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Abstract— In this paper, we study the channel-aware
minimum-latency broadcast scheduling problem using the prob-
abilistic model. We establish an explicit relationship between the
tolerated transmission-failure probability and the latency of the
corresponding broadcast schedule. Such a tolerated transmission-
failure probability is calculated in the strict sense that the failure
to receive the message at any single node will lead to the entire
broadcast failure and only if all nodes have successfully received
the message, do we consider it a successful broadcast. We design
a novel reconfigurable broadcast scheduling algorithm such that
the latency is evaluated under such a strict definition of failure.
Our derived latency bound associated with this new randomized
algorithm is substantial to guarantee the low broadcast latency
for the complete broadcasting success thereby.

Index Terms— Wireless networks, scheduling, randomized al-
gorithm.

I. INTRODUCTION

Broadcast is a classical problem that arises in many appli-
cations of communications. For multi-hop wireless networks,
in particular, broadcast is a very time-consuming operation
because it involves tedious contention, collision, and conges-
tion. How to reduce the broadcast latency can be deemed
quite challenging. There exist many different approaches to
reduce the latency [1], [2]. Scheduling is one of the most
effective approaches. By carefully scheduling each node’s
message transmission, we can often avoid both interference and
collision. To achieve the minimum-latency broadcast schedule
with nearly optimal latency, we will focus on the randomized
scheduling algorithm in this paper.

The conventional network scheduling approach is often
based on the deterministic model, in which all message trans-
missions are assumed successful in the absence of interference.
For example, in the deterministic model, each receiver operates
on an imaginary transmission associated with an interference
range. That is, a receiver is guaranteed to receive a message
successfully at a certain time, if, at this time, exactly one node
(or transmitter) within its transmission range is transmitting
and no other node within its interference range is interfering
(i.e. transmitting another message). As a matter of fact, this
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assumption does not reflect the probabilistic nature of realistic
wireless communications. However, the practical interference
channel environment was not extensively addressed in the
existing literature. Hence, we would like to dedicate this paper
to the studies of the wireless broadcasting schedules in the
interference channels.

Henceforth, we would like to consider the broadcast sched-
ule problem in the interference channel characterized by the
signal-to-interference-plus-noise ratio (SINR). Moschibroda
and Wattenhofer considered the problem of scheduling in a
given network topology using the SINR model [3]. In practice,
we may not be able to often acquire the network topology
information in real time, if the interference is considered.
In other words, we need to do scheduling to broadcast the
messages throughout the entire network even in the dynamical
interference environment without constant network information
updates, but the previous work in [3] focused only on the
latency issue. We consider a more practical situation here.
In the wireless broadcast, a non-source node cannot transmit
a message unless it has already received from another node
beforehand. This assumption makes our work fundamentally
different from [3]. We impose a probabilistic restriction on the
successful message transmission arising from the interference
channels using the theoretical results in [4] where it was proved
that the data aggregation rates Θ((log n)/n) and Θ(1) are
optimal for the communication systems with the path-loss
exponents 2 < α < 4 and α > 4, respectively.

In this paper, we also consider the minimum-latency broad-
cast scheduling problem, in which the message transmission
failure is quantified in a probabilistic manner. Our studies
here can be deemed as a new attempt to design the effective
scheduling schemes for practical wireless networks in the
interference environment. We adopt the SINR model to tackle
this problem and establish an explicit relationship between the
tolerated transmission-failure probability and the latency of the
corresponding broadcast schedule. We calculate the tolerated
transmission-failure probability in the strict sense that a single
message-transmission failure will result in the failure of the
whole broadcast task. Only if all nodes have received the
message successfully, do we call it a successful broadcast task.
Our novel scheduling algorithm is designed in a very careful
way that, even under such a strict definition of failure, our
algorithm can still achieve a low broadcast latency to solve
the minimum-latency broadcast scheduling problem.

The rest of this paper is organized as follows. In Section II,
we present the network model, the crucial parameters and
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the assumptions to be used in later sections, particularly the
tessellation and the coloring techniques. We present our novel
randomized broadcast scheduling algorithm in Section III. A
concrete example is given in Section IV. In Section V, we
focus on a very important parameter γ, defined in Section II,
and discuss how to appropriately select it to make a fully-
connected network regime. Numerical results are given in
Section VI to evaluate our proposed method. Concluding
remarks will be drawn in Section VII. All the proofs for the
underlying theorems in this paper will be omitted due to the
page limit.

II. NETWORK MODEL AND PROBLEM STATEMENT

Let V be the set of nodes within the network of interest in a
two-dimensional Euclidean space, and each node is associated
with an identical transmission power P . According to physics,
we know that if a node u ∈ V (transmitter) is transmitting
with power P , the theoretical received signal strength Pv at
another node v ∈ V (receiver) is given by

Pv =
P

d(u, v)α
, (1)

where d(u, v) is the distance between u, v and α is a constant
called the path-loss exponent. A commonly assumed path-loss
exponent α is greater than two [5]. Hence, the theoretical
interference strength Iv is

Iv =
∑

w∈T−{u}

P

d(v, w)α
. (2)

In Eq. (2), T ⊂ V is the set of the nodes scheduled to transmit
in the current time slot, in which only u alone is the transmitter
and all other nodes are interferers. The SINR at v is thus given
by

SINRv =
Pv

N + Iv
, (3)

where N is the background noise power. The probability Pr[v]
characterizes that a node v receives a message successfully in
a time slot such that

Pr[v] = 1 − Ae−B·SINRv , (4)

where A, B are both positive constants dependent on the real
environment. Also, if Pr[v] is too small (i.e. smaller than
a threshold value pκ), we regard it as transmission failure.
Here pκ is called the transmission failure threshold probability,
which manifests the probabilistic nature of the successful
broadcast task.
Network Model: Given a set of nodes V and the system
parameters A, B, P , N , α, pκ, we define the relaxed threshold
radius rκ as

rκ = α

√
PB

(1 + γ)N ln A
1−pκ

, (5)

where γ > 0 is a constant called the relaxation factor. We
define the transmission graph GT as GT =

(
V,ET (rκ)

)
where ET (rκ) = {(u, v)|uv < rκ}. Note that the relaxed

threshold radius rκ as well as the edge set ET (rκ) depend on
the relaxation factor γ. We assume that GT is fully connected
by carefully choosing γ. Justifications for this assumption as
well as how to choose γ are given in Section V.

A. Problem Formulation

Given a set of nodes V , a source s ∈ V , and system
parameters A, B, P , N , α, pκ, we suppose that the graph
GT (which is only related to the system parameters A, B,
P , N , α, pκ) is fully connected by properly selecting γ and
every node knows its own location. An admissible broadcast
schedule can be represented as a collection of the subsets
{U1, U2, . . .} satisfying the following requirements: (1) for all
i, Ui ⊂ V represents the set of nodes scheduled to transmit in
time slot i; (2) a node cannot be scheduled to transmit unless
it has already received successfully from a neighboring node
in GT in an earlier time slot; (3) at the end, all nodes in V
receive the broadcasted message successfully at least once. The
latency of an admissible broadcast schedule is the first time
slot for (3) holds. Obviously, there will be different latencies
when different admissible broadcast schedules are employed.
The objective of the minimum-latency broadcast scheduling
(MLBS) problem is to find an admissible broadcast schedule
minimizing its latency.

In order to facilitate the problem clearly, now we introduce
the important terms, concepts, and methods that will be used
extensively throughout this paper.

B. Underlying Terms, Concepts, and Methods

Maximal Independent Sets (MIS): A subset S ⊂ V is an
independent set of G if the nodes in S are pairwise non-
adjacent, and a maximal independent set (MIS) S of G is an
independent set of G while no proper superset containing S is
an independent set of G. Any node ordering v1, v2, · · · , vn of
V induces an MIS S in the following first-fit manner. Initially,
S = {v1}. For i = 2 up to i = n, add vi to S if vi is not
adjacent to any node in U . Details of MIS can be found in [6].
Hexagonal Tessellation and Colorings: A tessellation of the
plane is a way of partitioning it into identical (or similar)
pieces. A hexagonal tessellation is partitioning the entire plane
into hexagons, as shown in Figure 1 (a). Each hexagon is
half open, half closed, without both the topmost and the
bottommost points, as shown in Figure 1 (b). We can color
this tessellation in various ways. Without loss of generality, in
this paper, we will choose the following coloring method.

Method 1: (Coloring Method) We introduce a new color-
ing method here for the future use in broadcast scheduling.
Given a hexagonal tessellation and a natural number k, let
r denote the radius of a hexagon. Define the vectors �x =
(3
√

3r/2, 3r/2) and �y = (3
√

3r/2,−3r/2) as shown in
Figure 1 (c). The lengths of �x and �y are both 3r. Repeat
the following process for all 1 ≤ i ≤ 3k2. Randomly pick
an uncolored hexagon whose center is located at �h. Color
all the hexagons with color i whose centers are located at
�h + ak�x + bk�y for some a, b ∈ Z.
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(a) Hexagonal tessellation (b) One hexagon

x

y

(c) �x and �y

Fig. 1. Illustration of hexagonal tessellation and coloring using �x and �y.

An Example of Method 1: Take k = 3 for example. Suppose
that we randomly pick up a hexagon H0 and color it as
i = 1. According to our coloring method, we should color
the hexagons whose centers are located at �h + 3a�x + 3b�y for
all a, b ∈ Z. We repeat this coloring task until i = 3k2 = 27,
by which we can color all hexagons.

Lemma 2.1: Method 1 results in a 3k2-coloring. Hexagons
attributed by the same color are separated by at least (3k−2)r.

Note that the procedure of Method 1 is not unique. There
are still many different ways to color these hexagons, and we
may just consider one of them without loss of generality. For
more details, see [7].

III. NOVEL RANDOMIZED BROADCAST SCHEDULING

ALGORITHM

In order to combat the minimum-latency broadcast schedul-
ing problem and to provide a low-latency solution, we pro-
pose a novel reconfigurable and channel-aware randomized
broadcast scheduling algorithm here. Our proposed algorithm
involves two phases, namely (1) virtual backbone tree con-
struction and (2) broadcast scheduling. Phase (1) is described
as follows. Given the network parameters stated in the pre-
vious section, we look at GT ’s Breadth First Search (BFS)
tree (refer to [8] for details), and then divide V into layers
L0, L1, L2, . . . , LR where R is the radius of GT associated
with source s. We sort all nodes in V according to their layers
in an ascending order. Let BLACK denote the MIS of GT

induced by such a node ordering. The nodes in BLACK
are referred to as the black nodes, or the dominators, since
BLACK is also a dominating set of GT . The nodes not
belonged to BLACK are called white nodes.

Now we can construct the virtual backbone tree. We do the
followings for all i from 1 to R − 1. For all black nodes v at
layer i + 1, find its parent p(v) in GT ’s BFS tree. Color p(v)
as blue. Find p(v)’s dominator dp(v) at either layer i or layer
i − 1. Finally we connect p(v), v and dp(v), p(v).

When the above loop finishes, we do the followings for
all the remaining white nodes u. Find u’s dominator du and
connect u, du. Finally the virtual backbone tree is therefore
constructed. Note that the layers of the BFS tree and those of
the virtual backbone tree may be different.

Define⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r1 = α

√
8P
γN

(
2

α−2 + 1
α−1 + 3

)

r2 = max

(
2rκ, α

√
24P
γN

(
2

α−2 + 1
α−1 + 3

))

Π1 = 3
⌈

2
3

(
r1
rκ

+ 2
)⌉2

, Π2 = 3
⌈

2
3

(
r2
rκ

+ 2
)⌉2

Π = Π1 + Π2

(6)

We can tessellate the plane into half-open half-closed hexagons
of radius rκ

2 , and apply Method 1 to carry out a Π1-coloring
with k =

⌈
2
3

(
r1
rκ

+ 2
)⌉

. We use C1 to denote this coloring
(C1 : R2 → N , where the coloring C1 transforms a hexagon
into an integer color index). Then, we apply Method 1 again
to carry out another Π2-coloring with k =

⌈
2
3

(
r2
rκ

+ 2
)⌉

. We
use C2 to denote this coloring.

Consequently, we can undertake Phase (2) in our proposed
scheme now. The broadcast scheduling algorithm based on the
constructed virtual backbone tree is described in Algorithm 1.

Algorithm 1 Randomized Broadcast Scheduling

1: repeat the following
⌈ ln(n/ε)

ln(1/(1−p2
κ))

⌉
times in parallel for

each node v that either is the source or has just successfully
received the message.

2: if v is black then
3: Wait until Time mod Π ≡ 0.
4: Schedule v to transmit to all of its child(ren) at

Time mod Π ≡ C1(v).
5: end if
6: if v is blue then
7: Wait until Time mod Π ≡ Π1.
8: For each black child w of v, v transmits to w in the

virtual backbone tree at Time mod Π ≡ Π1 + C2(w).
9: end if

10: until done

The latency associated with our proposed algorithm can be
evaluated using the following new theorem.

Theorem 3.1: In Algorithm 1 (we refer as Alg. 1 in brief),
the probability that all nodes have successfully received the
message by time

Π
p2

κ

[
R + ln(n/ε) +

√
2R ln(n/ε) + ln2(n/ε)

]
(7)

SMC 2009

1976



is at least 1 − 2ε.
Theorem 3.1 establishes an explicit relationship between the
tolerated transmission-failure probability 2ε and the latency
of the corresponding broadcast schedule we introduce in
this section. The tolerated transmission-failure probability is
calculated in the strict sense that even a message transmission-
failure at any single node will cause the whole broadcast
failure. Only if all nodes have successfully received the mes-
sage, do we call it a success. Theorem 3.1 tells us that this
probability is at least 1 − 2ε. The complete proof of this
new theorem is omitted and shown in our forthcoming paper
instead.

IV. ILLUSTRATION OF OUR PROPOSED ALGORITHM

We present an example here to illustrate the detailed pro-
cedure of our proposed algorithm in Section III. Suppose that
V , s ∈ V , and system parameters A,B, P,N, α, pκ are all
given and we have already chosen γ properly such that GT

is fully connected as depicted in Figure 2 (a). According to
our algorithm, we need to construct the virtual backbone tree
first. We start by constructing an MIS. In the BFS tree of
GT , the number on each node represents its layer. Then, we
sort all nodes according to their layers in an ascending order.
Therefore, we start from layer L0, which contains s only. We
add s to BLACK and move on to layer 1. Since all nodes
at layer 1 are adjacent to s, none of them can be added and
layer 1 is done. Likewise, now we work on layer 2. In a similar
manner, we then work on layer 3. The MIS thus contains seven
black nodes as depicted in Figure 2 (b). Those nodes which are
not labeled black are white. The details cannot be manifested
in graphics due to the figure limitation.

Based on the MIS, we may embark on constructing the
virtual backbone tree. We start from layer 2 since layer 1 does
not have any black node. For each black node at layer 2, we
find its parent node at layer 1 in the BFS tree, color it as blue,
and connect them. For each blue node, we find a black node
in either L1 or L0 (in this case L0) in the BFS tree. We repeat
this process at layer 3, find the corresponding blue nodes at
layer 2 in the BFS tree, and connect them. We repeat this
procedure until all layers in the BFS tree have been visited
(only up to layer 3 in this example). Finally we connect the
remaining white nodes. Ultimately, the virtual backbone tree
is thus constructed, as depicted in Figure 2 (b). The details
cannot be manifested in graphics due to the figure limitation.

Now, according to the definitions of Π1 and Π2 in Sec-
tion III, we calculate⌈

2
3

(
r1

rκ
+ 2

)⌉
= 4,

⌈
2
3

(
r2

rκ
+ 2

)⌉
= 5.

Therefore, Π1 = 48, Π2 = 75, and Π = 123. The colorings
C1, C2 are shown in Figure 2 (b) (c) and Figure 3 (a) (b),
respectively. In these figures, Figure 2 (b) and Figure 3 (a)
show the positions of the nodes while Figure 2 (c) and Figure 3
(b) show the overall colorings. We do not show the nodes
in part (b) simply to maintain the legibility. Note that C1

and C2 are constructed independently and their colors have

nothing to do with each other. Take s for example, C1(s) = 30
while C2(s) = 2. Now, according to Alg. 1, we group 123
time slots altogether as a unit and all black nodes (that have
successfully received the message) are scheduled to transmit
according to their C1-colors. In this example, there are 7 black
nodes with C1-colors 14, 15, 24, 29, 30, 35, 36. Therefore,
they should transmit in these time slots (colors) repeatedly
for every period consisting of 123 time slots. Blue nodes are
scheduled to transmit according to their black child(ren)’s C2-
color(s). In this example, there are 5 blue nodes. Take node v
for example; v has two black children with C2-colors 3 and
66, respectively; v should therefore transmit its successfully
received message in the 51st and 114th time slots (3+48 and
66+48) repeatedly for every period consisting of 123 time slots.
Each black node and blue node should start the transmission
once it has successfully received the message, and repeat such
transmissions for

⌈ ln(n/ε)
ln(1/(1−p2

κ))

⌉
times.

V. APPROPRIATE SELECTION OF THE RELAXATION

FACTOR γ

As discussed in Section II, the relaxation factor γ plays an
important role in our assumption of conditionally-full connec-
tion for any wireless network. We assume that we can always
make GT fully connected by choosing γ appropriately. Here
we will explain why this assumption actually makes sense in
the MLBS problem. Let us first revisit Eq. (4) in Section II and
find the minimum SINR to make the probability of successful
reception exceed the threshold probability. In other words, find
SINRv such that Pr[v] ≥ pκ. According to Eq. (4), it yields

1 − Ae−B·SINRv ≥ pκ. (8)

Therefore, e−B·SINRv ≤ 1−pκ

A , and SINRv ≥ 1
B ln 1−pκ

A .
Since both P and N are assumed to be constants, if there
is no interference involved at all, SINRv only depends on
the transmission distance r from the transmitting node to the
receiving node. From Eq. (8), we have

SINRv =
P

rαN
≥ 1

B
ln

1 − pκ

A
, and r ≥ α

√
PB

N ln A
1−pκ

.

(9)
Thereby, we define the threshold radius rκ0 as

rκ0 = α

√
PB

N ln A
1−pκ

. (10)

According to Eqs. (9) and (10), in order to make the reception
successful, the transmission distance must be less than or
equal to rκ0. Note that Eq. (10) is derived upon when there
is no interference. In the MLBS problem, it means that no
concurrent transmission is allowed. Therefore, it becomes a
trivial problem. In order to make this problem non-trivial,
we must accommodate the concurrent transmissions to some
extent by relaxing the threshold radius a little more. We define
the relaxed threshold radius as the maximum radius that makes
Pr[v] greater than the threshold probability, provided that the
overall interference is γN . In other words, we can tolerate up
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Fig. 2. Illustration of our proposed method for a topology with 48-coloring.
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Fig. 3. C2: 75-coloring (Π2 = 75). Actual nodes are shown in (a) only and the overall coloring is shown in (b).

to γN interference totally and still guarantee our scheduling
algorithm’s effectiveness. The above reasons lead us to define
the relaxed threshold radius in Eq. (5). The assumption that
GT is conditionally-fully connected is actually very reasonable
for the following reasons. On one hand, if GT is not fully
connected for any γ > 0, then no algorithm that allows
concurrent transmissions can have an admissible broadcast
schedule. On the other hand, if GT is not fully connected, the
MLBS problem still makes sense on the connected subgraph
containing the source node and our algorithm can still work.

Here we present how to choose γ appropriately. We choose
γ subject to the following criteria: (1) GT is fully connected;
(2) the overall latency is minimized.

Theorem 3.1 tells us that the latency is of order O(ΠR),
in which Π = O

(
( r1

rκ
+ 2)2 + ( r2

rκ
+ 2)2

)
. Moreover, r1 =

O(γ− 1
α ), r2 = O(γ− 1

α ), and rκ = O
(
(1 + γ)−

1
α

)
. Note

that R may be influenced by γ as well. Although there is
no explicit relationship between them, generally speaking, R
is proportional to 1

rκ
if nodes are distributed evenly, and the

latency is therefore O
(
(1 + γ)

1
α

)
. Consequently,

Π = O

((1 + γ

γ

) 1
α

)
(1 + γ)

1
α = O

((
1 +

1
γ

) 1
α

(1 + γ)
1
α

)
.

(11)
We can see that the latency tends to infinity when γ tends to
either 0 or ∞. The minimum latency value can therefore be
determined according to elementary calculus as follows. First
we determine the range along the real line such that GT is
fully connected in this range. We then express the latency as
a function of γ and seek its minimum within this range.

VI. NUMERICAL EVALUATION OF THE PROPOSED SCHEME

In this section, we show the numerical results according to
our latency formula presented in Sections III and V. We also
demonstrate the relation between the broadcasting latency and
the system parameters A, B, pκ and ε. In these numerical
evaluations, we fixed P

N = 5 and γ = 0.1 (except for Figure 4
(b)). We listed crucial parameters in Table I.

In Figure 4(a), we compared the transmission latency for
different pκ, in which the number of nodes in the network
ranges from 200 to 2000 (A = 0.6, B = 0.5, γ = 0.1, ε = 0.1).
When pκ is higher, the latency is relatively lower. For example,
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Fig. 4. Transmission latency versus its system parameters.

parameters description
A system parameter defined in Eq. (4)
B system parameter defined in Eq. (4)
pκ transmission failure threshold probability
ε half of the failure probability defined in Theorem 3.1

TABLE I

CRUCIAL SYSTEM PARAMETERS

when pκ=0.5, the transmission latency is about 3 × 104, and
when pκ=0.8, the transmission latency is about 2 × 104.

Figure 4(b) illustrates the relation between the latency and
the relaxation factor γ. The number of nodes still ranges from
200 to 2000 (A = 0.6, B = 0.5, pκ = 0.7, ε = 0.1). Note that
the latency decreases as γ increases. The reason for this is that
the number of nodes covered by a broadcasting action becomes
larger if the value of γ increases. Hence, the broadcast latency
is getting smaller when the value of γ increases.

Figure 4(c) illustrates the relation between the latency and
the maximum tolerable broadcast failure ratio ε. The number of
nodes ranges from 200 to 2000 (A = 0.6, B = 0.5, pκ = 0.5,
γ = 0.1). Note that ε is evaluated in a very strict manner that
even if a single node fails to receive the message, the whole
broadcast is considered failed. As in Figure 4(c), the lower ε
is, the larger the transmission latency. The increase of ε means
the probability of successful reception for each node decreases.
If a node fails to receive the broadcast message, it cannot relay
the broadcast later. Moreover, none of its children can relay it
later either. Obviously, as a result, the transmission latency is
surely smaller if ε is larger.

VII. CONCLUSION

In this paper, we study the minimum-latency broadcast
scheduling problem in the realistic probabilistic model and
establish a new explicit relationship between the tolerated
transmission-failure probability and the overall latency of the
broadcast schedule. We also design a novel algorithm which
can dynamically adjust the latency subject to the condition
of the interference channel. Our algorithm and analysis can be
deemed as the first attempt to combat the low-latency broadcast
problem for the scalable cognitive wireless networks in the
interference channels.
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