first Walsh kernel and
Rw is the sum of the pixel values in p over the rectangles of
value “1” (white rectangles) in w. These sums are computed in
three operations per rectangular region using integral images.
The complexity of this method is therefore proportional to the
number of rectangular regions in a given Walsh kernel. We
have done studies comparing this straightforward method to the
accelerated methods in [12], [10], and found that in the context
of template matching, our method is considerably faster.

G. Cost Analysis

To clarify analysis, we break down the costs of the al-
gorithm as follows. We count the average number of Walsh
Kernels evaluated at each location in the image P =
1
m

∑
∀yi

d(yi). Additionally we compute the average number

1398

of basic mathematical operations used to compute those ker-
nels, c̄. If c(d) is the cost of computing the dth kernel, then
c̄ = 1

P

∑
∀yi

d(yi)c(d(yi)) We also compute the average cost
of explicit computation without projection (i.e., computing at
D as described in Sec. II-D). Define f as the number of
candidates computed explicitly, and recall that there are n
pixels per subwindow. Given that it takes 3 operations per
pixel to calculate Ei =| λ − yi |2, we define this cost as
f̄ = 1

m3nf . Lastly we count the number of heap swaps
required to construct and maintain A and B. We record the
number of swaps during construction as

q̂ =
5
m

swaps-construct

The number of swaps used to maintain the heaps is

q̄ =
5
m

swaps-maintain

We multiply q̂ and q̄ by a constant (in our case, 5), because
in our experiments the heap swap operation is correspondingly
more expensive than the basic mathematical operations used in
the other steps.2 The sum of these values, plus the initialization
cost of the integral images used to compute the Walsh kernel
projections (a constant, 5 operations per pixel) is the total cost
per candidate.

III. EXPERIMENTAL RESULTS

To test the algorithm we made use of an experimental
framework similar to that in [12]: for each image in our testing
database (all of size 512x512), we evaluate the image using the
Harris Edge Detector, and extract five random templates with
high scores (strong corner features) of size 64x64. We then add
zero mean Gaussian noise with σ varying from 5 to 75 to the
templates and attempt to match them with their originating
images. We then average the results over all templates and
all images for each noise level. This experiment was repeated
for various settings of k. For each of these settings, we
early-terminate the algorithm after a predetermined number
of operations per candidate location (per pixel, effectively) to
simulate a real-time situation.

For the purposes of measuring the accuracy of the algo-
rithm, we define yexact to be the correct, best match in the
image, and yapprox to be the answer the algorithm returns
after early termination. We then measure Ē = E(yapprox) −
E(yexact). This yields an idea of how similar the approximate
match is to the best match without taking location into account.
This also takes into account the fact that when noise levels are
high, the best match and the next best matches are not as
well differentiated as in the low noise case. If we consider a
correct match to be one where less than 20% of the pixels differ
between the approximate match and exact match by more than
a threshold (as in [6]), and we set the threshold to 2 grayscale

2The cost of a heap swap is dependent on many factors, including the size
of the processor cache, the size of the heap, and the clock speed and latency
of main memory. Specialized hardware, or fast memory, can reduce this cost.
On different pieces of typical PC hardware we have seen this cost vary from
3 to 15.

0 20 40 60 80

0

0.5

1

·107

σ

Ē

k = 3
k = 10
k = 50
k = 200
k = 1000

Fig. 2. Average difference between E(yexact) and E(yapprox) after
allowing the algorithm to run for 20 operations pixel. The horizontal line
represents the line below which we consider it likely that the algorithm will
find the optimal match. Noise varies from σ = 5 to 75.

levels, on average Ē < 2683044 would be considered a correct
match. This line is provided on the graphs for reference, and
to allow comparison to approximate matching methods.

As can be seen in figs. 2, the algorithm performs quite well
with small k with only 20 operations per pixel up to noise
σ = 25. Beyond this level, the average difference between
the approximate and exact match climbs steeply. The line at
2.6 ∗ 107 (explained above) provides a reference point. If the
value of Ē is less than that, we consider it likely that there is
substantial overlap between yapprox and yexact; the lower Ē
is, the more likely it is that the algorithm found the optimal
match. This example shows higher performance with small
values of k. In fact, the highest low-noise performance occurs
at k = 3 here. For comparison, the state of the art exact method
described in [11] requires 100-200 operations per pixel to find
the correct answer at σ = 20.

When the algorithm is allowed to run to 30 operations per
pixel (figs. 3) the situation is much better up to σ = 35,
though not much improved above that. Again, small values
of k show superior performance. For contrast, the method
in [11] requires over 400 operations per pixel at these noise
levels. Allowing 200 operations per pixel guarantees strong
performance throughout the range of noise levels tested (fig. 4).
Clearly, the accuracy of the algorithm drops with noise,
however the performance remains strong when compared with
other current methods.

Using a larger value for k would seem to yield a better
chance that the optimal answer will be contained in A at the
time of early termination. However, as k becomes larger, A
becomes correspondingly more expensive to maintain, costing
more operations per pixel (note fig. 5, where we can see the
value of q̄ rising while c̄ and f̄ drop). The values c̄ and f̄ not
only indicate the amount of effort the algorithm expends in
calculating the Walsh kernels and Euclidean distance, respec-

1399

0 20 40 60 80

0

2

4

6

8

·106

σ

Ē

k = 3
k = 10
k = 50
k = 200
k = 1000

Fig. 3. Results of allowing the algorithm to run to 30 operations per pixel,
with noise varying from σ = 0 to σ = 75

0 20 40 60 80

0

1

2

·106

σ

Ē

k = 3
k = 10
k = 50
k = 200
k = 1000

Fig. 4. Results from allowing the algorithm to run to 200 operations per
pixel. The line denoting a likely optimal match is now well above the plots
of Ē for all values of k.

tively, but they also directly denote the amount of information
the algorithm has extracted from the image. This means that
less of the algorithm’s time is spent finding the best answer.

Additionally, as k increases, it becomes more and more
difficult to separate the kth value from the k +1st. In fig. 6 we
see that the difference between successive matches falls away
quickly as k increases. Thus, when k is small, it is easiest to tell
yk from yk+1, and the algorithm puts less effort into separating
the two. When k is large, the values are very similar, and both
must be evaluated to a higher value of d to differentiate them.

In fig. 7 I have run the algorithm on the classic image
lenna, and early terminated the algorithm at varying times
representing 15 to 30 operations per pixel with k = 10. Noise
of σ = 20 has been added to the template. It can be seen that
the algorithm initially finds a few poor matches for the image,
and then rapidly focuses on a few neighbouring locations of the

101 102 103

0

5

10

15

k

op
s/

p
ix

el

P

c̄

q̂

q̄

f̄

Fig. 5. Components of the cost of the algorithm, described in Sec. II-G,
plotted against k varying from 3 to 1000. The algorithm was allowed to run
the equivalent of 30 operations per pixel. It can be seen that as k increases,
the cost of maintaining the queue rises, while the algorithm is forced to spend
less time on computing the projections of Walsh kernels and exact distance.

0 200 400 600 800 1,000

0

2

4

6

8

10
·104

k

δ(
D

k
)

Fig. 6. If we order all yi ∈ Y by increasing value of D(yi), then this chart
shows the value of δ(Dk) = D(yk+1) − D(yk). This effectively illustrates
how tight the bounds on yk must be to separate it from yk+1. It can be seen
that the higher k is, the lower δ(Dk) is, meaning the corresponding candidates
are more difficult to separate.

match. Effectively, by 18 ops/pixel, the best match has already
been found, and the algorithm is trying to prove that the match
is the best possible. The reader is strongly encouraged to refer
to a color copy for this image.

IV. CONCLUSION

In this paper we described a very efficient algorithm for
template matching. The Early Termination Algorithm very
quickly locates the best match for a template in the search
image, in as little as 20 operations per pixel. Experiments
showed the algorithm typically finds a match which is either
the best match, or very close to it, within user-defined time-
limits. We showed algorithm converges quickly on a set of

1400

Fig. 7. Lenna, with match locations shown by ’+’ signs. The template is
shown at lower right. It has had Gaussian noise with σ = 20 added to it.
The varying colors represent the number of operations per pixel given to the
algorithm before termination. The matches shown in red indicate matches
given very little time (≈ 15 operations per pixel). By 18 operations per pixel,
the algorithm has already settled on a location at or within a pixel or two of
the best match. This run-time includes pre-processing, and is exceptionally
fast when compared to the current state of the art. The reader is strongly
encouraged to refer to a color copy.

answers which are all very close to the best match. The
experiments also showed that the algorithm is comparatively
robust to image distortions caused by noise. The algorithm has
a small memory footprint of the same approximate size as the
search image, and can run in situations where computational
resources are limited. Our experimental results indicate that the
run-time of the algorithm compares favorably with both fixed-
time approximate methods and data-dependent exact methods.

Future Improvements

It may be possible for the algorithm to automatically early-
terminate when it has consistently found the same best match
over many iterations, which could dramatically lower the
time to run to completion, especially at higher noise levels.
Additionally, it would not be difficult to construct a variant of
the algorithm designed to return a single answer guaranteed to
be among the top k results, where k is a parameter supplied at
instantiation. Lastly, the algorithm could be adapted to image
database search, as it does not rely on the fact that the potential
matches all come from the same image.

REFERENCES

[1] S. Mattoccia, F. Tombari, and L. D. Stefano, “Fast Full-Search equivalent
template matching by enhanced bounded correlation,” Image Processing,
IEEE Transactions on, vol. 17, no. 4, pp. 528–538, 2008.

[2] A. Goshtasby, S. H. Gage, and J. F. Bartholic, “A Two-Stage cross cor-
relation approach to template matching,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. PAMI-6, no. 3, pp. 374–378,
1984.

[3] A. Rosenfeld and G. Vanderburg, “Coarse-Fine template matching,”
Systems, Man and Cybernetics, IEEE Transactions on, vol. 7, no. 2,
pp. 104–107, 1977.

[4] H. Masnadi-Shirazi and N. Vasconcelos, “High detection-rate cascades
for Real-Time object detection,” in Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on, 2007, pp. 1–6.

[5] W. Krattenthaler, K. Mayer, and M. Zeiller, “Point correlation: a reduced-
cost template matching technique,” in Image Processing, 1994. Proceed-
ings. ICIP-94., IEEE International Conference, vol. 1, 1994, pp. 208–212
vol.1.

[6] O. Pele and M. Werman, “Robust Real-Time pattern matching using
bayesian sequential hypothesis testing,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 30, no. 8, pp. 1427–1443, 2008.

[7] H. Schweitzer, J. Bell, and F. Wu, Very Fast Template Matching.
Springer Berlin / Heidelberg, 2002, pp. 145–148. [Online].

[8] M. Gharavi-Alkhansari, “A fast globally optimal algorithm for template
matching using low-resolution pruning,” Image Processing, IEEE Trans-
actions on, vol. 10, no. 4, pp. 526–533, 2001.

[9] ——, “A fast full-search equivalent algorithm using energy compacting
transforms,” in Image Processing, 2001. Proceedings. 2001 International
Conference on, vol. 2, 2001, pp. 713–716 vol.2.

[10] G. Ben-Artzi and H. Hel-Or, “The Gray-Code filter kernels,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 29, no. 3,
pp. 382–393, 2007.

[11] F. Tombari, S. Mattoccia, and L. D. Stefano, “Full-Search-Equivalent
pattern matching with incremental dissimilarity approximations,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 31, no. 1,
pp. 129–141, 2009.

[12] Y. Hel-Or, “Real-time pattern matching using projection kernels,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 27, no. 9,
pp. 1430–1445, 2005.

[13] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenstrm, “The
worst-case execution-time problem; overview of methods and survey
of tools,” ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 1–53,
2008. [Online].

[14] J. Sochman and J. Matas, “WaldBoost - learning for time constrained
sequential detection,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 2, 2005, pp.
150–156 vol. 2.

[15] H. Schweitzer, R. F. Anderson, and R. A. Deng, “A dual bound algorithm
for very fast and exact Template-Matching,” University of Texas at
Dallas, Computer Science Dept., Technical Report UTDCS-02-09, Feb.
2009.

[16] E. W. Weisstein, “Walsh function – from wolfram MathWorld.”
[17] P. Viola and M. J. Jones, “Robust Real-Time face

detection,” International Journal of Computer Vision, vol. 57,
no. 2, pp. 137–154, May 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb

1401

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

