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Abstract—Distributed model predictive control (DMPC) advo-
cates the distribution of sensing and decision making to operate
large, geographically distributed systems such as the power
grid and traffic networks. This paper presents a distributed
optimization framework for DMPC of linear dynamic networks
with constraints on each network node. A linear dynamic network
can be thought of as a directed graph, whose nodes have local
dynamics that depend on the local and upstream control signals
and are subject to constraints on state and control variables.
The distributed algorithm is based on interior-point methods and
can be shown to converge to a globally optimal solution. Some
theoretical results are stated and a preliminary application to
green-time control in urban traffic networks is described.

Index Terms—distributed MPC; distributed optimization;
interior-point method; urban traffic control.

I. INTRODUCTION

Model predictive control (MPC) has become the leading
technology for the operation of complex dynamic systems. The
appeal stems from its ability to handle constraints in a system-
atic manner, the ease of reconfiguration, and the potential to
reach optimal solutions [1]. Other control alternatives typically
handle constraints in an ad hoc manner or are limited in the
class to which they are suitable. In essence, MPC converts
a dynamic optimization problem in which variables are time
dependent into a series of static optimization problems to be
solved with standard optimization algorithms.

The centralization of computations and the communication
between sensors and the central unit are chief obstacles to
the use of MPC in geographically distributed systems, such
as the power grid and traffic networks. Instead, distributed
model predictive control (DMPC) is an evolving technology
that advocates the distribution of sensing and control while
preserving the same features of standard MPC, namely the use
of prediction models, explicit handling of constraints, and the
use of optimization algorithms [2], [3]. The works on DMPC
can be roughly divided in control-based and optimization-
based frameworks.

Control-based frameworks are mostly concerned with stabil-
ity and control performance. The solution of the underlying op-
timization problem is not typically addressed. [4], [5] develop
procedures for stabilizing a system of dynamically decoupled
sub-systems that mutually influence a performance criterion.

[6] is also concerned with stabilization of dynamically de-
coupled sub-systems and uses principles of Nash optimality.
[7] develops algorithms for cooperation between distributed
controllers that ensure closed-loop stability.

Optimization-based frameworks are somewhat concerned
with the solution of the optimization problems. [8] proposes
a distributed algorithm that applies Lagrangian duality to
handle coupling constraints among agents. [9] develops a
cooperation-based iterative procedure that ensures convergence
to the global optimum for linear systems and with constraints
on the local controls. [10] presents synchronous and asyn-
chronous solutions of optimization problems, proposing a high
level optimization framework and safety margins for meeting
constraints. More recently, [11] focuses on linear dynamic
networks with local control-input constraints, which allowed
the design of a distributed feasible direction method that can
reach the global optimum.

This paper presents initial results on an extension of our
preceding work [11] that accounts for constraints on state vari-
ables besides the constraints on control inputs. The structure of
the problem changes significantly as the agents become cou-
pled through the constraint structure. To that end, a distributed
interior-point method is outlined and some theoretical results
are only stated. The paper also gives some numerical results
of the application of this DMPC framework to the green-time
control of urban traffic networks

II. DYNAMIC MODEL, CONTROL, AND OPTIMIZATION

A linear dynamic network consists of M sub-systems that
have local linear dynamics that depend on the controls of other
sub-subsystems [11]. Each sub-system m has a local control
vector um ∈ R

pm and a local state xm ∈ R
nm which is

influenced by the local variables and the controls of neighbor-
ing sub-systems. The notion of neighborhood is modeled by
a coupling graph G = (V, E), with V = {1, . . . , M} being
the vertex set and E ⊆ V × V being the arc set, according to
which sub-system i directly influences the state of sub-system
j if (i, j) ∈ E. Assuming discrete time dynamics, the state
equation for sub-system m is:

xm(t + 1) = Amxm(t) +
∑

i∈I(m)

Bmiui(t) (1)
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where I(m) = {m} ∪ {i : (i, m) ∈ E} is the set of
input neighbors of sub-system m which encompasses all sub-
systems that have a direct influence on sub-system m. Notice
that sub-system m influences itself. Each sub-system m is
subject to local constraints on the inputs,

Dmum(t) ≤ dm (2a)

and state constraints,

xmin
m ≤ xm(t) ≤ xmax

m (2b)

This paper considers only the regulation problem, but this is
not a limitation because often the problem of following a
trajectory can be recast as a regulation problem. Given the
current state x(t) = (x1, . . . ,xM )(t) of the network at time t,
the MPC optimization problem P for regulating the network
with a quadratic cost is formulated as:

min f =
1
2

M∑

m=1

φm (3a)

where the local objective of sub-system m is defined as:

φm =
T−1∑

j=0

[x̂m(t + j + 1|t)′Qmx̂m(t + j + 1|t)

+ ûm(t + j|t)′Rmûm(t + j|t)]
and subject to:

x̂m(t + j + 1|t) =

Amx̂m(t + j|t) +
∑

i∈I(m)

Bmiûi(t + j|t) (3b)

Dmûm(t + j|t) ≤ dm (3c)

xmin
m ≤ x̂m(t + j + 1|t) ≤ xmax

m (3d)

x̂m(t|t) = xm(t) (3e)

for m = 1, . . . , M, j = 0, . . . , T − 1, where ûm(t + j|t) is
the prediction calculated at time t for the control input to sub-
system m at time t+j, and similarly x̂m is the state prediction.
T is the length of the prediction and control horizon. Qm is
symmetric positive semi-definite and Rm is symmetric positive
definite.

The green time (split) control of an urban traffic network
can be cast as an MPC regulation problem on a linear dynamic
network. Consider the traffic network depicted in Fig. 1. Each
junction defines a sub-system whose state variables are the
numbers of vehicles on the roads leading to the junction
and whose control signals correspond to the green time for
each phase. At junction 3, the state of the sub-system is
x3 = (x6, x7) and the local control vector is u3 = (u6, u7)
with the green time for each queue, assuming there is a phase
for each queue. Vehicles accumulate in road 6 (road 7) as the
queues at junction 1 (junction 4) are discharged. The vehicles
depart from road 6 (road 7) depending on the green time u6

(u7). Assuming that vehicles flow through each junction at the
saturation rate [12], the state of any sub-system m evolves
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Fig. 1. Traffic network.
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Fig. 2. Coupling graph for the traffic network.

dynamically as a function of its current state xm, the control
signals at the upstream sub-systems I(m) − {m}, and the
local control signals um. For sub-system 3, the dynamics is
modeled by matrices A3, B3,3, B3,1, and B3,4, which yields
x3(t + 1) = A3x3(t) + B3,3u3(t) + B3,1u1(t) + B3,4u4(t).
The coupling graph of the traffic network appears in Fig. 2.

A. Compact Formulation

A compact but equivalent form of P is presented to simplify
the design of algorithms. From now on, the term “|t” is
dropped from all variables for the sake of simplification. Notice
that the state of sub-system m at time (t + τ) is calculated
from the initial state and the past control signals as:

x̂m(t + τ) = Aτ
mxm(t) +

τ∑

j=1

∑

i∈I(m)

Aj−1
m Bmiûmi(t + τ − j)

Let x̄m = (x̂m(t + 1), . . . , x̂m(t + T )) and ūm =
(ûm(t), . . . , ûm(t + T − 1)) be vectors collecting the control
and state variables over the horizon. Following the guidelines
from [11], suitable matrices Ām and B̄mi can be defined so
that the vector of state predictions is expressed in a compact
form:

x̄m = Āmxm(t) +
∑

i∈I(m)

B̄miūi (4)

Let In be the identity matrix of dimension n. Let Q̄m = IT ⊗
Qm and R̄m = IT ⊗ Rm be matrices defined in terms of the
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Kronecker product ⊗. Further, define the following terms in
the objective of sub-system m:

gmi(t) = B̄′
miQ̄mĀmxm(t), i ∈ I(m) (5a)

Hmij = B̄′
miQ̄mB̄mj , i, j ∈ I(m), i �= m or j �= m (5b)

Hmmm = B̄′
mmQ̄mB̄mm + R̄m (5c)

c(t) =
∑

m∈M

1
2
xm(t)′Ā′

mQ̄mĀmxm(t) (5d)

where M = {1, . . . , M}. By redefining the objective of sub-
system m using the definitions above, discarding eq. (3b), and
collecting the constraints (3c) and (3d) using ūm, P becomes:

min f(ū) =
1
2

∑

m∈M

∑

i∈I(m)

∑

j∈I(m)

ū′
iHmij ūj

+
∑

m∈M

∑

i∈I(m)

gmi(t)′ūi + c(t) (6a)

subject to the constraints below for all m ∈ M:

D̄mūm ≤ d̄m (6b)

x̄min
m ≤ Āmxm(t) +

∑

i∈I(m)

B̄miūi ≤ x̄max
m (6c)

where vector ū = (ū1, . . . , ūM ) collects all of the control vari-
ables over the horizon, D̄m = IT ⊗Dm, d̄m = (dm, . . . ,dm)
is a vector of consistent dimension, and x̄max

m (x̄min
m ) is defined

analogously. While in our preceding work the agents are
coupled through the quadratic terms in the objective (6a)
and have only local constraints [11], in this paper the linear
dynamic network is subject to constraints on the states which
interconnect the agents through the constraints (6c).

B. Problem Decomposition

This paper focuses on the break up of problem P into a net-
work {Pm} of coupled sub-problems to be solved by a network
of agents, each one located at a sub-system and communicating
with neighboring agents. The problem decomposition is said
to be perfect if each sub-problem Pm contains all the objective
terms and constraints of P that depend directly on ûm. The
agents coupled with agent m depend on the following sets:

• Ī(m) = {i : m ∈ I(i), i �= m} is set of output neighbors
of sub-system m, which contains any sub-system i whose
state xi is dependent on um;

• C(m) = {(i, j) ∈ I(m) × I(m) : i = m or j = m}
contains the sub-system pairs of objective terms that are
affected by um;

• C(m, q) = {(i, j) ∈ I(q) × I(q) : i = m or j = m} has
the sub-system pairs of objective terms in φq , q ∈ Ī(m),
affected by um.

For the traffic network depicted in Fig. 1, I(1) = {1},
Ī(1) = {2, 3, 5, 6}, C(1) = {(1, 1)}, and C(1, 3) =
{(1, 3), (1, 4), (1, 1), (3, 1), (4, 1)}. Notice that an agent m can
affect the state of systems other than I(m) ∪ Ī(m). Although
sub-system 4 �∈ I(1) ∪ Ī(1), sub-system 1 is coupled to sub-
system 4 via sub-system 3. The interdependence between sub-
systems is formalized with the notion of neighborhood. From

the point of view of an agent m, the variables of a network
are divided in three sets:

• local variables: the variables in vector um;
• neighborhood variables: all the variables in vector ym =

(ui : i ∈ N(m)) where N(m) = I(m) ∪ {i : (i, j) ∈
C(m, k), k ∈ Ī(m)}−{m} is the neighborhood of agent
m. The neighborhood of agent m consists of the sub-
systems other than m that are affected by the decision um

or whose decisions affect xm. Notice that Ī(m) ⊆ N(m).
• remote variables: all of the other variables which consist

of vector zm = (ui : i �∈ N(m) ∪ {m}).
Thus u = (um,ym, zm) whichever agent m. For a perfect
problem decomposition, problem Pm must account for all the
dependencies with the neighbors of agent m. This is achieved
if Pm is obtained from P by i) discarding from the objective f
the terms not involving ūm and ii) dropping the constraints not
associated with agent m. Formally, agent m’s local problem
Pm(ȳm) or simply Pm is:

min fm =
1
2
ū′

mHmūm + gm(t)′ūm (7a)

s.to :
D̄mūm ≤ d̄m (7b)

x̄min
m ≤ Āmxm(t) +

∑

i∈I(m)

B̄miūi ≤ x̄max
m (7c)

where Hm is a suitable matrix and gm(t) is a suitable vector.
A procedure to obtain Hm and gm(t) from Hijl and gij(t)
appears in [11]. Hereafter, we assume a perfect problem
decomposition which evidently ensures that:

f(ū) = fm(ūm, ȳm) + f̄m(ȳm, z̄m) + c(t)

for any agent m with f̄m being a suitable function. To simplify
the design of algorithms, we recast P in the following form:

P : min f(ū) (8a)

s.to : hi(ū) ≤ 0, i = 1, . . . , p (8b)

with hi : R
n → R representing all the inequalities, n =

T
∑

m∈M pm being the dimension of ū, and p being the
number of constraints. Further, redefine Pm(ȳm) as:

Pm(ȳm) : min fm(ūm, ȳm) (9a)

s.to : hi(ūm, ȳm) ≤ 0, i ∈ h(m) (9b)

with h(m) = {i : hi is a function of ūm}. Notice that hi

does not depend on z̄m for all i ∈ h(m). Let Ω = {ū ∈ R
n :

hi(ū) ≤ 0, i = 1, . . . , p} denote the feasible space of P .
Remark 1: Problem (8a)-(8b) has the following properties:
1) P is convex since f is a convex function and Ω is a

convex set;
2) f is a strictly convex and twice continuously differen-

tiable function; and
3) h1, . . . , hp are linear and hence differentiable.
Assumption 1: The following is assumed on P :
1) The interior of the feasible set is nonempty, that is, Ω̄ =

{ū ∈ R
n : hi(ū) < 0, i = 1, . . . , p} �= ∅;

2) there exists an optimal solution ū� to P .
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III. DISTRIBUTED OPTIMIZATION

The constraints on state variables create difficulties to the
distributed solution of {Pm}. Standard methods based on
gradient projection and descent get stuck at fixed points that do
not coincide with an optimal solution to P . That is, there are
nonoptimal points ū at which no single agent m can improve
its objective fm by solving problem Pm(ūm, ȳm) given the
current values of the neighboring variables ȳm. This section
outlines an interior-point method that approximates problem
(8a)–(8b) with an unconstrained formulation to which gradient
descent can be applied [13], [14]. The approximation accounts
for the constraints in the objective using a barrier function1.
One such function is the logarithmic barrier:

φ(ū) = −
p∑

i=1

log(−hi(ū)) (10)

whose domain is dom φ = Ω̄. The formulation that represents
the inequalities in the objective is known as centering problem:

P (ε) : min
ū∈Rn

θ(ū) = f(ū) + εφ(ū) (11)

where ε > 0 regulates the accuracy of the approximation. The
logarithmic barrier φ(ū) tends to infinity if any hi(ū) → 0.
Function θ(ū) is strictly convex because f is strictly convex
and −ε log(u) is convex and nonincreasing in u. Further, θ(ū)
is twice continuously differentiable. This means that a solution
to P of arbitrary accuracy is found by solving P (ε) with a
sufficiently small ε using standard unconstrained optimization
algorithms. This strategy, however, is not efficient because the
difficulty of solving P (ε) increases rapidly as ε decreases.
Instead, the barrier method solves a sequence of P (ε) of
decreasing ε with a hot start at the previous solution.

The solution ū(ε) to P (ε) is unique for any ε > 0 because
θ(ū) is strictly convex. Any such solution is called a central
point. The set P = {ū(ε) : ε > 0} is called central path.

A. Centralized Barrier Method

The Lagrangian of P is L(ū, λ) = f(ū) +
∑p

i=1 λihi(ū).
Given any Lagrangian vector λ ≥ 0, min{L(ū, λ) : ū} =
d(λ) induces a lower bound on the optimal objective f� of
P . First-order optimality conditions applied to the centering
problem P (ε) can be used to show that a central point ū(ε)
defines a dual feasible point. First, associate the following
Lagrangian multipliers with ū(ε):

λi(ε) = − ε

hi(ū(ε))
, i = 1, . . . , p

Clearly, λi(ε) > 0 since hi(ū(ε)) < 0. Because the pair
(λ(ε), ū(ε)) is dual feasible,

d(λ(ε)) = min{L(ū, λ(ε)) : ū} =

f(ū(ε)) + ε

p∑

i=1

− 1
hi(ū(ε))

hi(ū(ε)) = f(ū(ε)) − εp

1A real-valued function within the interior of the feasible space that tends
to infinity as the solution is drawn towards the boundary of any constraint.

which yields a lower bound on the optimal objective:

f(ū(ε)) − f� ≤ εp

demonstrating that ū(ε) converges to ū� as ε tends to 0.
Instead of directly solving the centering problem P (ε) with

ε ≤ γ/p for a desired accuracy γ, the barrier method solves
a sequence of centering problems for decreasing values of ε
until ε ≤ γ/p as outlined below.

Algorithm 1: Barrier Method
input: a strictly feasible ū, initial ε, decrease rate μ < 1,

and tolerance γ
initialize: k := −1 and ε(0) := ε
repeat

k := k + 1
centering step: obtain ū(k) by solving P (ε(k)) with

initial solution ū
if ε(k) > γ/p then

ū := ū(k) and ε(k+1) := με(k)

until ε(k) ≤ γ/p ;
output: ū(k)

The barrier method is a general framework to solve prob-
lems with inequality constrains (and possibly linear equations)
by solving a sequence of unconstrained problems. The decrease
rate μ, the choice of initial solution, and initial parameter ε play
a part in the performance of the method.

A relevant issue is how to solve the centering problem P (ε).
Two algorithms are gradient descent and Newton’s method
using either exact or backtracking line search. Gradient descent
is simple because it needs only the gradient of θ and ensures
global convergence, but its theoretical convergence rate is only
linear. Newton’s method with line search also ensures global
convergence and its local convergence rate is quadratic, but it
is more complex since it needs the Hessian. Both algorithms
typically use a backtracking line search, except in situations
where the line search can be solved analytically.

B. Distributed Gradient Descent

Here, a distributed gradient descent method is proposed to
solve {Pm(ε)} instead of P (ε). The agents will produce a
series of iterates ū(k) that converges to the solution ū(ε). Given
the neighborhood variables ȳm, the centering sub-problem
associated with agent m is:

Pm(ε, ȳm) : min
ūm

θm(ūm) = fm(ūm, ȳm) + εφm(ūm, ȳm)

where φm(ūm, ȳm) = −∑
i∈h(m) log(−hi(ūm, ȳm)) is the

logarithmic barrier depending on ūm. Given (ū(k)
m , ȳ(k)

m ), agent
m produces the next iterate ū(k+1)

m as follows:

ū(k+1)
m = ū(k)

m − s(k)
m ∇θm(ū(k)

m )

where s
(k)
m > 0 is a step in the descent direction −∇θm(ū(k)

m ).
The Newton’s direction is another option. Here, the focus is
on the gradient descent direction for the sake of simplicity.

3829



Backtracking is an inexact line search that finds a step
yielding sufficient decrease in the objective. It depends on two
parameters, α ∈ (0, 0.5) and β ∈ (0, 1). The step s

(k)
m = βt

where t ≥ 0 is the smallest integer such that:

θm(ū(k)
m − βt∇θm(ū(k)

m )) ≤ θm(ū(k)
m ) − αβt‖∇θm(ū(k)

m )‖2

For small βt, backtracking eventually terminates since
θm(ū(k)

m − βt∇θm(ū(k)
m )) ≈ θm(ū(k)

m ) − βt‖∇θm(ū(k)
m )‖2 <

θm(ū(k)
m ) − αβt‖∇θm(ū(k)

m )‖2 with α < 1.
To ensure convergence of the sequence of iterates ū(k)

to a stationary point2 ū� to P (ε), and thereby an optimum,
some assumptions regarding the way the agents work and the
procedures they use to solve Pm(ε, ȳm) are established below.

Assumption 2: (Synchronous Work) If agent m updates its
variables in iteration k, then:

1) agent m uses ȳm = ȳ(k)
m to obtain an approximate

solution ū(k+1)
m to Pm(ε, ȳm) using the descent method;

2) ū(k)
m is not an optimal solution to Pm(ε, ȳm); and

3) each neighbor of agent m does not iterate, meaning that
ū(k+1)

i = ū(k)
i for all i ∈ N(m).

Assumption 3: (Maximum Work) If ū(k) is not optimal to
P (ε), then agent m(k) = argi∈M max{‖∇θi(ū

(k)
i )‖} per-

forms a backtracking line search, starting at ū(k)
m(k), to produce

a solution ū(k+1)
m(k) for iteration k.

Remark 2: θ(ū) = θm(ūm, ȳm) + θ̄m(ȳm, z̄m) for a suit-
able function θ̄m and all m ∈ M.

A perfect decomposition ensures the proposition below.
Proposition 1: ū is a stationary point to P (ε) if, and only

if, the pair (ūm, ȳm) is a stationary point to Pm(ε, ȳm) for all
m ∈ M.

The distributed gradient descent algorithm for solving P (ε)
is outlined in Algorithm 2. At each step k, the agents follow a
communication protocol to ensure that the agent of maximum
descent, m(k), iterates in parallel with any other set of
mutually decoupled agents. The set S(k) ⊆ M with the agents
that iterate satisfy the property that m(k) ∈ S(k) and i �∈ N(j)
for all i, j ∈ S(k).

The following proposition can be shown with a rigorous
convergence analysis of Algorithm 2.

Theorem 1: Under Assumptions 2 and 3, the distributed
gradient descent algorithm yields a sequence of iterates ū(k)

that converges to the optimal solution ū(ε) to the centering
problem P (ε).

IV. SIGNALING SPLIT CONTROL

An urban traffic network (UTN) is formed by several
roads interconnected by junctions where traffic lights may be
installed to coordinate conflicting traffic streams. The network
depicted in Fig. 1 has traffic lights in each junction.

The rising number of motor vehicles is pushing traffic
systems around the globe to operate near their limits, invariably
increasing congestion and the chance of grid locks that incur
delays, raise the level of emissions, and reduce safety and

2A vector satisfying first-order optimality conditions.

Algorithm 2: Distributed Gradient Descent Algorithm
input: a strictly feasible ū, barrier parameter ε,

backtracking parameters α ∈ (0, 1/2) and
β ∈ (0, 1), and tolerance γ

initialize: k := 0 and ū(0) := ū
while ‖∇θ(ū(k))‖ > γ do

let S(k) be a subset of non-neighboring agents
for each agent m ∈ S(k) in parallel do

obtain ȳ(k)
m from the neighbors i ∈ N(m)

s
(k)
m := 1

while θm(ū(k)
m − s

(k)
m ∇θm(ū(k)

m )) >

θ(ū(k)
m ) − αs

(k)
m ‖∇θm(ū(k)

m )‖2 do
s
(k)
m := βs

(k)
m

ū(k+1)
m := ū(k)

m − s
(k)
m ∇θm(ū(k)

m )
for each agent m ∈ M− S(k) in parallel do

ū(k+1)
m := ū(k)

m

k := k + 1
output: ū(k)

comfort of drivers and commuters [15]. One way to reduce
the side effects of congestion is the use of control measures
and strategies that optimize the performance of the existing
traffic infrastructure.

The influence of traffic lights on network flow is determined
mostly by the stage specification in each junction, the cycle
time, the offset between junctions, and split of green time [16].
[11] shows that the split control problem proposed in [16] can
be cast as a regulation problem in a linear dynamic network
with constraints on local control signals. The more general
constraint structure of the model presented in this paper allows
the enforcement of capacity constraints, namely a state variable
xi representing vehicles on road i can be subject to the road
capacity xmax

i .
Using the store-and-forward model illustrated in Fig. 3, it

is possible to obtain a mathematical model that describes how
the queue in a respective link evolves according to the initial
queue and the physical characteristics of the UTN. Extending
such model for all network junctions, the store-and-forward
model leads to the following dynamic equation:

x(t + 1) = Ax(t) + Bu(t) (12)

where x(t) = (x1, . . . , x17)(t) is the vector with the number
of vehicles in each link and u(t) = (u1, . . . , u17)(t) is the
vector with split signals. This dynamic equation depends on
the network topology, stage specification, cycle time, saturation
flows, and turning rates. Rather than enforcing the green
times to add up to cycle time at each junction, we impose
the constraint that this sum does not exceed cycle time and
the capacity constraints on the roads. This is expressed in
constraint (2a) using an appropriate matrix Dm and vector dm

at each junction m. And by constraint (2b) with xmin
m = 0 and

xmax
m at the capacity of road m.

The traffic-responsive urban control (TUC) strategy [16],
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Fig. 3. Illustration of the store-and-forward model.

[12] solves a linear quadratic regulation problem (LQR) to
obtain the green times. Because the LQR regulator does take
into account any restrictions, this strategy subsequently solves
an optimization problem to find the feasible control signals
that are closest to the unconstrained LQR signals. Alterna-
tively, some works stress that sliding-horizon control methods
[17], [18], such as model predictive control (MPC), are more
flexible, are easily adjustable, explicitly handle constraints, and
can potentially improve network performance.

As mentioned above, the constraints that force green times
to add up to cycle time were dropped because the capacity
constraints would invariably become infeasible. The store-
and-forward assumption that vehicles depart from a link at
saturation flow can lead the number of vehicles to become
negative, violating the lower bound constraint on road capacity.
Thus, our strategy revises the split signals given by the DMPC
framework by extending the green times until they add up to
cycle time. The extension is proportional to the green time of
each phase.

V. COMPUTATIONAL EXPERIMENTS

The purpose of this section is twofold. First, it aims to
compare the performance of the centralized and distributed
barrier methods with the performance of a standard algo-
rithm at solving the MPC problem. Second, it provides some
preliminary results from the application of the split control
model proposed in the preceding section and the standard LQR
strategy in a simulated scenario.

A. Numerical Analysis

The algorithms used compute the control signals were:

• Centralized Quadratic Programming (centQP ): where the
solution of P is obtained using a professional solver for
problems in the quadratic form with constraints;

• Centralized Barrier (centBr): the solution is reached
using the logarithmic barrier method (Algorithm 1);

• Distributed Barrier (distBr): the solution of P is obtained
with a network of agents, whereby sub-problem Pm is
solved by a different agent and the constraints are treated
with the barrier method.

The traffic scenario consists of the 8 junction UTN depicted
in Fig. 1. Following the store-and-forward model, we arrived
at the dynamic system (12) for traffic flow and subsequently
recast this system as a linear dynamic network consisting of

TABLE I
NUMERICAL RESULTS

distBr centBr centQP

T time objective time objective time objective
1 0.4110 8.4224e6 0.0511 8.4224e6 0.0390 8.4225e6
2 0.6306 8.6068e6 0.0738 8.6068e6 0.0595 8.6068e6
3 0.9054 8.6586e6 0.1838 8.6586e6 0.1254 8.6586e6
4 1.2081 8.6922e6 0.2905 8.6922e6 0.2169 8.6923e6
5 1.4704 8.7292e6 0.4524 8.7291e6 0.2431 8.7292e6
6 1.6502 8.7666e6 0.7493 8.7666e6 0.3505 8.7666e6
7 1.3686 8.7700e6 1.4777 8.7700e6 0.5182 8.7700e6

10 1.5650 8.7407e6 3.0855 8.7407e6 1.9167 8.7407e6
12 1.9610 8.7232e6 4.9732 8.7231e6 2.2237 8.7232e6
15 2.5023 8.6982e6 9.9076 8.6979e6 4.3631 8.6982e6

a sub-system for each junction. Along with this model, the
centralized barrier method (Algorithm 1) and the distributed
barrier method (which uses Algorithm 2 for solving the
centering problem) were coded in Matlab R©. The algorithm
QUADPROG available in Matlab played the role of centQP .

Several experimental conditions were set up by varying the
prediction horizon T , the decrease rate μ of the barrier method,
and the initial conditions (i.e., the initial state x(t) of the
network). Table I gives the results of these experiments. Time
is given in seconds and the accumulated objective is the sum
of the objectives over all experiments. For each horizon length
and algorithm, the table shows the average of 40 experiments
which were obtained by varying the initial conditions (10
random seeds) and the rate of decrease μ ∈ {0.1, 0.2, 0.4, 0.6}
for the interior-point methods.

The numerical experiments elicit two remarks: first, distBr

was slower than centQP and centBr for small horizon lengths;
second, the time consumption of the centralized barrier method
grows faster than its distributed counterpart as the horizon
length increases, which means that for a large scale network
the speed of the distributed approach may be competitive
with the centralized method. Fig. 4 more clearly shows the
computational growth of the algorithms as horizon length
increases.
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Fig. 4. Processing time.

B. Simulation Analysis

A simulation scenario based on the 8 junction network was
implemented with the Aimsun c© simulator. Fig. 5 illustrates the
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interface to Aimsun. Because the numerical results of centBr,
distBr, and centQP are essentially identical, it is plausible to
assume that the end performance of these methods will be
nearly the same. For this reason, only centBr and the TUC-
LQR strategy [16] were implemented in the simulator.

TABLE II
SIMULATION RESULTS

Statistics Strategies
TUC-LQR MPC

Delay Time Average (s/km) 144.59 142.92
Density Average (veh/km) 20.31 20.18
Flow Average (veh/h) 6210.67 6216.00
Speed Average (km/h) 22.24 22.25
Total Travel Time Average (h) 164.30 163.60

Details of the simulation set-up are as follows: the cycle
time was 120 seconds; the sampling time for the control
algorithms was identical to cycle time; the length of the
horizon was one; the decrease rate for the barrier method was
μ = 0.1; the lost time was fixed in 6 seconds; and the weights
on control action cost and state deviation from the nominal
state were the same for the design of the LQR control law and
the objective of the MPC problem.

Ten simulations of one hour long were performed with
different initial conditions. The averages of traffic statistics
over the results obtained from these simulations, with the split
signals being given by TUC-LQR and MPC, appear in Table
II. These results indicate that MPC is slightly better than the
TUC-LQR strategy.

Fig. 5. Aimsun simulation environment.

VI. CLOSING REMARKS

This paper presented a distributed optimization framework
for implementing distributed model predictive control of linear
dynamic networks. The work extends preceding research by
handling constraints on state variables that couple agents
through the constraint structure besides the objective. A dis-
tributed interior-point method that can reach optimal solutions
was outlined. Preliminary results from the application of dis-
tributed MPC to the green-time control in a traffic network are

also reported. Future research will be geared towards the full
development of theoretical results and an extensive simulation
analysis in large-scale traffic networks.
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