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Abstract— Neural networks were inspired by the human 
brain, with great hopes that neural networks would capture the 
vast potential of its biological counterpart.  This paper explores 
the link between neural networks and the human brain in the 
context of simultaneous vs. successive learning.  Learning 
experiments conducted on human subjects were modeled and 
repeated using neural networks as test subjects.  Neural networks 
confirmed the conclusion from human subject experiments that 
simultaneous learning was faster than successive learning.  Loess 
and Duncan [1] further extended their hypothesis without formal 
experimental evidence that simultaneous would outperform 
successive as complexity increased beyond the scope of their 
human experiments.  Interestingly, neural networks contradict 
their hypothesis.  The results from neural networks demonstrate 
an existence of a threshold, after which the effects of 
simultaneous and successive learning become negligible.  
Intuitively, when humans are presented with complicated tasks, 
the type of learning is immaterial, since the complexity of the 
problem would overwhelm any advantages one method has over 
the other.  Confirmation of this intuition can only be confirmed 
through future human experiments.  Furthermore, this paper 
demonstrates that neural networks can be used as a rough model 
and give valuable insight into a problem, before the costly human 
subject experiments are conducted. 
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I. INTRODUCTION

One of the most fascinating areas of research is trying to 
understand how the brain works.  Neuroscientists and 
psychologists are constantly trying to solve the mystery of the 
“neuronal matrix.” This study has drawn attention from 
psychologists, cognitive scientists, computer scientists and 
neurobiologists.  

It was a few decades ago, when computer scientists began 
to show interest in understanding how the brain works. This 
laid the foundation for various fields such as artificial 
intelligence, neural networks, and machine learning.  
Interdisciplinary study has been beneficial in the past. The 
neural network for example tries to model the working of the 
brain to classify and is one of the techniques of machine 
learning. Neural networks have been very useful in a variety 
fields from Microbiology [2] to Chemical Engineering [3].  

A. History of Connectionism 
Connectionism [4] is a branch of cognitive science that 

explains the brain’s mechanism using models such as artificial 

neural networks.  Connectionism has drawn attention from 
many philosophers and psychologists. According to the 
opposing “classical theory,” the processing in the brain is 
similar to that of a rule based computer process. However, the 
connectionists believe that information in the brain is stored as 
“connections” in the neuronal matrix with parallel distributed 
processing. This debate between the two opposing groups has 
been going on for the last thirty years [4].  

The classicists believe that information in the brain is stored 
as strings of symbols similar to the way in which information is 
stored in the memory of a computer. They further believe that 
cognition is similar to the processing of digital data and the 
strings of symbols are processed according to some program. 
The connectionists believe that information is stored non-
symbolically similar to the connection weights in a neural 
network and that cognition is similar to the processing in the 
nodes in the neural network in which each node’s activation 
depends on the connection weights and the activation of other 
nodes.  The implementational connectionists combine both 
views and believe that the processing of the brain is symbolic 
processing and this is done through a structure similar to a 
neural network. The pure connectionists oppose the theory of 
the implemetational connectionists as they feel it “fails to 
explain various activities of human cognition” [4]. 

Connectionism is important in various fields of study such 
as cognitive science, artificial intelligence, philosophy, and 
psychology. Due to its inter-disciplinary nature, the scientists 
of various fields have contributed towards its growth. 
Connectionists model the functional properties of the brain that 
are required for cognition and information processing.  

The birth of connectionism dates back to 400 B.C. when the 
philosopher Aristotle stated that “memory is composed of 
simple elements linked or connected to each other via a number 
of different mechanisms (such as temporal succession, object 
similarity, and spatial proximity). Furthermore, these 
associative structures could be combined into more complex 
structures to perform reasoning and memory access” [5].  

Later, when psychology branched out from philosophy as a 
separate field of study, significant contribution was made to 
connectionism by psychologists such as Spencer, James, and 
Hull. Spencer [6] laid the foundation and felt that the 
description of the nervous system was essential for the study of 
Psychology. He further described the connections not only 
between neurons but also between ideas and concepts and how 
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neural changes were affected by “psychical” changes. His main 
idea was that knowledge is stored within the connections in the 
brain. The most important contribution of James [7] to 
connectionism is his associative model of memory. In this 
model of associative memory, ideas are connected in parallel 
and the recall of one idea will lead to the recall of all/most 
ideas related to it. Further, when events occur over and over 
again, the “connection between the relevant brain processes is 
strengthened.” This concept forms the basis for the modern-
connectionist theory. Then came Thorndike’s [8] contribution 
by his two laws: The Law of Exercise which states that, when a 
particular action leads to a certain response, there is a stronger 
tendency for this to happen in the future given all actions-
response pairs have equal strengths initially. According to the 
Law of Effect, when an action is followed by a reinforcing 
stimulus, then the connection is strengthened, and if followed 
by non-reinforcing, stimulus the connection is weakened. 
Hull’s [9] important contribution is his theory for the 
development of “stimulus-response” habit strength. Hull’s 
basic yet popular learning rule is: “the process of learning 
consists in the strengthening of certain of these connections as 
contrasted with others, or in the setting up of quite new 
connections” [9]. 

The next stage in the growth of connectionism is the 
influence from neuro-psychology. Lashley’s view [10] that 
learning is a distributed process was important towards 
connectionist research. The most important contribution 
towards connectionism came from the Canadian psychologist, 
Donald. O. Hebb [11]. According to Hebb, learning is based on 
the modifications of synaptic connections between neurons. 
The Hebbain Rule is stated as follows: “When an axon of cell 
A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or 
metabolic change takes place in one or both cells such that A's 
efficiency, as one of the cells firing B, is increased” [11]. This 
Hebbian learning later formed the underlying principle of the 
neural network.  

Mathematicians such as Pitts and McCulloh [12] laid the 
foundation of modeling neuronal activity using propositional 
logic. After the advent of the computer, models such as the 
pandemonium and perceptron contributed towards the growth 
of connectionism. Pandemonium proposed by Selfridge [13] 
was the first model to incorporate parallel processing. The 
basic unit of the pandemonium is called a demon and consists 
of four layers: the first layer is the data layer into which the 
data is fed, the demons of the second layer do computation on 
the data and are referred to as the computational demons, 
followed by the third layer that utilizes the results of the 
computational demons, weights these results, and passes the 
evidence to the final layer. The final layer consists of decision 
demons and as the name implies, based on the evidence 
supplied to it from the cognitive demons, makes a decision. 
The pandemonium was effective in distinguishing dots from 
dashes and also in recognizing hand-written characters. The 
next level of progress was the development of the perceptron 
model which functionally models the brain closer than that of 
the pandemonium. Minsky and Parert [14] then proved that the 
solving capability of perceptrons was restricted to linearly 
separable problems.   

The architectures that were developed after the perceptrons 
fall under “New Connectionism” [15]. Various connectionist 
models have been proposed since then: 

• The first architecture is the Interactive and Competition 
Model (IAC) [16] by James McClelland. With the 
introduction of the IAC, the adaptive resonant theory 
(ART) networks and Kohenen’s self organizing maps 
[4] were developed.  

• The Multi-Layered Neural Network using the back-
propagation algorithm, developed by RumelHart [17, 
18], is also known as the PDP (Parallel Distributed 
Processing) architecture. PDP is very popular for 
various practical applications and is most widely used 
of all the other “new connectionist” computer models. 

• The next model was an improvisation of the PDP 
architecture [19] in which the activation function is 
Guassian. This has the advantages of using fewer 
hidden nodes. 

• The Radial Basis Function network is similar to the 
feed forward network and employs radial functions 
[20]. 

B. Psychology 
The birth of neural networks occurred as a result of 

computer scientists’ inspiration and their drawing ideas from 
other fields, specifically neuroscience. In a similar way, 
inspiration could be drawn from fields such as psychology as it 
relates closely to the working of the brain and how organisms 
react to various stimuli.  

Extensive research has been done in psychology in 
understanding simultaneous versus successive discrimination. 
The period between the 1930’s and the early 1950’s was the era 
during which this research was primarily carried out. Two 
groups with opposing views emerged. As more research was 
done, people began to support one of the two views based on 
the results conducted by each of them.  One group stated that 
simultaneous discrimination or learning of tasks resulted in 
faster, better and more effective learning as opposed to 
successive learning [1].  Their reasoning was that when an 
organism or subject has to learn a set of tasks, learning to 
differentiate between these stimuli simultaneously will help in 
better learning. While learning to discriminate between the two 
stimuli at the same time, the learning happens at a faster rate as 
the subjects can understand the distinct feature of each stimuli 
by comparison and hence can distinguish better between or 
classify the stimuli (i.e. when subject to a particular stimuli, the 
subject can conclude as to which class the stimuli belongs to). 
The opposing view to this study was that typically there should 
be no difference between simultaneous and successive 
discrimination/learning of tasks.  If one of the two was better, it 
had to be successive discrimination [1], since they believed that 
learning was related to the development of “habit strength” and 
independent of the type of learning.   

It was assumed that simultaneous learning was more 
difficult than successive. It was not until Weise and 
Bitterman’s [21] data from experiments the opposite was 
proved. The experiment was to choose the brighter or darker of 
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two alleys. The experiment was conducted on two groups of 
rats: one group trained in successive learning and the other 
group in simultaneous. The second group performed far better 
than the first. 

Lashley and Wade [22] proposed that learning to 
discriminate between patterns occurs only when the correct 
stimuli are compared against the incorrect stimuli. They 
claimed that comparison is an important variable for 
discrimination and the amount of comparison available is 
directly proportional to the rate of learning. Further, if stimuli 
are presented successively, learning should be slower than 
when the stimuli are supplied simultaneously. The 
reinforcement theory of Hull and Spence [23, 24] states that 
comparison is not an important variable for discrimination 
tasks. The differential response to stimuli is due to the 
development of habit strength for positive stimuli and 
inhibition of habit strength towards negative stimuli. The 
development/inhibition of habit strength is related to the type of 
stimuli and comparison is immaterial. Later however, for 
pattern recognition tasks, Spence [25] predicted that successive 
learning would be slower than simultaneous.  

Other relevant experiments include those conducted by 
Grice [26] on rats to learn to differentiate different sizes of 
circles. A group of ten rats was subject to successive stimuli 
and another group of rats was subject to simultaneous stimuli. 
A specific error was defined by Grice for this experiment. 
Grice noticed no significant difference in learning between the 
two groups of rats in terms of the error as well as the number of 
trials for learning. Hence the conclusions made by Grice did 
not support the Lashley-Wade theory [22] that learning would 
be faster when there is room for comparison. One other 
relevant experiment was that of size discrimination of two 
groups of rats conducted by Baker and Lawrence [27]. The 
group of rats that were trained on simultaneous learning 
performed better.  

All experiments conducted so far did not take into account 
the difficulty of tasks involved. The intuition behind the 
experiments conducted by Loess and Duncan was that for easy 
tasks, the difference between simultaneous and successive 
learning might not be significant. However, for a difficult 
discrimination task, simultaneously distinguishing between the 
tasks might prove useful. Loess and Duncan [1] experimented 
with human subjects and concluded that the type of 
discrimination would not make a difference with an easy 
problem, but with a difficult task, the type of discrimination 
would make a significant difference. The experiment conducted 
on human subjects was that of visual discrimination. The task 
was made more difficult by adding an irrelevant feature to the 
task and since it was a visual discrimination task, the subjects 
could not easily tell that it was due to an irrelevant feature that 
the task appeared to be more difficult.  

In brief, their experiment is described as follows:  the 
subjects were 140 students chosen from a psychology 
department which consisted of advanced and elementary 
students. Two groups were required for each type of learning. 
For the easy task, each group consisted of 20 elementary and 
20 advanced students. For the difficult task, 30 advanced 
students were put into each group. For each of the tasks, one 

group was exposed to simultaneous stimuli and the other group 
was exposed to successive stimuli.  The subjects were seated at 
one end of the table and the supervisor E was seated at the 
other end of the table. 

The stimuli consisted of eight stimuli cards, four of which 
were white and four of which were gray. Each card was a 3 ½ x 
4” cardboard. On the cards were drawn either large or small 
circles or squares.  The eight cards were as follows: a small 
circle on white, a small circle on gray, a small circle on white, a 
large circle on white, and similarly for the squares. 

As shown in Figure 1, these cards had three features: color 
of the background (white/gray), type of shape (circle/square), 
and size of shape (small/large). These cards were divided into 
two sets, A and B. Set A was comprised of circles on gray 
cards and squares on white cards. Set B comprised of the 
remaining cards, i.e. circles on white and squares on gray. The 
task was to discriminate the cards of the two sets, i.e. which 
cards belonged to set A and which cards belonged to set B. The 
cards were randomly selected and presented to the subjects. For 
simultaneous learning, a card from each set was presented 
together and the subjects had to classify the cards presented to 
them and were immediately given feedback by the supervisor E 
on their outputs.  The eight cards were presented two at a time 
with a total of 32 combinations and the trials were repeated 
until the subjects learned to classify/discriminate correctly.  
The other group underwent successive learning for the same set 
of cards and the primary difference was that instead of 
displaying two cards at a time as in the former case, the cards 
were displayed one at a time, i.e. a card belonging to set A 
followed by a card belonging to set B and the feedback was 
given by E after each card was presented to the subjects. This 
was the easy experiment.  

The next set of experiments conducted was for the difficult 
task. An extra feature was added to the same set of eight cards 
to increase the complexity. This was done by adding an 
equilateral triangle on the card (an irrelevant feature). The 
triangle fit within the large circle/square and the triangle 
enclosed the small circle/square. The triangle was pointing 
down on the white cards and pointing up in the grey cards. This 
did not alter the two sets. The rest of the experiment was 
carried out similar to that of the easy task with immediate 
feedback. The experiment was repeated until the subjects 
identified which cards each set contained. For the easier task, if 
within 75 trials the students did not discover the features that 
differentiated the two sets, the experiment was stopped. The 
same applied to the difficult task after 96 trials. 

SET A SET B 
Figure 1. The eight cards used in the experiment as the stimuli for 
the visual discrimination task. Circles on gray and squares comprise 

set A and circles on white and squares on grey comprise set B.
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The results of the experiments were similar to what Loess 
and Duncan had expected. With respect to the easy task, for 
both the types of learning, the number of trials required to learn 
the task was the same. The difference between the number of 
trials required to learn the easy task among the two groups 
(Successive and simultaneous) was about 7 trials (successive 
requiring fewer trials than simultaneous). However this 
difference was not statistically significant and hence it was 
concluded that for an easy task, there is no difference between 
simultaneous and successive learning. With respect to the 
difficult task, the number of trials required to learn for the 
successive was almost twice that required for simultaneous and 
the difference in the number of trials was around 30. This is a 
significant difference. With these results the original hypothesis 
was supported.  Further, the number of trials for learning with 
respect to simultaneous learning, there was no difference for 
the easy and difficult task but there was a significant difference 
in the number of trials for successive learning for the easy and 
difficult task. The significance of difference between the two 
tests was determined using the Mann-Whitney U test and the 
Chi-square test. This does not completely prove that 
simultaneous learning is better than successive learning. 
However, with respect to pattern discrimination, 
experimentally and intuitively, it made sense that simultaneous 
learning is better than successive learning. 

C. Neural Networks 
Neural networks were inspired from the working of the 

human brain. The neuron is the functional unit of the brain and 
its structure is described in [28].  Synaptic Plasticity is an 
important biological phenomenon that forms the basis for 
learning and memory. As the brain learns a particular activity, 
the connections between specific neurons are increased and 
hence become stronger. 

Various connectionist models were developed based on the 
model of the brain. By connectionist theory, the functional unit 
of the brain is composed of the following six components [15]: 

• Input device that receives signals from other neurons or 
from the environment. 

• Integrating device that integrates and manipulates the 
input. 

• Conducting device that conducts the integrated and 
manipulated input. 

• Output device that sends information to other neurons. 

• Computational device that maps one type of 
information to another. 

• Representational device for the formation of internal 
representations. 

In order to model the above functions of the neuron, 
Rumelhart developed Parallel Distributed Processing (PDP) 
models. The functions of PDP’s that map the properties of 
neurons are [17]: 

• A set of processing units.  

• A state of activation. 

• An output function for each unit.  

• A pattern of connectivity among units.  

• A propagation rule for propagating patterns of 
activities through the network of connections. 

• An activation rule for combining the inputs of a unit 
with the current state of that unit to produce a new 
level of activation for the unit.  

• A learning rule in which patterns of connectivity are 
modified by experience.  

• An environment within which the system must operate. 

This led to the development of the multi-layer neural 
network that uses the back-propagation algorithm for learning.  

The representational power of the neural networks increases 
as the number of hidden layers is increased. The network has a 
single input layer, one output layer and one or more hidden 
layers. The number of hidden layers determines the 
representational power or the expressivity of the neural 
network. The expressivity of the network based on the number 
of hidden layers can be summarized as follows [29]: 

• One hidden layer: any continuous function can be 
represented with one hidden layer provided there are a 
sufficient number of nodes in this layer.  

• Two hidden layers: any discontinuous function can be 
represented with two hidden layers. The downside, 
however, is that by increasing the number of layers, the 
speed of the network is dramatically reduced and the 
chances of getting trapped in a local minima are also 
increased. 

Determining the number of hidden layers is one of the 
many design issues involved in setting up the neural network. 
Determining the neural network architecture is one of the most 
important issues to deal with in artificial neural networks. 
There is no well-defined procedure or methodology in the 
literature that clearly defines this. However, there are certain 
approximate ways through trial and error in which the number 
of layers and the number of nodes within each layer could be 
determined. Research has shown that keeping the number of 
nodes to a minimum, as long as good performance is obtained, 
is desirable due to the following reasons: 

• it significantly reduces the time involved in 
computation,  

• it helps avoid over-fitting (capturing the idiosyncrasies 
of the data) and thereby improves generalization,  

• the trained network can be analyzed easily if the 
number of connection weights is fewer in number. 

Thus multi-layered feed-forward neural networks model the 
brain and the back-propagation algorithm models the learning. 
In a broad sense, neural networks can be classified as iterative 
or batch neural nets [29] based on the frequency at which the 
connection weights are updated. 
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II. MODELING THE PSYCHOLOGY (LOESS AND DUNCAN)
EXPERIMENT: SIMULTANEOUS VS. SUCCESSIVE LEARNING

It is known that neural networks model the brain, but to 
what degree they reflect the working of the brain is a part of the 
question that we seek to answer through this study. Hence this 
study was carried out by modeling experiments conducted by 
the psychologists Loess and Duncan [1]. These experiments 
were then extended to incorporate larger data sets. This section 
describes in detail all the experiments that were conducted.   

The task was to learn to discriminate between two classes A 
and B, as shown in Figure 1. The same features that were used 
by Loess and Duncan in their experiment characterized each 
class. Modeling the input or the input encoding can typically be 
done in one of two ways:  pixel method or feature selection 

With pixel method, each image of the card would have to 
be digitized into pixels and the pixel values of the resulting 
image given as input to the neural network. With the feature 
selection method, each feature of the card would be taken as an 
attribute. Three features characterized each card: background 
color (white/gray), shape (circle/square), and size of the shape 
(large/small). As stated earlier, the task was to learn to 
discriminate between two sets of cards – set A and set B. 
Circles on gray and squares on white comprised set A and 
squares on grey and circles on white belonged to set B for the 
easy task. This task was made difficult by adding a triangle to 
the existing features. The triangle was an irrelevant feature, 
which was always present in the data for the difficult task and 
was pointing up on white cards (0) and pointing down on grey 
cards (1). As shown in Table I, the values of 0 and 1 were used 
to represent the values of the attributes. The attribute and class 
values were binary and hence the values were represented as 0 
and 1 respectively.  

Human beings have prior knowledge of shapes, colors and 
sizes that the neural network lacks. Hence by using feature 
selection to encode the input, the network was given some 
extra knowledge, thereby trying to implicitly capture the extra 
knowledge that human beings have. If pixel method was used, 
then less information would be given to the neural network 
about the domain and result in much higher complexity. Thus 
the training data set was eight data points and was ordered as 
shown in Table I. 

Following Loess and Duncan, the data set was ordered such 
that an instance of A alternated with an instance from class B. 
The successive learning was modeled using the iterative neural 
network. In the human successive experiment, a card form set 
A was presented to the subjects followed by the subjects’ guess 
or answer. Feedback was given immediately to subjects about 
their answer. Then a card from set B was presented to them and 
the procedure was repeated. Similarly for neural network, an 
instance of set A was forward propagated through the network 
and the error was back propagated, weights were altered and 
then an instance of set B was forward propagated. Each trial or 
epoch consisted of all eight instances forward propagated 
through the network with eight corresponding back-
propagations. Simultaneous learning was modeled using a 
semi-batch neural network. An instance of set A was forward 
propagated followed by the forward propagation of an instance 
of set B.  The summed error obtained after the forward 

propagation of the two instances was then back propagated 
through the network. This corresponded to human 
simultaneous learning, where the human subjects were 
presented with a card from set A and one from set B at the 
same time, followed by their guess to which set each card 
belonged to and then feed-back was given. Thus the batch size 
for the semi-batch network was two instances, one belonging to 
set A and the other to set B. 

In order to attain good performance with the neural 
network, it was important to set up the neural network with 
appropriate values for the parameters. Setting up the neural 
network is important in any neural network application. This is 
not an easy task considering the numerous parameters 
involved. Due to the lack of specific guideline for network and 
parameter initialization, the neural network was set up through 
trial and error.  

For each learning scenario, custom neural network was 
developed.  First the number of hidden layers to be used was 
decided through trial and error and the number of nodes per 
hidden layer was also decided in the same way.  Trial and error 
process started with a single layer with one node.  Then the 
number of nodes were increased. The training error dropped to 
0.25 with 2 nodes in the first hidden layer and three nodes in 
the second. The other parameters of the network were also 
determined through trial and error in order to determine 
favorable network architecture. A snippet of the average results 
(for about 30 trials) obtained for simultaneous learning (for the 
easy task) is given in the following table. The neural network 
was set up with 2 and 3 nodes in the two hidden layers and the 
weights were randomly initialized. 

Table II shows the mean and standard deviation for the 30 
trials. Tuning the parameters while starting off with momentum 
= 0.1 and learning rate = 0.1, the neural network was would 
land in a bad local optima. As the value of momentum was 
increased, the training error dropped. As stated earlier, the 
momentum helps in rolling over the bad local optima. With 
successive learning (for the easy task), the lowest train error 
obtained was 0.5 with random weight initializations  

TABLE I. DATA SET GIVEN AS INPUT TO THE NEURAL NETWORK –
MODELING THE PSYCHOLOGY EXPERIMENT CONDUCTED BY LOESS AND 

DUNCAN.

Color Shape Size Triangle Class 
0 0 0 0 0 
0 1 0 0 1 
0 0 1 0 0 
0 1 1 0 1 
1 1 0 1 0 
1 0 0 1 1 
1 1 1 1 0 
1 0 1 1 1 

TABLE II. TRAINING ERROR FOR SIMULTANEOUS LEARNING IN 
NEURAL NETWORKS WITH RANDOM WEIGHT INITIALIZATIONS FOR 
DIFFERENT COMBINATIONS OF MOMENTUM AND LEARNING RATE.

Momentum Learning 
Rate 

Mean over 
30 trials 

Standard Deviation 
over 30 trials 

0.1 0.1 0.4875 0.0827 
0.2 0.2 0.3625 0.0948 
0.3 0.5 0.3000 0.0904 
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Using the same set of parameters for both types of learning, 
the training error with random weight initialization is given in 
the Table III. The mean and the standard deviation were also 
calculated for 30 trials of the experiment and are given below: 

The data set was small with only eight data points. With 
random weight initialization and the tuning of various 
parameters of the network, the best training error obtained for 
the simultaneous case was 0.25 and for the successive case was 
0.5. The performance of the above experiments was based on 
the training error.   

Due to the surprisingly high training error, another testing 
method was used to verify the training error.  In neural 
network, typically 2/3 of the data set is used for training and the 
remaining 1/3rd for testing.  Since the data set consists of only 
eight data points, a separate test set could not be formed. 
Instead, cross-validation was employed and a pseudo test error 
was obtained.  

Cross-validation is a popular technique used in various 
machine learning algorithms in order to determine a pseudo test 
set [29]. It can also be used to determine parameter values of 
the network. Cross-validation is used to measure test error 
when the data set is very small. In Cross-validation, the data set 
is divided into k-partitions. In this case the value of k = 4 was 
chosen and each partition consisted of two data instances. The 
neural network was trained on 3 partitions and tested on the 
fourth partition. This was done four times, each time testing on 
a different partition. Then the test errors were averaged to get 
the pseudo test error. The average pseudo test error of 0.5 was 
obtained for both simultaneous and successive learning, which 
is just as good as random. Cross-validation was carried out for 
various network structures and parameters just as previously 
conducted, but cross-validation produced error measurements 
similar to train errors shown in Table III. 

A careful analysis of the data set given in Table I showed 
that it could be reduced to a simple XOR problem.  This can be 
observed by eliminating the two irrelevant features (i.e. Size 
and Triangle).  The simplified data set is given in Table IV.  
Hence, this was the explanation of the high training error rates 
observed in Table III. 

It is known that the neural network can be set up in order to 
learn the XOR problem with a particular set of initial weights 
[29]. With this arrangement, the neural network converged to 
zero error on the train set. This zero error on the training set 
was not achieved for the repeated trials with initial random 
weight arrangement. The reason for this could be due to the 

fact that the random weights end up in a similar point in the 
hypothesis space after training. It could also be that the 
hypothesis space is an extended plateau at the various points in 
which the neural network converges. It is a possibility that a 
particular combination of weights escapes all the local optima 
and thereby converges to zero train error. Convergence to the 
global optima occurred when the neural network was set up to 
solve the simple XOR problem. 

The training phase of the neural network models the human 
experiments conducted by Loess and Duncan [1]. In their 
experiments, no separate testing was done on the students. 
Their task was to learn to distinguish between the two tasks and 
the training phase of the neural network does exactly this. 
Hence its performance was judged by the training error in this 
domain and not by the test error. While modeling this 
experiment, there was no difference in the results obtained for 
the easy and difficult task, as the fourth attribute was irrelevant.  

In order to vary the number of attributes, an appropriate 
data set had to be used in which the number of attributes could 
be increased progressively. Two sets of experiments were 
conducted with two types of data sets. One data set was an 
extension of the psychology experiment (Loess and Duncan) 
that increased the number of attributes and the other data set 
was the binary representation of numbers that made the neural 
network differentiate between odd and even numbers. In the 
original data set, circles (small or large) on white and squares 
(small or large) on gray belonged to set A and squares on white 
and circles on gray belonged to set B. The Loess and Duncan 
experiment was extended to incorporate more attributes such 
that circle (small/large with red/black border) on white and 
squares (small/large with red/black border) on grey belonged to 
set A and others to set B. The added feature was that the shape 
could be either red or black and the data set was as follows: 

The data set (shown in Table V) had four attributes and 
could be easily extended to include more attributes. A graph 
was plotted for simultaneous versus successive learning in 
order to understand the trend of the performance with a 
variable number of attributes.  In Figure 2, it is seen that as the 
number of attributes is increased, the performance of the 
simultaneous tends towards that of successive in this case, i.e. 
with three or more attributes, the training error for the 
successive case was 0.5 and with greater than 5 attributes, the 
training error for simultaneous was also 0.5. 

Experiments were conducted to make the neural networks 
learn odd versus even numbers with the binary representation 
of the numbers. The number of attributes was increased by 
increasing the number of bits used to represent the number and 
thereby also increasing the number of instances in the data set. 
This experiment differs from the previous experiment 
presented in Table V, which had features added that affected 
the classification.  The features added (i.e. more bits) were 

TABLE IV. TABLE 4: MAPPING THE DATA SET TO SIMPLE XOR
PROBLEM.

Color Shape Class 
0 0 0 
0 1 1 
1 0 1
1 1 0 

TABLE III. TRAINING ERROR FOR SIMULTANEOUS VERSUS SUCCESSIVE 
LEARNING WITH THE SAME PARAMETERS FOR BOTH.

Network 
Structure 
– 2 layers 

(# nodes in 
each layer 

(a, b)) 

M
om

en
tu

m
 

L
ea

rn
in

g 
R

at
e Training error- 

simultaneous 
Training error- 

successive 
Mean S.D. Mean S.D. 

(2,3) 0.33 0.2 0.2750 0.5086 0.5000 0.0000 
(2,3) 0.5 0.2 0.2667 0.0432 0.5000 0.0000 
(2,3) 0.5 0.3 0.2625 0.0381 0.5000 0.0000 
(10,5) 0.5 0.3 0.2875 0.0583 0.5000 0.0000 
(10,5) 0.4 0.2 0.2917 0.0599 0.5000 0.0000 
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irrelevant to classification of even vs. odd, since it only 
depends on the least significant bit.   With respect to this task, 
both simultaneous and successive learning converged to zero 
error on the train set, unlike the previous experiments (the 
Loess and Duncan experiment modeled using neural network) 
in which the train error did not converge to 0. In Figure 3, the 
simultaneous and successive learning took a different number 
of iterations to converge to 0 error. As the number of attributes 
were increased starting with 3, simultaneous learning took less 
than half the number of iterations as that of successive learning 
to converge. As the number of attributes was increased, it was 
seen that the number of iterations taken by simultaneous to 
converge was almost as that of successive, and with 7 or more 
attributes, the number of iterations required to converge was 
the same for both types of learning. The following graph was 
plotted to compare the number of iterations taken to converge 
by simultaneous and successive learning.  

In this case the number of iterations to converge, was 
plotted, since there was significant difference between the two 
types of learning in terms of the number of iterations taken to 
converge. This was not done with the previous experiments as 
there was little or no difference between the number of 
iterations taken to converge.  

Series of experiment conducted validate the result 
published (simultaneous learning is faster than successive 
learning) by Loess and Duncan [1] for small number of 
threshold.  However, it disputes their assertion that it will hold 
true for more complex classification problems (i.e. increased 
number of features).  Neural network indicates that there exists 
a threshold, with respect to the number of attributes, beyond 
which the effect of simultaneous learning vs. successive 
learning is immaterial. 

III. CONCLUSION

This paper compares the behavior and performance of 
neural networks against human subject experiment conducted 
by researchers in psychology.  Experiments conducted on 
human subjects to gauge learning in a classification problem 
was modeled using neural networks. The results of these 
experiments did not completely parallel those obtained by the 
psychologists, Loess and Duncan [1].  Unlike the human 

subjects, neural networks were not able to fully discriminate 
between two classes.  This phenomenon arises from the fact 
that Loess and Duncan’s experiment simplified into an XOR 
problem.  Neural networks have difficulty converging to a 
solution in an XOR problem with random initialization of 
weights, but initial weights can be adjusted to learn the XOR 
problem.  When initial weights were adjusted similar to XOR 
solution, neural network learn to fully learn the classification 
problem as human subjects in Loess and Duncan.  More 
importantly, neural networks confirmed Loess and Duncan’s 
main hypothesis that simultaneous learning was faster than 
successive learning as complexity increased (attribute range of 
3 – 4).   

Loess and Duncan further extended their hypothesis 
without formal experimental evidence that simultaneous would 
outperform successive as complexity increased beyond the 
scope of their human experiments.  Interestingly, neural 
networks disagreed with their hypothesis. 

Experiments conducted with an increasing number of 
attributes showed that as the number of attributes was 
increased, the two types of learning attained similar 
performances. This was seen with two different data sets: one 
extending the psychology experiment conducted by Loess and 
Duncan and one with odd/even numbers. The former showed 
that the two were similar with respect to train error when fully 
learned, but simultaneous learning required half the number of 
iterations compared to successive learning (attribute range:  3 – 
5).  However, when the number of attributes was increased 
beyond seven, relative performance was negligible.  Odd/even 

TABLE V. DATA SET EXTENDED WITH MORE ATTRIBUTES.

Border 
Color 

Background 
Color 

Shape Size Class 

0 0 0 0 0 
0 0 1 0 1 
0 0 0 1 0 
0 0 1 1 1 
0 1 1 0 0 
0 1 0 0 1 
0 1 1 1 0 
0 1 0 1 1 
1 0 0 0 0 
1 0 1 0 1 
1 0 0 1 0 
1 0 1 1 1 
1 1 1 0 0 
1 1 0 0 1 
1 1 1 1 0 
1 1 0 1 1 

Figure 2. Comparison of the performance of 
simultaneous and successive learning in neural 

networks for an increasing number of 
attributes. The values of the graph correspond 
to the least train error obtained over 30 trails 

(for each value on the x-axis).

Simultaneous - Best
Performance
Successive - Best
Performance

0
0.1
0.2
0.3
0.4
0.5
0.6

3 4 5 6 7 8 9 10 11
Number of attributes

Training Error

Figure 3. Comparison of the performance of 
simultaneous and successive learning in neural 

networks (odd and even numbers) for an 
increasing number of attributes 
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number discrimination experiment mirrored the results seen in 
the extended Loess and Duncan experiment with attribute range 
of three to nine.   

These experiments reflect the presence of a threshold with 
respect to the number of attributes, beyond which there seems 
to be no difference between simultaneous and successive 
learning. Loess and Duncan concluded that simultaneous was 
better than successive as complexity of classification with 
increased with irrelevant attribute. However, neural networks 
contradict their conclusions about more complex problems.  As 
the task was made more difficult in terms of number of 
attributes and number of data instances, there was no difference 
between the two types of learning in terms of the train and test 
error, beyond a certain threshold with respect to the number of 
attributes. These types of experiments have not yet been 
conducted on human beings but it intuitively makes sense that 
when human beings are presented with complicated tasks with 
many attributes, the type of learning is immaterial. The reason 
is that with more attributes there is more room for confusion 
and the complexity of the problem would overwhelm any 
advantages one method has over the other.  

It should be noted that although neural network and 
intuition support that effect of simultaneous and successive 
learning becomes negligible for very complex problems, it can 
only be verified by extending the human subject experiments 
by increasing the complexity.  Furthermore, this paper has 
demonstrated that neural networks can be used as a rough 
model and give valuable insight into the problem, before the 
costly human subject experiments are conducted.   

Similar future work comparing neural networks 
performance to existing experiments in psychology and 
neuroscience is needed to strengthen the promising link 
between behavior in neural network and biological systems.  If 
this link can be created and verified, researchers would gain a 
tremendous tool in our endeavor to understand the human 
brain. 
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