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Abstract—The problem of finding the minimum input norm
required to bring a dynamical system from an arbitrary initial
state to a given end-point constraint set under specified state
constraints, in a finite time interval, is considered. Even when
there exists a control input which achieves the constraints, there
may not be one with a minimum norm. For input-affine systems,
it is shown that there is an admissible bang-bang control input
whose norm is arbitrarily close to the minimum-norm. Since
bang-bang functions are completely specified by their amplitude
and switching times, the optimal norm can be numerically
estimated by performing a finite dimensional search.

Index Terms—norm-optimal control, bang-bang approxima-
tion, state constraints

I. INTRODUCTION

Conventional concepts such as controllability [1] and con-
strained controllability [8, 9, 10] address the problems of
existence and characterization of bounded control inputs for
dynamical systems that can bring any initial state to any final
constraint set in finite time. This article attempts to compute
the minimum input amplitude required to accomplish the above
objective. We consider only input/state systems which are
affine in the input. Loosely, the problem addressed can be
described as follows: Consider the state variable description
of a dynamical system evolving over the finite time interval
[to, tf], of the form:

(t) = f(z,t) + g(z, t)u(t) z(to) =xo for tog <t < ty,
ey
where x(t) € R", u(t) € R™ for each ¢t € [to,ts]; and
f:R" x [to,ty] — R™ and g : R" X [to,tf] — R™™™ are
respectively vector valued and matrix valued functions with
suitable properties (to be detailed later). Assume that an end
point constraint set C' C R™ and a time varying state constraint
set G(t) are specified where G(t) C R™ for each t € [to, t¢].
Then find
inf sup [Ju(t)]oo )
u(t) [to,t /)
such that x(t) € G(t) for all ¢t € [to,tf] and z(ty) €
C. Here | - || denotes the standard [,, norm given by
max;=1,.._m |4;(t)|. The input that minimizes the norm while
satisfying the constraints, is called the norm-optimal control.
A precise definition of this problem is included in Section II.
If the problem is specified without state constraints i.e. when
G(t) = R™ for all t € [to,ts], then it is identical to the
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version treated, among others, by Fattorini in [11] and the
authors referenced therein, where the focus has been mainly
on linear time invariant (LTI) systems. We aim to provide an
approximate solution to the more general problem described
above, for possibly nonlinear systems, which are however
required to be affine in the input.

This problem arises in diverse practical applications. For
example, mathematical models of diseases and infections in
humans are being used widely for optimal drug dose calcula-
tion and treatment. In particular, mathematical models have
been proposed and used widely for the understanding the
interaction between the human immuno-deficiency (HIV) virus
and the human immune system [7, 6], for the glucose-insulin
interaction in diabetic patients [4] or for determining better
protocols for chemotherapy in cancer patients [15]. Moreover,
optimal control theory has been applied frequently on such
models to find out the optimal drug dosage and their expected
benefits and shortcomings [6, 13]. In such endeavors, finding
the minimum dose required to control the disease seems to be a
relevant (but unanswered) question, since very often enhanced
dosage of drugs are associated with unwanted side-effects and
high levels of toxicity. One of the possible applications of the
theory developed in this paper is to address such questions
efficiently and compute the minimum dose required to control
the disease into a satisfactory end state.

A linear version of the above problem with no state con-
straints was shown to be equivalent to the linear time optimal
control problem by Fattorini in [11], who used Bellman et
al’s formulation in [12] to prove this equivalence. Using
such equivalence, one can show that the solution to the norm
optimal problem turns out to be bang-bang for linear time
invariant systems. For general non-linear system with state
constraints, however, the above theory becomes invalid since
the existence of neither the norm optimal control nor the
time optimal control can be guaranteed. Even when the norm
optimal solution exists, the first order necessary conditions
used to characterize the solution are extremely complex in
general and of little computational use.

In view of these difficulties, we propose the following
methodology to estimate the optimal norm. In an appropriately
defined set of permissible controls (say U), assume that there is
at least one input (t) such that the solution to (1) under u(t)
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satisfies both the state constraint and the end-point constraint.
Then, there may or may not be a norm optimal control in U.
However there is always an input (say u®(t) € U) with a
norm that is arbitrarily close to the optimal norm; such that
the solution to (1) under u®(t) satisfies the state and end-point
constraint. If we could compute such an u“(t) we could get an
arbitrarily close estimate of the optimal norm. While it is not
known how to compute such a u*(t), we show that an input
equivalent to u“(t) can be found easily if one slightly enlarges
the constraint sets. It turns out that there is a bang-bang input
u® (t) whose norm is less than or equal to the norm of u®(t);
in addition, the solution of (1) under w*(t) lies within an
arbitrarily small distance of the original constraint sets. (Bang-
bang functions can be loosely defined as functions whose
components takes only one of at most two extreme values
for almost all of the domain. See (5) for a precise definition).
Such a small digression from the specified constraint sets is of
little importance in most applications. However, the fact that
this input is bang-bang provides us with an easy numerical
method for estimating the optimal-norm approximately. Recall
that the bang-bang functions are easy to compute as they
are completely characterized by their amplitude and switching
times. Hence, solution of the norm optimal control problem
reduces to a finite dimensional search among the switching
times and the amplitudes of the input components, instead
of the intractable dynamic optimization implied by (2). The
idea of approximating solutions to intractable optimal control
problems by bang-bang inputs was introduced in a different
context by Chakraborty and Hammer in [2, 3]. For the present
problem, this method enables one to estimate the minimum
norm and an approximate norm optimal control using bang-
bang functions only.

The rest of the article is organized as follows: Section
II defines the problem rigorously and introduces most of
the notations to be used in this article. The main results,
which show that the bang-bang function may be used for
approximately computing the optimal norm, are described in
Section III, while the application of the theory on a two state
example is included in Section IV.

II. MATHEMATICAL PRELIMINARIES

The problem described in the introduction will be made
precise in this section. Let the dynamical system be de-
fined as in (1). The control input u(t) is assumed to be
essentially bounded, measurable and hence belonging to the
Banach space By with the norm defined as |ju(t)||g =
es5SuPp, 4, [[u(t)[|c. Here || - | denotes the standard loc
norm given for m-dimensional vectors p € R™ by ||p|lec =
.m |pi| and for m x n real matrices P € R™*™ by
n | Pij| where P;; is the (4,5)-
element of P. Slmllarly denote the Banach space of state
trajectories with the supremum norm by Byx. The functions
f:R"x[to,ty] = R™ and g : R™ x [to,t;] — R™™™ are both
assumed to be Lipschitz continuous in z(t) and continuous in
t. In other words, for any ¢ € [to, ], there are real numbers
K, L > 0 such that ||f(z1,t) — f(22,8)]lcc < K||z1 — 22|00
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and ||g(z1,t) — g(x2,1)|l00 < Ll|z1 — 2|00 for all t € [tg, ty]
and for all 1, x5 € Bx . Moreover, both f and g are uniformly
bounded over [to,tf] for each solution to (1). Under these
conditions a unique absolutely continuous solution to (1) is
guaranteed to exist for every u(t) € By (e.g. see [14]) given
by

t

ot) =0+ [ 17(o.7) + gla, ulr)ldr

to
Hence the set Bx consists only of absolutely continuous
bounded functions.

Denote by P(R") := {A: A C R", A # ¢}, ie. the set
of all non-empty subsets of R". Then we can define a set
valued mapping from [to,¢f] to some subset of R™ as G(t) :
[to,tf] — P(R™). We require that the solution to (1) should
satisfy the state constraint:

() € G(¢) for all t € [to, t/] 3)

Moreover, let C' C R™ be an arbitrary non-empty set and we
require that the solution to (1) should satisfy the end-point
constraint of the form

z(ty) € C. @)
Then define the set of admissible controls as follows:

Definition 1. Denote the solution to (1) corresponding to input
u(t) € By as x(t;u(t)); then the set of admissible controls is
defined as U := {u(t) € By : z(t;u(t)) € G(t) forall t €
[to, tf] and x(ts;u(t)) € C}.

Under these assumptions, the problem described in the
introduction can be precisely stated as follows:

Problem 2. Let the set U be non-empty. Then find
inf,4)ev |lu(t)||5. Compute a norm minimizing input.

The solution to this problem by classical methods of optimal
control theory (such as [5]) turns out to be quite complicated.
The first question, which is in general difficult to answer, is
under what conditions there is at least one control which makes
the solution to (1) satisfy the constraints (3) and (4). Secondly,
even if we assume that there is at least one such control, it
is difficult to guarantee the existence of a norm minimizing
control without making further assumptions on the system and
state equations. These difficulties motivate us to propose the
following method which makes it possible to answer these
questions, as well as compute an approximate norm optimal
control. The trade off is an arbitrarily small enlargement of the
state and terminal constraint sets.

III. APPROXIMATE BANG-BANG SOLUTION

For the purposes of this article, we define a bang-bang
vector valued function as one, whose components take one
of at most two distinct values for almost all ¢t € [to,ty].
Formally, let h(t) : [to,tf] — R™ be a measurable essentially
bounded vector valued function with S = sup;cio s ;1 ha(t)
for i = 1,..,n and I' = infycp, ¢, hi(t) for i = 1,...,n.



Then h(t) is bang-bang if it is of the form

hi(t):{ St for t € Ts C [to, ty]

I for t € Ty C [to, ty] )

where the set {[to,ts] \ {Ts UTr}} has zero Lebesgue mea-
sure. The time instants when h(t) switches between the two
extreme values are called the switching times/instances of the
function. If it is known that h(t) has k switching instances
in each of its components, then it is completely characterized
by the upper and lower bounds {S¢ I} i = 1,...,n and the
(nk x 1)-vector of switching times.

In this section we will show that the norm optimal control
of Problem 2 can be replaced by a bang-bang control function
of the form (5) with a finite number of switching times. The
amplitude of this bang-bang function will closely approximate
the infimum norm of Problem 2. We make the following
assumption.

Assumption: The set U of definition (1) is non-empty.

Let p = inf,ev ||u(t)||s and p. = p + e. Since U
is non-empty, for any e > 0, there exists u®(t) € U
such that [|[u®(t)||p < pe. We will consider u®(t) to be
the e—approximate solution to Problem 2. It turns out that
u®(t) can be approximated by a bang-bang function (say
u®(t)) in the sense that the state trajectory generated by
u®(t) matches closely with that generated by u™® (t). Moreover,
[lut(®)||s < pe. Recall that the optimal norm p and the
function u“(t) are both unknown and cannot be characterized
easily. This makes them extremely difficult to compute from
the given data. However, u®(¢) is much easier to compute
since, bang-bang functions are completely specified by their
upper and lower bounds and their switching times. Therefore,
we can search for u™ (t) instead of u®(t); and for this purpose
it is enough to check among the possible switching times
and amplitudes of the bang-bang function u*(t). Thus, the
infinite dimensional norm optimization problem reduces to a
finite dimensional search over the amplitude and the switching
instances of u*(t).

The following theorem and subsequent corollaries show that
given any e-optimal solution to Problem 2, there is a bang-
bang input with approximately the same norm, which drives
the solution to (1) within arbitrarily close distances of the state
and end-point constraints.

Theorem 3. Let u®(t) € U be an c-optimal solution to
Problem 2 and denote the corresponding state trajectory
generated by (1) as z®(t) := x(t;u®(t)). Similarly denote the
state trajectory generated by (1) due to the action of the bang-
bang input u* (t) as xF(t) := x(t;u*(t)). Then for any § > 0,
there is a real number ¢ € [ty,ts] and a bang-bang function
u®(t) € By such that the following holds:

(i) [0 (8)llo < pe for all £ € [to, 9]

(ii) uT(t) has a finite number of switches in the interval
[to, ¢].

(iii) the discrepancy between the state trajectories ||x*(t) —
2 () ||loo < 0 for all t € [ty, ).

Proof: Under the assumptions of Section II, there is a
unique solution to (1) to any input u(t) € By over [to,ts]
given by:

t

z(t) =x0 + flz,m)dr +/ g(x, T)u(r)dr (6)

to to

Now, let > 0 be a real number. Since g(z(t),t) is
uniformly continuous in ¢ over any finite interval of time,
there is a real number £() > 0O such that the function
p(t's 1) == g(a(t'),¢) — g(a"(t), 1) satisfies [|pu(t', t)]|oc <1
whenever |t' —t| < &(n) and t',¢ € [to,ts]. By assumption,
the matrix valued function g is uniformly bounded for every
solution x(t) and for each ¢ € [ty, tf]. Hence there exists a real
number N < oo such that N = supycy, ¢, 19(2%(2), )| oo

Next, let ¢ € (to,ts) be a real number (to be chosen later)
and let 0 < v < &(n) be any number for which the ratio (¢ —
to)/7y is an integer. We build a partition of the interval [tg, ¢]
into segments of length v, namely, the partition determined
by the intervals [to + ¢7,t0 + (¢ +1)7], ¢ =0,1,2, ..., ((¢ —
tg)/v) — 1. We build a bang-bang input function u*(t) =
(ui (t), uf (t), ..., uE ()T, to <t < ¢, (where the superscript
T denotes the transpose) as follows: for the component u?[(t),
select in each interval [tg + gy, o+ (¢+ 1)) a switching time
04 and set

ub(r): = (P fert€liotany) ™
—pe for t € [Ogi,to + (¢ +1)7)

q= 0, 1727 ceey ((¢ - tO)/V) -1

1 = 1,2,...m. For each such component function, we have

to+(gH1)y + Oai to+(g+1)

-t(lOleI’Z "/ui (T)dT = Pe. t(1q+f1’Y dr — Pe [957 ! ’YdT .:

pe[2(04i — gy —to) — 7). Now, select 6, to satisfy the equality
1

pel2(04i — gy —to) — 7] = tzoj;3+ » u¢(T)dr. Note that

exists due to the fact that |uf(¢)| < p. for all ¢ € [to,ts]. For

this value of 0,;, we obtain the equality

to+(g+1)y
[ e -l =o ®)
to+qy
forall i =1,2,..m and all ¢ =0,1,2,...,((¢ — to)/v) — 1.
For the following, denote by || - [|¢ := esssupp, ¢ I * [loo-

Now consider the difference in trajectories (6) for the same
system sample (i.e. system (1) starting from the same initial
condition xq):

l2%(t) = == (®) 4

- ’ /t:[f(x“.,T) — f(a®, 7))dr

+ / g%, )l () — gla®, Ty (r)]dr

to

@
t

< [ Klat(t) —a* ()] pdr
to

/ gz, 7)u(7) + g(a®, ) (7)

— gt Pt (r) — glat, Tyt ()|,

"
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<K (t—to)l|2(t) — 2= (t)[lo

+ t[ (% 71)— ($i,7')]ui(7')d7'
oo
| [ atat ) — e
to ¢
<K(t—to)llz*(t) — 2% (1)l
+/t/L||90a(t) — 2= ()| plu™(t) || pdr
| [ ottt o) = e
to ¢
(K + Lpe)(t — to) |z (t) — 2= (1)l
+ (2%, 7)[u®(7) — u*(7)]dr
‘ /tD g(w [u u ] ,

Denote ga(t) = g(.’L‘a(t)7t) and w(t) = m
Now choose ¢ € (to,ts] such that (K + Lp.)(t —ty) < 1
for all ¢ € [to,¢]. Denote the maximum value of ¥(t) =
m by W; then ¥ > 0. Moreover for any given
t € [to, @], choose an integer ¢ > 0 such that ¢t + ¢y < t <
to + (¢ + 1)~. This implies that

[l (t) = 2=l

<Y f g% (Nu(r) — u*(r))dr|s

9=l to4(r4+1)y
Z / g°(7) [u(r) — u*(7)] df]

o+7r7y

<v

t

9°(7) [ua(r) — (7‘)] dr

t0+q’Y ¢

q—

Z (to + 1) /

r=0 to+ry

to+(r+1)y
[ua(T) — ui(T)] dr

@

—L sto+(r+1)y
+ / w(T,to +r7) [ua(T) - ui(T)] dr
t

r=0Ytot+ry
t
[ e -] ]
to+qvy ¢
q to+(r+1)y
<y | sup o 7)o
r—0 7 to+ry [to+rvy,to+(r+1)7]
[ (8)ls + = @)llo] } dr
t
w0 [ g @ Ol + O] dr
to+qy

<2Upc(nd + Nv)

Finally, choose the value of 7 so that 2¥p.n¢ < §/2. Then,
choose ~ so that

0 <~ <min{&(n),d/(4¥Np.)} )

@

)

and (¢ — to)/~ is an integer. For these selections, we obtain
lz9(t) — 2*(t)||ee < & for all t € [0,¢], and our proof

concludes. ]

Clearly the above theorem may be used to piece together
the approximate response over the entire interval of interest
i.e. [to,ty]. Consider the following Corollary.

Corollary 4. Under the notation of Theorem 3, for any § >
0, there is a bang-bang function u*(t) € By such that the
following holds:

(i) ||ut(t)]| oo < pe for all t € [to,tf]

(ii) u(t) has a finite number of switches in the interval
[tOv tf]'

(iii) the discrepancy between the state trajectories ||x*(t) —
()00 < 8 for all t € [to, ty]-

Proof: From theorem 3, we know that for any §y > 0 there
is a ¢ € [to, ] and a bang-bang input with a finite number of
switches, say u®*(t) such that ||2%(t) — 2% () s < o for all
t € [to, ¢]. Divide the time interval [to, ¢ 7] into sub intervals of
length less than or equal to ¢ such as defined by the partition
{to,to+¢,to+2¢, ...,to+ne,t s} where n is an integer such
that n > 2= _ 1. Now, by the application of u%*(¢) over
[to, #] we have||z%(¢) — 2F(9)]lco < Jo.

Next, denote by || - [l2 1= €55 SuP(, 4, 10+2¢] || * loo- Now
for any d; > 0 we can define the bang-bang input ub(¢)
exactly as in Theorem 3, over the interval [to+ ¢, to+2¢] such
that the discrepancy in the trajectories generated by u“(t) and
ubE(t) over the interval [ty + ¢, to + 2¢] is

[l (t) = 2= (1) 126
= [[z*(¢) — 2™ (9)]

2%, 7) — flat, 7)dr
+/t0+¢[f( 1) — fat,7)ld

t
[ loat )~ glat (s
to+¢ 24
<[l () — 2* (@),
it
[ et - st ol
to+o
t
[l )~ glat (s
to+¢ 2¢
<dp + 01
Using similar arguments over all the n + 1 parti-

tions of [to,t;] and for any sequence of real numbers
do, 61, ...0n, there is a sequence of bang-bang control in-
puts u%E(¢), ubE(t),...,u™*(t), each with a finite number
of switches, and defined over the consecutive sub intervals
[t0, to + @], [to + ¢, to + 2¢], ..., [to + ne, ts] such that

sup [|#%(t) — 2 (t)]|oo < G0 + 01 4 o 4 On

[tosty]
But for any given 6 > 0 we can choose J; % (1 =
0,1,...,n), such that supy, ;1 [|2%(t) — oE(t )HOO < 4. Conse-
quently, the required bang-bang function ui(t) can be created
by the concatenation of the sequence of bang-bang controls
u®E (), ub*E(t), ..u™*(t) such that the resulting bang-bang
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function has the following form

u®* (t) for ¢ € [to, 0 + ¢
Lo ) ubEE) fort € [to +id, to + (i + 1)¢],
u(t) = i=1,.,n—-1
un,i(t) for t € [ty + nd, tf]

Remark 5. In Theorem 3 and, consequently in corollary 4, the
cost of making the error § smaller is an increase in the number
of switches of the bang-bang function u*(¢). This can be seen
by examining inequality (9): to maintain the inequality, v must
be decreased as ¢ is decreased. According to (7), the number
of switches is (in general) (¢ — t)/~, so that a decrease of
leads to an increase in the number of switches.

Theorem 3 and Corollary 4 shows that a bang-bang input
u®(t) can be constructed with the same norm as u®(t) and
that the state trajectories generated by the bang-bang input
are arbitrarily close to those generated by u®(t). Since the
trajectories generated by u*(t) obey the state and the end-point
constraint by assumption, it is easy to see that the trajectories
corresponding to u*(¢) will either satisfy the constraints or
be in arbitrarily small neighborhoods of the constraint sets.
Denote the d-neighborhood of the state constraint set G(t)
as Ba(G(t)) = {Z(t) € Bx : infc(t)eG(t) SUD[t,,¢4] Hc(t) —
z(t)|loc < 6} and the d-neighborhood of the end-point con-
straint set C by Bs(C) = {z € R" : infecc |lc — 2|00 < 3}

Corollary 6. Using the notation of Theorem 3, and for any
6 > 0, the state trajectory generated by the bang-bang input
u®(t) satisfies x%(t) € Bs(G(t)) and z*(ty) € Bs(C) for
all t € [to, ty).

Proof: From Corollary 4, for any § > 0, there is a bang-
bang input uF(¢) € U with a finite number of switches and
with |4 (t)]|se < pe such that SUP(4 4] llz®(t) — 2% (1) ||loo <
§. But according to hypothesis, z%(t) € G(t) = 2t(t) €
Bs(G(t)) for all t € [tg,ts] and z%(t;) € C = 2% (ty) €
Bg(C) |

IV. NUMERICAL EXAMPLE

We demonstrate the application of the theory developed in
the previous sections on the following example. Consider the
system described by the equations:

B1(t) = —2z(t) + (1 — thu(t)
ia(t) = @2(t) + (1 —t)u(?) (10)

over the time interval [0, 1] seconds. Here the input is u(t) € R
for each ¢, and z1(t) and x5(t) are the two states. The initial
values of the two states are z1(0) = 1 and z2(0) = —1. We
assume that there are no state constraints, i.e. G(t) = R? for all
t € [0,1] and the end point constraint set C C R2 is described
as C := {(y,2) € R? : |y| < 0.02,]2] < 0.02 and |y —
z| < 0.01}. In other words we require that |21(1)] < 0.02 and
|z2(1)] < 0.02 and |z1(1) — z2(1)| < 0.01. Recall that the set
of admissible control inputs U was defined to consist of those
inputs for which the solution to (10) satisfies the end-point

input
o

0 0.2 0.4 0.6 0.8 1
time in sec

Fig. 1. Approximate norm-optimal bang-bang control input

constraint. The objective is to find the minimum norm input
among the elements of U.

It is easy to check using standard controllability Gramian
tests that a bounded w(t) exists such that the end-point
constraint is satisfied. For example, the input u(t) = 1(1 —
t)(—14.56e% +38.66e ") is clearly admissible. One can check
that with this input, system (10) evolves from the initial values
to the final constraint set in the stipulated one second and that
the maximum norm of this input is supyg ;y [|u(t)[|ec = 12.05.
Hence the set U is non-empty. Thus the theory developed
above is applicable and we should search among bang-bang
inputs with varying amplitudes and different switching times
until we find the bang-bang input with the minimum norm
that closely satisfies the end-point constraint. In particular, the
time interval of [0, 1] was discretized and for each choice of
amplitude, two families of bang-bang functions were created
over this discretization with one and two switches respectively.
The amplitude was varied between —12.05 and 12.05. It was
seen that the minimum norm that was achieved by a single
switch bang-bang function was not appreciably improved by
increasing the number of switches to two. According to Re-
mark 5, the error should decrease with an increasing number
of switches. Since, in this case, the increase of switches from
one to two does not lead to an appreciable improvement
in the minimum norm required, we choose the input with
approximately the minimum magnitude of 6.2 as

+ 6.2 for ¢t < 0.39 seconds
u™(t) =
—6.2 for t > 0.39 seconds

These results are shown in Figure 1 and Figure 2. Clearly the
end-point constraints are satisfied.

V. CONCLUSION

In summary, this article develops a methodology of esti-
mating the norm-optimal control for control-affine nonlinear
systems under arbitrary state and end-point constraints. The
theory developed converts the otherwise intractable dynamic
optimization into a finite dimensional optimization problem in
the amplitude and switching times of the bang-bang approxi-
mant. Efficient numerical techniques for the application of this
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state values

[ 0.2 0.4 0.6 0.8 1
time in sec

Fig. 2. State Trajectories

theory are being currently developed.
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