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and estimation of the required precision in Section V. A brief

conclusion appears in Section VI.

II. HARDWARE-BASED MACHINE LEARNING

Perhaps motivated by the high computational complexity

of many software-oriented machine vision algorithms, there

have been many attempts to create hardware implementations

which are able to identify and localize one or more object

in a given scene or an image, achieve high recognition per-

formance. There are studies about Pulsed Neural Network

(PNN) that employ Pulsed Neuron (PN) or Spiking Neuron,

focused on sound signal processing and object localization

and processing. The PN models employ leak integrators as

there internal potentials, and have the ability to adapt, much

better than traditional neural nets. Therefore the models can

deal with temporal signals without the windowing process.

The Kerneltron [9], [10], developed at John Hopkins is a

SVM classification module, with a system precision resolution

of no more than 8 bits. In [11] hardware implementation of

Decision Trees (DTs) is proposed. However to the best of

our knowledge, ours is the first attempt to implement RF in

hardware. We predict further progress using this approach.

A. Hardware implementations: problems and constraints

Any kind of implementation of machine learning algorithms

for vision problems, be it analog, digital, optical, brings along

various constraints:

• Algorithematic design: Automatic optimize settings of the

parameters

• Accuracy and efficiency: Hardware implementations can

only offer limited accuracy. Floating-point operations are

costly and complex in terms of hardware. Fixed-point

implementation of floating-point operations is one of the

classical techniques which may speed up the algorithm

with marginally lose in precision.

• Area: The tradeoff between accuracy required and hard-

ware (chip) area available. Accuracy often comes at the

price of an area penalty.

B. logarithmic Number System (LNS)

LNS is an alternative way to represent numbers beside the

conventional fixed-point and floating-point (FP) arithmetics.

The LNS represents a number by the exponent in a certain

base and a sign bit. The multiplication of two numbers is

simply the sum of the two numbers‘ exponent parts, log2(x ·
y) = log2(x) + log2(y). However, the addition of two LNS

numbers, log2|(X, Y )| = X + log2|1 + 2Y −X | is not a linear

operation and requires two fixed-point adder/subtractors, and

lookup-tables (LUTs) process (also classed Function Genera-

tors (FGs)). The size of LNS adders increases exponentially as

the operands‘ word lengths increase. Thus the LNS arithmetic

systems usually have advantages of low precision and constant

relative error, which are desirable features for portable devices.
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Fig. 2. (A) Rectangles are examples of possible regions for histogram
features. Stable appearance in Rectangles A, B and C are good candidates for
a car classifier while regions D is not. (C) Top, Points sampled to calculate
the LBP around a point (x, y). Bottom, the use of standard invariant feature
(SIFT). (D) Any region can be represented by a covariance matrix. Size of
the covariance matrix is proportional to the number of features used.

III. ALGORITHMTIC CONSIDERATIONS

The proposed object recognition approach consists of two

basic models, a model for object descriptor based on covari-

ance matrices [12], [4] and a classifier based on on-line variant

of RF implemented on FPGA using LNS.

A. Covariance Matrices Descriptor

We have used bag of covariance matrices1 (Fig.2), to

represent an object region.

Let I be an input color image. Let F be the dimensional feature

image extracted from I

F (x, y) = φ(I, x, y) (1)

where the function φ can be any feature maps (such as

intensity, color, etc). For a given region R ⊂ F , let {zk}k=1···n
be the d dimensional feature points inside R. We represent the

region R with the d×d covariance matrix CR of feature points.

CR =
1

n − 1

n∑
k=1

(zk − μ)(zk − μ)T (2)

where μ is the mean of the region R centered at the point.

B. Labeling the Image

We gradually build our knowledge of the image, from

features (Fig.2(C)) to covariance matrix (Fig.2(D)) to a

bag of covariance matrices (Fig.2(E)). Our first step is to

form a covariance matrix C from image features such that

each feature Z in C has an intensity value μ(z) and an

associated variance λ−1(z), so λ is the inverse variance, also

called the precision. Next, we group covariance matrices

as a set of spatially group feature in C that are likely to

share common label into a bag of covariance matrices. Then

estimate the bag of covariance matrix likelihoods P (Ii|C, Ii)
and the likelihood that each bag of covariance matrices

is homogeneously labeled. We use this representation to

1Covariance matrix correspond to small, nearly uniform regions in the image
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automatically detect any target in images. We then apply

on-line RF learner to select object descriptors and to learn an

object classifier.

C. RF for Recognition

A detailed discussion of Breiman’s RF [1] learning algo-

rithm is beyond our scope here. We refer the reader to [13],

[4] for a good introduction to our on-line settings of RF and

the details of solutions to on-line classification and incremental

vision. However, in order to simplify the further discussion, we

briefly define some fundamental terms:

Decision-tree. For the k-th tree, a random covariance matrix

Ck is generated, independent of the past random covariance

matrices C1, . . . , Ck−1, and a tree is grown using the training

set of positive (contains the object relevant to the class) and

negative (does not contain the object) image I , and covariance

feature Ck. The decision generated by a random tree corre-

sponds to a covariance feature selected by learning algorithm.

Each tree casts a unit vote for a single matrix, resulting in a

classifier h (I, Ck).
Forest. Given a set of M decision trees, a forest is computed

as ensemble of these tree-generated base classifiers h (I, Ck),
k = 1, . . . , n, using a majority vote.

Majority vote. If there are M Decision Trees, the major-

ity voting method will give a correct decision if at least

floor(M/2) + 1 decision trees gives correct outputs. If each

tree has probability p to make a correct decision, then the forest

will have the following probability P to make a correction

decision.

P =
b∑

i=floor(M/2)+1

(
M
i

)
p(1 − p) (3)

D. On-line RF for Recognition

To obtain an on-line algorithm, the steps above must be

on-line where the current base classifier is updated whenever

a new sample arrives. In particular our on-line RF involves

two steps in inferring the object category (Algorithm 1).

First, based on covariance object descriptor we develop a

new, conditional permutation scheme for the computation of

feature importance measure. Second, the fixed set tree K
is initialized, then individual trees in RF are incrementally

generated by specifically selected covariance matrix from the

bag of covariance matrices. For updating, any on-line learning

algorithm may be used, but we employ a standard Karman

filtering technique [15].

IV. HARDWARE ARCHITECTURE

A. FPGA Architecture

All FPGAs consist of three major components: 1) Logic

blocks (LBs); 2) I/O blocks; and 3) programmable routing,

as shown in Fig.3(A). A logic block (LB) is functionally

complete logic circuits, partitioned to LB size, mapped and

routed, and place in an interconnect framework to perform a

desired operation. Field programmability is achieved through

Algorithm 1 On-line Random Forests

1: Initially select the number K of trees to be generated.

2: for k = 1, 2, · · · , K do
3: T̀ b̄ootstrap sample from T initialize e = 0, t = 0, Tk =

φ
4: Do until Tk = Nk

5: Vector Ck that represent a bag of covariance is generate

6: Construct Tree h (I, Ck) using any decision tree algo-

rithm

7: Each Tree makes its estimation based on a single matrix

from the bag of covariance matrices at I
8: Each Tree casts a vote for most popular covariance

matrix at image I
9: The popular covariance matrix at I at is predicted by

selecting the matrix with max votes over h1, h2, . . . , hk

10: hl = arg maxy

∑K
k=1 I(hk(x) = y)

11: Return a hypothesis hl

12: end for
13: Get the next sample set

14: Output: Proximity measure, feature importance, a hypoth-

esis h

switches (Transistors controlled by memory element or fuses)

and each I/O block is programmed to act as an input or output,

as required, i.e., N-input LUTs can implement any n-input

boolean function. The programmable routing is also configured

to make the necessary connections between logic blocks, and

from logic blocks to I/O blocks. The processing power of an

FPGA is highly dependent on the processing capabilities of

its LBs and the total number of LBs available in the array.

Generally, FPGAs use logic blocks that contain one or more

LUT, typically with at least four-inputs. A four-input LUT can

implement any binary function of four logic inputs. Fig.3(B)

shows the architecture of a simple LB containing one four-

input LUT and one flip-flop for storage. LBS generally contain

dedicated carry circuitry in order to simplify implementation

of adders and multipliers. In our implementation, we keep

the arithmetic operations as a fixed-point addition for which

current FPGAs are applicable.

B. Transform into Log-domain

Implementing FP arithmetic operations on FPGAs is very

expensive in terms of the number of logic elements required.

Therefore it is often necessary to work with fixed-point

representations when implementing algorithms. Rather than

adapting the FP arithmetic we based on LNS, eliminate the

need for multiplications and division, allowing all operations

to be carried out using shifts and additions. In LNS, a number

x is represented in signed magnitude form, i.e., as a pair

(S, e), where x = (−1)s(r)e, S being the sign bit (which

is either 0 or 1 according to the sign of x) and e being the

signed exponent of the radix r. The exponent e is expressed

in fixed-point binary mode with say, I bits for the integer

part and F bits for the fractional part and one bit for the

sign of the exponent, i.e., with a total of (I + F + 1) bits.
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Fig. 3. (A) Granularity and interconnection structure of generic Xilinx
FPGA. (B) An architecture of a logic block with one, four-input LUT use
for implementation of memory and shift registers.

If the radix is considered to be 2, then the smallest number

that can be represented using the scheme is 2−N , where

N = (sI−1)+(1−2−F ) = (2I−2−F ). The ratio between two

consecutive numbers is equal to r2−F

, and the corresponding

precision e is roughly (lnr)2−F . Typically, if I = 5, F = 30,

and r = 2, we can have a precision of 30 bits in radix 2.

However, for the purpose of comparison with the precision

of FP representation, e will be assumed as 2−23(≈ 10−7).
Numbers closer to zero, are represented with better precision

in LNS than FP systems. However, LNS depart from FP in that,

the relative error of LNS is constant and LNS can often achieve

equivalent signal-to-noise ratio with fewer bits of precision

relative to FP architectures.

C. Object Recognition Architecture based on RF-LNS

Fig.4 Shows RF-LNS object classifier proposed in this

paper. The classifier consists of three main design block (a)

The LG block; (b) The ACC block; and (c) The SIGM block.

The Covariance Unit in Fig.1 contains all the features extracted

from an image in a form of bag of covariance matrices. The

output of covariance descriptor becomes the input of the RF-

LNS classifier. However, Function φ given by eq(1) consists of

float values which require much place for storing in an FPGA

memory. In order to reduce the hardware cost, we propose

to approximate the function φ using LG. This function will

transform float elements of the φ into binary elements. For

base learner we compute 16 covariance matrices in 32 bit

memory. Each base learner (decision trees) is treated as a Tree

Unit, estimated by a single covariance matrix selected from

bag of covariance. Basically the decision trees consist of two

types of nodes: decision nodes, corresponding to state variables

and least nodes, which correspond to all possible covariance

features that can be taken. In a decision node a decision is

taken about one of the input. Each least node stores the state

values for the corresponding region in the image, meaning

Bikes

LG

SIGM

ACC

Control Unit

LG
A bag of 

Covariance
Matrix RF-LNS

Fig. 4. Object Recognition Architecture

that a leaf node stores a value for each relevant covariance

matrix that can be taken. The tree starts out with only one

leaf that represents the entire image region. So in a leaf node

a decision has to be made whether the node should be split

or not. ACC block that does the accumulation operations at

each node. Once a tree is constructed it can be used to map

an input vector to a least node, which corresponds to a region

in the image. Then a decision tree can be converting into an

equivalent Tree Unit by extracting one logic function per class

from the tree structure. Each tree gives a unit vote for its

popular object class. Forest Unit is ensemble of trees grown

incrementally to a certain depth. The object is recognized as

the one having the majority vote, stored at Majority Vote Unit.

The SIGM block that performs the sigmoid evaluation function

for majority votes

V. EVALUATION METHODOLOGY

We have shown that objects in an image can be automati-

cally represented by bag of covariance matrices, then on-line

RF within LNS is employed to learn to recognize objects. We

now demonstrate the usefulness of this frame work in the area

of recognition generic objects such as bikes, cars, and persons.

A. Dataset and Tools

The functionality of the proposed system was simulated,

and the hardware is synthesized and programmed. We have

used data derived from the GRAZ022 dataset [8], a collection

of 640×480 24-bit color images. As can be seen in Fig.3, this

dataset has three object classes, bikes, cars and persons. Table

I reports the number of images and objects in each class, 380
images are available for background class .

TABLE I
NUMBER OF IMAGES AND OBJECTS IN EACH CLASS IN THE GRAZ02

DATASET.

Dataset Images Objects
Bikes 365 511
Cars 420 770
Persons 311 785
Total 1096 2066

2available at http://www.emt.tugraz.at/∼pinz/data/
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Fig. 5. Examples from GRAZ02 dataset [8] for four different categories: A)
cars, B) bikes, C) persons, and D).

B. Experimental Settings

Our RF-LNS is trained with varying amounts (10%, 50%
and 90% respectively) of randomly selected training data. All

images not selected for the training split were put into the

test split. For the 10% training data experiments, 10% of

images were selected randomly with the remainder used for

testing. This was repeated 20 times. For the 50% training data

experiments, stratified 5 × 2 fold cross validation was used.

Each cross validation selected 50% of the dataset for training

and tested the classifiers on the remaining 50%; the test and

training sets were then exchanged and the classifiers retrained

and retested. This process was repeated 5 times. Finally, for

the 90% training data situation, stratified 1 × 10 fold cross

validation was performed, with the dataset divided into ten

randomly selected, equally sized subsets, with each subset

being used in turn for testing after the classifiers were trained

on the remaining nine subsets.

VI. PERFORMANCES

GRAZ02 images contain only one object category per

image so the recognition task can be seen as a binary

classification problem: bikes vs. background (i.e., non-bikes),

people vs. background, and car vs. background. Generalization

performances in these object recognition experiments were

estimated by statistic measure; the Area Under the ROC Curve

(AUC) to measure the classifiers performance. AUC measures

of classifier performance that is independent of the threshold,

meaning it summarizes how true positive and false positive

rates change as the threshold gradually increases from 0.0
to 1.0, i.e., it does not summarize accuracy. An ideal perfect

classifier has an AUC of 1.0 and a random classifier has an

AUC of 0.5.

A. Finite Precision Analysis

The primary task here is to analyze the precision require-

ments for performing on-line RF classification in LNS hard-

ware. The RF-LNS precision was varied to ascertain optimal

LNS precisions and compare them against the cost of using

FP architectures. Tables II, III, and IV give the mean AUC

values across all runs to 2 decimal places for RF-LNS and

training data amount combinations, for the bikes, cars ad

people datasets respectively. The performance of RF-LNS is

reported with weight quantized with 4, 8, and 16 bits, and for

different decision tree depths, from depth = 3 to depth = 7. For

example a figure of 85% means that 85% of object images were

correctly classified but 15% of the background images were

incorrectly classified (i.e. thought to be foreground). For RF-

LNS to maintain acceptable performance, 16 bits of precision

are sufficient for all GRAZ02 categories, even when only 10%
training examples are used. Such low precision required by RF-

LNS makes it competitive with FP arithmetic for our generic

object recognition application.

B. Efficiency and Hardware area

In order to evaluate the efficiency of RF-LNS classifier

in terms of hardware area, 10- and 20-bit fixed-point (FX)

implementations were synthesized by Xilinx ISE XST for

comparison, and the resulting numbers of slices are shown in

Table V. It is note worthy that on most datasets; the RF-LNS

takes roughly the same number of slices as the inadequate

10-bit FX version. When compared against the more realistic

20-bit FX version, the RF-LNS classifiers are about one-half

the size of the FX classifiers. Our design also achieved a high

speed clock rate processing. For the 1-bit RF-LNS, the power

dissipation is small, and the area usage on FPGA is less than

2 percents.

VII. CONCLUSIONS AND FUTURE WORKS

Efficient hardware implementations of machine-learning

techniques yield a variety of advantages over software solu-

tions: increased processing speed, and reliability as well as

reduced cost and complexity. In this paper RF technique is

modified so that classification is performed by LNS arithmetic.

The model is applied for generic Object recognition task, it
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TABLE II
MEAN AUC PERFORMANCE OF RF-LNS ON THE BIKES VS. BACKGROUND DATASET, BY AMOUNT OF TRAINING DATA. PERFORMANCE OF RF-LNS IS

REPORTED FOR DIFFERENT DEPTHS (DTH).

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.79 0.79 0.77 0.81 0.81 0.81 0.81 0.80 0.83 0.83 0.83 0.83 0.81 0.84 0.83
50% 0.86 0.86 0.82 0.81 0.83 0.88 0.89 0.85 0.88 0.86 0.90 0.90 0.86 0.89 0.89
90% 0.80 0.81 0.81 0.83 0.88 0.87 0.87 0.87 0.88 0.90 0.90 0.91 0.90 0.90 0.90

TABLE III
MEAN AUC PERFORMANCE OF RF-LNS ON THE CARS VS. BACKGROUND DATASET, BY AMOUNT OF TRAINING DATA. PERFORMANCE OF RF-LNS IS

REPORTED FOR DIFFERENT DEPTHS (DTH).

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.66 0.70 0.70 0.75 0.71 0.68 0.73 0.73 0.76 0.73 0.71 0.75 0.75 0.77 0.75
50% 0.77 0.78 0.77 0.77 0.79 0.79 0.80 0.79 0.81 0.81 0.81 0.80 0.81 0.82 0.83
90% 0.77 0.75 0.75 0.73 0.79 0.81 0.81 0.78 0.78 0.82 0.83 0.83 0.81 0.80 0.85

TABLE IV
MEAN AUC PERFORMANCE OF RF-LNS ON THE PERSONS VS. BACKGROUND DATASET, BY AMOUNT OF TRAINING DATA. PERFORMANCE OF RF-LNS IS

REPORTED FOR DIFFERENT DEPTHS (DTH).

RF-LNS (4-bit Precision) RF-LNS (8-bit Precision) RF-LNS (16-bit Precision)
Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7 Dth=3 Dth=4 Dth=5 Dth=6 Dth=7

10% 0.83 0.73 0.77 0.77 0.79 0.77 0.74 0.80 0.79 0.81 0.80 0.78 0.81 0.81 0.82
50% 0.79 0.80 0.79 0.78 0.83 0.81 0.83 0.83 0.80 0.84 0.85 0.86 0.85 0.82 0.85
90% 0.80 0.80 0.81 0.78 0.83 0.81 0.82 0.82 0.80 0.86 0.88 0.86 0.83 0.83 0.87

TABLE V
SLICES USED FOR DIFFERENT TREE UNITS FOR EACH DATASET DURING

SYNTHESIS.

Dataset Tree Units 16-bit LNS 10-bit FX 20-bit FX
Bikes 3 315 219 576

4 498 407 713
5 611 622 878
6 823 835 1103
7 1010 974 1345

Cars 3 277 283 603
4 397 476 783
5 536 694 866
6 784 943 1002
7 989 1287 1311

Persons 3 336 318 409
4 534 535 657
5 765 689 845
6 878 926 1127
7 1123 1158 1287

shows that at low precision the RF-LNS hardware has signifi-

cant area savings, shorter word length compared to the fixed-

point alternative and statistically has the same performance

as software simulations. Our hardware-friendly algorithm that

has been described here is general towards the implementation

of FPGA. With these characteristics, RF-LNS may be a good

way for designing a real-time low power object recognition

systems. Further exploring precision requirements for hardware

RF-LNS, noise analysis to determine the robustness of the

hardware classifier and expanding LNS hardware architectures

to other machine learning algorithms are reserved for future

works.
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