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Abstract—This paper proposes a multi-objective genetic pro-
gramming (MOGP) for automatic construction of feature extrac-
tion programs (FEPs). The proposed method is modified from a
well known non-dominated sorting evolutionary algorithm, i.e.,
NSGA-II. The key differences of the method are related with
redundancies in program representation. We apply redundancy
regulations in three main processes of the MOGHP, i.e., population
truncation, sampling, and offspring generation, to improve pop-
ulation diversity. Experimental results exhibit that the proposed
MOGP-based FEPs construction system provides obviously better
performance than the original non-dominated sorting approach.

Index Terms—Multi-objective optimization, linear genetic pro-
gramming, image feature extraction, redundancy regulation, non-
dominated sorting

I. INTRODUCTION

Recently, many researchers have been interested in au-
tomatic program construction for object recognition. Many
approaches exploit evolutionary computation techniques [6],
[20], especially genetic programming (GP) [13], to search for
the optimal programs. Some researches attempt to construct
just a part in object recognition, e.g., feature extractor [8],
[17] or interest point detector [9], while some researches focus
on construction of complete object recognition programs [2],
[11], [14]. In this work, we focus on automatic construction of
feature extraction programs (FEPs). Our approach considered
here can construct FEPs without domain-specific knowledge.

In most approaches, including our previous works, sin-
gle objective GPs were adopted to optimize performance of
constructed programs [2], [8], [11], [14], [17]. However, in
practice, we may want to optimize various objectives simulta-
neously (e.g., to find a program that achieves both true positive
and true negative rates), and prefer various alternatives to make
a decision. Consequently, we attempt to introduce evolutionary
multi-objective optimization (EMO) [1] to the automatic FEP
construction system.

Nowadays, Pareto-based EMO, e.g., non-dominated sorting
genetic algorithm (NSGA-II) [7], have been exploited to solve
many problems successfully, especially in GA domain. We
tried to adopt the NSGA-II technique into our GP-based
FEP construction, so we called it non-dominated sorting GP
(NSGP). However, it appears that the NSGP could not work

well with our automatic FEP construction system. The main
reason seems to be the high redundancies in GP represen-
tations. This quite contrasts with GA representations, which
usually contain no or low redundancies. The redundancies
in GP representation together with elitist selection, a main
aspect of NSGA-II, decrease population diversity rapidly in
a few generations, and leads to poor performance in FEP
construction.

In this paper, we propose a multi-objective optimization GP
(MOGP) techniques, which is modified from the NSGP, for
automatic construction of FEPs. Three redundancy-regulated
mechanisms are introduced to improve population diversity
as well as convergence rate. The first is named semi-elitist
truncation that firstly selects the program with better rank
but only one copy for each round. The second is a sampling
mechanism that chooses different phenotypes uniformly (not
just to choose each individual with equal probability), named
phenotypic-uniform sampling. The third redundancy regulation
is exploited in offspring generation process—the prohibition
of offspring that represent programs discovered before. Exper-
imental results suggest that the proposed method significantly
outperforms the original NSGP method. We also demonstrate
that the proposed MOGP method can even better than a single
objective GP-based approach in solving a single objective
problem.

The rest of this paper is organized as follows. Section II
provides some backgrounds in multi-objective optimization
and description of the NSGA-II. Section III explains our GP-
based system for FEPs construction. Section IV describes
the proposed MOGP techniques. Experimental results and
discussion are in section V. Finally, section VI concludes the

paper.
II. BACKGROUND AND RELATED WORK
A. Multi-objective Optimization and Concept of Domination

The multi-objective optimization (MO) problem considered
here is a maximization problem which is generally described
as follows:

Mazimize f(:E) = (fl(f),fg(l’),f:;(l‘), fm(x))v
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where x is a solution and fi(+), f2(+), ..., fm(:) are m objec-
tives to be maximized. A solution z is said to dominate the
other solution y (denoted by z > y) if the following conditions
are satisfied:

Vi € {1,2,...,m} : fl(%) > jl(y) A
Jie{1,2,...,m}: fi(z) > fi(y).

The ideal goal of multi-objective optimization is to find
so called Pareto-optimal front—the set of all possible solu-
tions that are not dominated by the other possible solutions.
However, Pareto-optimal front is unknown for most problems,
and it may be very difficult to achieve all solutions in the
fronts. In practice, we may just prefer a non-dominated front
that aligns closely to the Pareto-optimal front. Also a well
distribution of the solutions in the front is preferred; more
uniform distributions provide wide-range choices to be chosen,
compared with compact ones.

ey

B. Non-dominate Sorting Genetic Algorithm: NSGA-II

Srinivas et al. [12] proposed non-dominated sorting genetic
algorithm (NSGA) in 1995, and its improved version called
NSGA-II was proposed in 2000 by Deb et al. [7]. NSGA-II
was mainly designed to resolve three criticisms of NSGA, i.e.,
computational complexity, lack of elitism, and the need for
specifying a sharing parameter. NSGA-II has been adopted
to solve many problems successfully, and becomes a popular
EMO method over the years.

Pseudo code in Fig. 1 describes how NSGA-II works. The
main concept of NSGA-II is based on non-dominated sorting
(step 2). As shown in Fig. 2, a set of all solutions that do
not dominate each other are grouped together, and a rank is
assigned to each solution in the front. All solutions in the first
front are not dominated by any solutions in the other fronts
(so called non-dominated front). In a front, each solution will
be assigned a relative distance measurement called crowded
distance, which is the average distance (in objective space)
from itself to the adjacent solutions. To create new parent pop-
ulations, elitist truncation (steps 3—6) is adopted. Specifically,
the truncation is firstly based on the rank (step 4), and then
based on the crowded distance for the last front to be selected
(steps 5-6). The rank and crowded distance are also considered
in selection process (step 7). Binary tournament selection (pool
size of two) is adopted. The solutions with better rank are
selected in the first priority, and if two solutions have the same
rank, the solution with higher crowded distance is preferred.

III. EVOLUTIONARY CONSTRUCTION OF FEATURE
EXTRACTION PROGRAMS

A. System Overview

Figure 3 exhibits the overview of evolutionary system for
construction of FEPs. In this system, inputs needed from
user are just image processing library, training images, and
objective function(s). Image processing library consists of ba-
sic image processing operations, e.g., edge detection, lowpass
filtering, image thresholding. These operations are used as
primitive operations (POs) for FEP construction. Firstly, the

1) R; <« P; U Q¢ (Py: parent population, Q¢: offspring population,
t: generation index)
2) Apply non-dominated sorting to R; to obtain non-dominated fronts
F = {Fy, Fy,..., Fy, }, where n; is the number of fronts
3) Piy1«—¢andi—1
4) while |Poy1| + |Fi] < N
Piyy «— P11 UF;
i—i+1
5) Sorting |F;| based on crowded distance, j «— 1
6) while [Pyyq| < N
Piy1 « Pyy1 Usj, where s; € F;
Jje—i+1
7) Create new offspring Q1 from Py

Fig. 1. Pseudo code of NSGA-II
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Fig. 2. Example of rank assignment by non-dominate sorting

system randomly generates an initial population of individuals
(or chromosomes), which encode feature extraction programs.
These individuals are then interpreted into FEPs and are
evaluated. In the evaluation process, the defined objective func-
tion(s) is used to compute fitness (which describes performance
of the program). The individuals with the higher fitness will
have higher chance to survive and be evolved by recombination
operators. After evolution process finished, the program that
gives the best fitness is considered as the output of the system.
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B. Representation and Decoding

We adopt linear genetic programming (LGP) representation
[10], in which a program is represented as a sequence of
instructions (fixed- or variable-length), and program execution
is based on a set of shared registers. In particular, each
instruction is encoded by operation code, which indicates PO
to be executed, and arguments that specify input and output
registers. Program execution starts from the first operation in
the sequence, and move to the next operation sequentially.
Because image processing operations are utilized as POs, a
special register type, i.e., image register ([21), is needed to store
input and processed images. We also need some numerical
registers (Ry) to store some parameters of POs.

Our LGP representation is slightly different from the orig-
inal representation; we use sub-program structure as shown in
Fig. 4. One linear program consists multiple sub-programs;
each is executed independently of the others. Each sub-
program generates one feature image, which is the content
stored in a pre-defined image register after sub-program ex-
ecution finished. Once all sub-programs are executed, feature
images are inputted into a classifier to obtain recognition result.
We use Bayesian classifier with histogram approximation [15]
as the classifier.

C. Genetic Operators

Genetic operators, i.e., crossover and mutation, are applied
to selected solutions (called parents) to produce new solutions
(called offspring). Crossover we used is parameterized uniform
crossover [19] with 0.2 probability of instruction exchange
between two parents. Also a crossover operator that allows
swapping of entire sub-programs is adopted. Probability that
each crossover type will be used is equal. Mutation operator
used here randomly inserts, deletes, or modifies an instruction.

D. Program Evaluation

In our previous work [17], a single objective approach,
we used recognition accuracy as fitness value. In the case
that the number of object and background pixels are not in
balance, e.g., objects are relatively small, GP tried to optimize
recognition accuracy by avoiding false positive, resulting in
missing inner-boundary of objects and even missing entire
small objects.

In this work, we add the other performance measure, i.e.,
true positive rate, to force GP find more object pixels. In
evaluation process, leave-one-out cross validation is adopted.
Specifically, validation is done 7" times, where 7" is the number
of training images. In each time, 7' — 1 images are used
for classifier training and the remaining one image is for
validation. From all validations, we find the numbers of true
positive (¢p), true negative (tn), false positive (fp), and false
negative (fn) pixels. Then recognition accuracy ACC' and true
positive rate TP are computed as shown in Egs. 2 and 3,
respectively.

tp +1in

ACC= ———
tp+tn+ fp+ fn
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Fig. 4. Example of sub-program structure and its execution
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E. Redundancy and Canonical Transformation

3

Generally, GP representations, including tree-, linear-, or
graph-based GPs, contains a lot of redundancies, i.e., a pro-
gram may be represented by different chromosomes. There
are several causes of redundancies in GP representations,
e.g., existence of introns (ineffective instructions), protection
mechanism, and program structure. In [17], we have identified
the causes of redundancies in LGP-based representations, and
proposed a canonical transformation for converting original
LGP representation into canonical form in which redundancies
are removed. In canonical form, it is easy to verify whether two
chromosomes represent the identical program. This enables GP
to be improved by various techniques [5], [17], [18].

IV. PROPOSED METHOD

A. Problems and Motivation

In this paper, we attempt to implement a MOGP based
on the concept of NSGA-II, and we call it non-dominated
sorting GP (NSGP). However, the NSGP could not work well
in our evolutionary FEP construction system. The reasons
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would be related with a difference in characteristics of GA
and GP problems—redundancy level. In many GA problems,
chromosome representations do not contain any redundancy—
genotype-phenotype mapping is one-to-one. On the contrary,
chromosome representations in GPs often have high-level
redundancies (e.g., as described in section III-E). This means
that the mapping from the genotype (representation) space
into phenotype (program) space is many-to-one. Moreover,
the mapping from phenotype space into objective space is
generally many-to-one too, i.e., it is possible that two com-
pletely different programs may lead to the same objective
values. Consequently, elitism truncation in NSGA-II seems
to make population lose diversities rapidly. In addition, it
seems that difference in structure difficulties appears, like
in tree-based GP [4]. In other words, some programs may
be produced easily, whereas the other programs are rarely
produced. A solution in the non-dominated front to be easily
produced may occupy the most population space within a few
generations, resulting in diversity loss. These motivated us to
develop the ways to regulate redundancies in MOGP-based
FEP construction.

B. Non-dominated Sorting With Redundancy Regulations

We propose a MOGP improved from NSGA-II based GP
for automatic construction of FEPs. The proposed method
was designed to resolve the redundancies related problems
described in the previous section. It is described as the pseudo
code in Fig. 5. The key different points of the proposed method
are listed as follows:

o Semi-elitist truncation (steps 3-5): we firstly select the
solutions in the first front but only one copy for each
point, and go to the next front and repeat this process. If
all fronts are processed and the next parent population
is not full, we start selection process from the first
front again. By doing that, we can maintain diversity of
population while guarantee that the each elite point still
exists in the population (if the number of the elite points
are not greater than the population size).

o Phenotypic-uniform sampling (in steps 6—7): instead of
uniform sampling, we use a sampling mechanism that is
likely to choose the points in objective space with less
or no copy point. The selection probability of a point p;
is defined as 1/(Ngifs * C;), where Ng;¢r is the total
number of different points in objective space, and C; is
the number of solutions that are located in p;.

o Prohibition of redundant individuals (in step 7). once
an offspring is produced, we transform it into canonical
form [17] and verify whether it represents a program
discovered before in the evolutionary search. If it is a
redundant program (already discovered), we apply mu-
tation operation on that individual until it becomes the
new one that has not been discovered before. In [17],
we have demonstrated that the use of such constraint can
significantly help improve search performance of single
objective GP.

1) R; <« P; U Q¢ (Py: parent population, Q¢: offspring population,
t: generation index)
2) Apply non-dominated sorting to R; to obtain non-dominated fronts
F = {Fy, Fy,..., Fy, }, where n; is the number of fronts
3) Subdivide each F; into groups G;; that contains the solutions with same
objectives (F; = U;nl Gij, where my; is the number of groups).
4) Piyq — ¢ i— ljandj — 1
5) while |[Pipq1| < N
if ¢ = ny then 7 «— 1
if j=m;thenj«— landi«— 1141
if |G| > 0 then randomly select a solution s from G,
Gij — Gij —{s},and Py — P11 U {s}
Je—J+1
6) Calculate sampling probability and averaged crowded distance for each
solution in P41
7) Create new offspring Q¢1 from P;i 1 by using phenotypic-uniform
sampling, big tournament size, and redundant-offspring prohibition

Fig. 5. Pseudo code of the proposed MOGP

o Averaged crowding-distance (in steps 6-7): the direct use
of crowding-distance assignment algorithm in [7] may
result in assigning of different distance for the solutions
located in the same point (some may have zero distance
whereas the others have positive distance). Therefore we
find the summation of distance values of all solutions
located in the same point (except the extrema), and assign
the average value for each point instead.

e Big tournament size (in step 7). the balance between
exploration (global search) and exploitation (local search)
powers is a crucial issue in EAs [6]. The above redun-
dancy regulation mechanisms greatly increase diversity of
population, i.e., exploration power is increased. However,
there are only a little copies of each elite solutions (non-
dominated solutions) existing in each generation. If we
use small tournament size (e.g., two), only a few numbers
of elite solutions will be exploited in each generation
(i.e., too low exploitation power), and this leads to slow
convergence. Therefore big tournament size (in this paper,
10 for population size of 50) is preferred to maintain well
balance between exploration and exploitation.

V. EXPERIMENTS

To evaluate the performance of the proposed method,
we have conducted two experiments. The first experiment
compares FEP construction performance of the proposed and
NSGP methods. In the second experiment, the proposed
MOGP-based approach is compared with our previous single
objective approach.

A. Test Problem

In this work, we consider lawn weed detection problem
[16], [17], which is a two-class segmentation problem. The
goal is to segment the area of weeds from lawn background
in order to perform precision spraying. The dataset we used is
shown in Fig. 6. It consists of five images of size 160 x 120
pixels.

B. NSGP v.s. NSGP with Redundancy Regulations

In this experiment, we compare performance of the NSGP
and the proposed methods in FEP construction. Two objective

1368



*
<o Xy % Zﬁ# B3

Fig. 6. Lawn weed images and their corresponding ground truths

TABLE I
LIST OF PARAMETERS.

Parameter Setting
Population size 50
Max. generations 100

Crossover operator parameterized uniform and

sub-program crossovers

Mutation operator insertion, deletion, modification

# Crossover offspring 24 (48%)
# Mutated offspring 26 (52%)
Tournament size NGSP: 2

proposed: 10

Max. chromosome length 20 operations

# image registers 4
# numerical registers 4
# primitive operations 51

functions described in Eqs. 2 and 3 were used. Their parame-
ters were set as shown in Table I. The NSGP and the proposed
method were executed 30 times, and their average results were
compared.

Performance comparison was done based on two comple-
mentary measures used in [3]. The first measure is hyper-
volume, the summation of block areas under non-dominated
front (Fig. 7). An algorithm that provides large hypervolume
implies that it found non-dominated front with well distribution
and/or good convergence. The second measure is coverage
C(A = B), which is the fraction of non-dominated solutions
found by algorithm B that are dominated by at least one
solution found by algorithm A. Note that C(4 = B) is not
usually equal to 1 — C'(B > A); consequently, we need to
consider both values. The coverage measure provides relative
information on convergence between two algorithms.

The comparison based on the hypervolume measure is
shown in Table II. As we expected, the proposed method
provides larger hypervolume than the NSGP method because
redundancy regulation mechanisms would guide GP to find
non-dominated solutions with (at least) better distribution.
The t-test confirms these two distributions are significantly
different. To assure its superiority in convergence, we have to
consider the coverage measure shown in Table III. From the
result, most solutions found by the NSGP method are domi-
nated by those of the proposed method. It obviously suggests
that the proposed method provides much better convergence
than the NSGP method.

54

.

0,0) h
Fig. 7. Hypervolume of two-objective case (origin is the reference point)

TABLE I
COMPARISON OF HYPERVOLUME.

Method | NSGP | proposed

Average | 0.5543 0.6843
STD 0.0854 0.0470
t-test 3.29 x 1077

Table IV shows the average size of non-dominated front
and average number of different points in the front. In the
case of the NSGP method, the non-dominated front size often
reached population size but most solutions in the front were
redundant. The result of a trial shown in Fig. 8§ demonstrates
that redundant solutions did not distribute uniformly (see
the nearby numbers in Fig. 8). Instead, population seems to
converge to a solution that is easy to be produced (different
structure difficulties [4]). These reveal an adverse effect of
the elitist truncation in high-redundancy EMO. In the case of
the proposed method, the ratio between these two values is
nearly one, i.e., most copy points were removed. This would
be mainly caused by the use of semi-elitist truncation. Also
the average size of non-dominated front is far smaller than the
population size. This implies that many fronts were preserved
and rank-based selection would still properly function.

TABLE III
COMPARISON OF COVERAGES.

A: NSGP, B: proposed
C(A>B) | C(B> A)
0.0394 0.9196

TABLE IV
COMPARISON OF NON-DOMINATED FRONT SIZE.

Method NSGP | proposed
Average 15t front size 45.87 14.23
Average no. of different points 5.60 13.63
Ratio 0.14 0.96
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Fig. 8. Example of non-dominated fronts obtained from the NSGP and
proposed methods. The numbers in the graph indicate the number of copies
of points (if no number, there is only one copy).

TABLE V
COMPARISON OF SEGMENTATION ACCURACY (ACC) BETWEEN SINGLE-
AND MULTI-OBJECTIVE APPROACHES.

Method | single objective | multi-objective (proposed)
Average 0.9608 0.9623

STD 0.0034 0.0015

t-test 4.03 x 1073

C. Single Objective v.s. Multi-objective

In the previous section, we have demonstrated that the
proposed MOGP method is better than the NSGP method.
Here we compare the proposed MOGP-based approach with
single objective based approach for solving a single objective
problem. Comparison was done based on one objective, i.e.,
recognition accuracy (Eq. 2). The single objective GP with
prohibition of producing discovered offspring described in [17]
was experimented. The same parameters as in the previous
section were used. The average segmentation accuracy (over 30
independent runs) of the best individual from each run is shown
in Table V. The result indicates that the proposed MOGP-based
approach outperforms the single-objective approach. Again the
t-test indicates that these two distributions are significantly
different. This result suggests that the use of the proposed
MOGP could help encourage automatic FEP construction
system in solving even a single objective problem.

VI. CONCLUSION

We have proposed a MOGP technique for automatic con-
struction of feature extraction programs. The proposed method
was modified from the NSGA-II based MOGP (NSGP), by
including redundancy regulation mechanisms, i.e., semi-elitist
truncation, phenotypic-uniform sampling, and prohibition of
redundant offspring, to improve population diversity. The
experimental results indicate that the proposed MOGP could
effectively control redundancies in the evolutionary process,
resulting in better performance (measured by hypervolume and
coverage) compared with the NSGP. Also the use of proposed
MOGP could even find better programs in a single objective

problem, compared with our previous single objective FEP
construction system.
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