
978-1-4244-2794-9/09/$25.00 ©2009 IEEE                         

Generalization of the No-Free-Lunch Theorem 
Albert Y.S. Lam and Victor O.K. Li 

Department of Electrical and Electronic Engineering 
The University of Hong Kong 

Hong Kong, China 
{ayslam, vli}@eee.hku.hk

Abstract— The No-Free-Lunch (NFL) Theorem provides a 
fundamental limit governing all optimization/search algorithms 
and has successfully drawn attention to theoretical foundation of 
optimization and search. However, we find several limitations in 
the original NFL paper. In this work, using results from the 
nature of search algorithms, we enhance several aspects of the 
original NFL Theorem. We have identified the properties of 
deterministic and probabilistic algorithms. We also provide an 
enumeration proof of the theorem. In addition, we show that the 
NFL Theorem is still valid for more general performance 
measures. This work serves as an application of the nature of 
search algorithms. 
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I. INTRODUCTION

Search techniques have been widely employed to solve 
different types of problems, ranging from sorting to 
optimization. The common objective of such search algorithms 
is to find an appropriate solution with desirable properties 
described by the problem. The general practice in solving 
search problems is: we have a problem and then try to propose 
an algorithm which can find the desirable solution of the 
problem among many other solutions. Most of the time, we 
keep on developing algorithms according to our experiences, 
intuition, and by trial-and-error. However, many problems in 
science and engineering can be reducible to the standard NP-
hard or NP-complete problems [1]. According to the general 
belief in the research community, P NP. In other words, 
attempting to find an algorithm which guarantees the desirable 
solution in polynomial time for these problems is futile. 

Until the development of stochastic search algorithms a few 
decades ago, there were no easy and effective ways to handle 
NP-hard and NP-complete problems of large size. Stochastic 
search algorithms do not guarantee the best solutions in 
polynomial time, but they can normally generate good 
solutions for a wider range of problems in a reasonable period 
of time, when compared with deterministic algorithms. 
Suppose we compare the performance of a deterministic 
algorithm to that of a probabilistic algorithm. Assuming they 
have the same input and running time, the set of possible 
outputs generated by the latter must be larger. Each output may 
correspond to good performance for a particular problem. Thus, 
we conclude that the probability of a probabilistic algorithm 
generating outputs with good performance for a larger range of 
problems is higher. A “good” solution here means that it is 
within certain tolerance of the best solution. In science and 

engineering, good solutions are generally sufficient to fulfill the 
requirement of various objectives. 

Most of the stochastic search algorithms are nature-inspired. 
Examples include Genetic Algorithm (GA) [2, 3], Simulated 
Annealing [4], Ant Colony Optimization (ACO) [5, 6], and 
Chemical Reaction Optimization [7]. There are also algorithms 
which are not adapted from natural processes, e.g., Tabu 
Search [8]. We generally classify the algorithms into heuristics 
and metaheuristics. The former refers to those which are 
specialized to address certain classes of problems, but normally 
give unfavorable solutions to other problems. The reason is that 
problem-specific information has been embedded in the 
algorithm development process, and thus, they are tailored to 
the specific problems very well. However, when they are 
applied to other problems, the embedded problem-specific 
information will not be useful anymore and they result in bad 
performance. On the other hand, the latter is not tailor-made for 
any particular problems and does not contain any problem-
specific information. When compared with heuristics, 
metaheuristics can be applied to a wider range of problems 
with good performance. Thus, there is an accuracy-flexibility 
tradeoff between heuristics and metaheuristics. 

Most of the stochastic search algorithms are metaheuristics. 
Whenever a metaheuristic appears to work well on a particular 
problem, greedy approaches or heuristic components may be 
added. This is tantamount to including more problem-specific 
information to the metaheuristic and making it more heuristic-
like. According to the No-Free-Lunch Theorem [9, 10], the 
resulting metaheuristic is no longer able to solve other 
problems as well as before. In other words, we sacrifice 
flexibility for accuracy. 

Different metaheuristics are developed based on distinct 
underlying mechanisms or phenomena. For example, GA is 
based on the idea of natural selection of living organisms while 
ACO makes use of the ecological behavior of ants in finding 
food. Although metaheuristics can be applied to a wide range 
of problems, they do have different performance when applied 
to different classes of problems. Then it is natural to ask “Is it 
possible to have a metaheuristic which is universally better 
than the others?” “Universally better” can be interpreted in the 
sense that the metaheuristic can solve more problems with 
better solutions. Some research is dedicated to developing 
universally better metaheuristics and it is claimed that some 
search algorithms can beat others on average [2]. 

Most research focuses on the construction of search 
algorithms. There was hardly any work on the theoretical 
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foundation until Wolpert and Macready proposed the No-Free-
Lunch (NFL) Theorem [9, 10]. It states that all search 
algorithms perform statistically identically on solving 
computation problems. In other words, it is theoretically 
impossible to have a best general-purpose universal search 
strategy [11]. The NFL Theorem is controversial and raises 
many discussions (e.g. [12]) on its impact and correctness. 

The search for a best general-purpose metaheuristic will be 
futile if the NFL Theorem holds. We believe that the theorem is 
correct and the conservation of performance for search exists. 
As the NFL results are important, we examine [9, 10] carefully 
again. We enhance and demonstrate the theorem with the 
nature of search algorithms [13]. The contributions of this work 
include clarifying the properties of NFL-governed algorithms, 
providing a verification method of the theorem, and 
generalizing the performance measures. The rest of this paper 
is organized as follows. Section II describes the terminology 
used in search and optimization, and the NFL Theorem and its 
extensions. In Section III, we introduce the nature of search 
algorithms. We demonstrate some enhancements and an 
enumeration proof of the theorem in Section IV and conclude 
this paper in Section V. 

II. RELATED WORK

A. Terminology 
We describe a search problem as a function f F with an 

argument x X  and a functional value y Y , i.e. ( )f x y . X
and Y are discrete and finite1. We assume that their cardinalities 
are equal to |X| and |Y|, respectively, and thus, | || | | | XF Y . Let a
be a deterministic non-potentially retracing search algorithm [9, 
10]. At iteration m {1,2,...,| | 1}X , a takes a history md

1 1 2 2[( , ),( , ),...,( , )]m mx y x y x y  as input and outputs 1mx , i.e. 
1( )m ma d x . (We also use d to refer to a history in general.) Let 

x
md and y

md denote the x- and y-components of md .
“Deterministic” means that a produces the same 1mx with 
probability one whenever given the same md , while “non-
potentially retracing” indicates 1

x
m mx d .

B. An Overview of the NFL Theorem 
The NFL Theorem is firstly proposed in [9, 10], and 

consists of several results. The most representable one, which 
establishes the core idea, is Theorem 1 in [10]. Mathematically, 
it states that for any pair of deterministic algorithms 1a and 2a ,

1 2( | , , ) ( | , , )y y
m m

f F f F
P d f m a P d f m a

where 1( | , , )y
mP d f m a represents the probability of having y

md
given f, m and 1a . Note that each f is taken from F with the 
same probability. Equation (1) means that for any possible m,
the performance of an algorithm (which can be obtained 

                                                          
1 The discreteness and finiteness are trivial if we employ a digital 

computer to solve the problems. X and Y represented in a computer 
must be discrete and finite. 

from ( )y
mP d ) is independent of the algorithm itself, when every 

f F is evaluated once. In other words, all algorithms 
(heuristics or metaheuristics) have equal performance when 
averaged over all possible functions. However, the theorem 
does not hold when we focus on a certain class of problems. 
Thus it is still possible for an algorithm to outperform another 
one in this situation. 

C. Extensions 
The original NFL Theorem requires all possible functions 

to be evaluated. Some researchers think that this requirement is 
far from reality as some functions are more practical (i.e. have 
higher probability of occurrence) than the others. In [14], the 
authors consider some special subsets of F and propose the 
sharpened NFL Theorem. It states that the original NFL 
Theorem stills hold in a subset of F provided that the subset is 
closed under permutation (c.u.p.). Igel and Toussaint study the 
necessary and sufficient conditions such that the NFL result 
holds in non-uniform distributions of functions in a c.u.p. 
subset [15]. Steeter investigates classes of functions where the 
NFL Theorem does not hold [16] while an Almost No Free 
Lunch Theorem is proposed to demonstrate how the result can 
hold approximately [17]. More people have realized the 
importance and impact of the NFL Theorem. The research 
community has been getting more interested in it and related 
papers are published every year. 

III. NATURE OF SEARCH ALGORITHMS

Previously, we worked out the nature of search algorithms, 
which is focused on the algorithmic perspective, instead of the 
functional viewpoint [18]. We will highlight the major results 
below. For more details and proofs, interested readers can refer 
to [13]. 

We adopt the same working principle of search algorithms2,
described in Subsection II-A. With the sets X and Y defined, we 
can determine the whole set of functions F. Algorithms work 
on functions and generate histories. The analysis starts by 
enumerating all possible histories, which include all the results, 
i.e. (x, y) pairs, generated by any possible algorithms evaluating 
every f F (the way to enumerate histories will be explained 
soon). We group the histories in a table and name it an 
enumeration table of histories. Table I(a) shows the 
enumeration table for the example with X = {1,2,3} and Y =
{1,2,3} (you can ignore the shadings, boxes and the last 
column about counting the number of shaded entries in boxes 
at this moment). The construction of an enumeration table is 
easy. Each row and column correspond to a function and a 
permutation of X, respectively. For example, there are 27 (= 33)
rows and 6 (= 3!) columns in Table I(a). A permutation of X is,

                                                          
2 Every algorithm should be given an input, which is equal to the 

initial point where the search should start. All algorithms should not 
be restricted to fixed starting points. Otherwise, they are just pieces 
of codes to illustrate the pre-defined search paths, instead of tools 
which we can utilize to solve different problems. 
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TABLE I. ENUMERATION TABLES OF HISTORIES FOR X={1,2,3} AND Y={1,2,3} 

Table Entries 
are y-

components of 
the Histories 

x-components of the Histories 
Number of 

Histories both 
in Shading and 

Box 3     2     1 3     1     2 2     3     1 2     1     3 1     2     3 1     3     2 

Functions 

1f

2f

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f

13f

14f

15f

16f

17f

18f

19f

20f

21f

22f

23f

24f

25f

26f

27f

1     1     1 
1     1     2 
1     1     3 
1     2     1 
1     2     2 
1     2     3 
1     3     1 
1     3     2 
1     3     3 
2     1     1 
2     1     2 
2     1     3 
2     2     1 
2     2     2 
2     2     3 
2     3     1 
2     3     2 
2     3     3 
3     1     1 
3     1     2 
3     1     3 
3     2     1 
3     2     2 
3     2     3 
3     3     1 
3     3     2 
3     3     3 

1     1     1 
1     2     1 
1     3     1 
1     1     2 
1     2     2 
1     3     2 
1     1     3 
1     2     3 
1     3     3 
2     1     1 
2     2     1 
2     3     1 
2     1     2 
2     2     2 
2     3     2 
2     1     3 
2     2     3 
2     3     3 
3     1     1 
3     2     1 
3     3     1 
3     1     2 
3     2     2 
3     3     2 
3     1     3 
3     2     3 
3     3     3 

1     1     1 
1     1     2 
1     1     3 
2     1     1 
2     1     2 
2     1     3 
3     1     1 
3     1     2 
3     1     3 
1     2     1 
1     2     2 
1     2     3 
2     2     1 
2     2     2 
2     2     3 
3     2     1 
3     2     2 
3     2     3 
1     3     1 
1     3     2 
1     3     3 
2     3     1 
2     3     2 
2     3     3 
3     3     1 
3     3     2 
3     3     3 

1     1     1 
1     2     1 
1     3     1 
2     1     1 
2     2     1 
2     3     1 
3     1     1 
3     2     1 
3     3     1 
1     1     2 
1     2     2 
1     3     2 
2     1     2 
2     2     2 
2     3     2 
3     1     2 
3     2     2 
3     3     2 
1     1     3 
1     2     3 
1     3     3 
2     1     3 
2     2     3 
2     3     3 
3     1     3 
3     2     3 
3     3     3 

1     1     1 
2     1     1 
3     1     1 
1     2     1 
2     2     1 
3     2     1 
1     3     1 
2     3     1 
3     3     1 
1     1     2 
2     1     2 
3     1     2 
1     2     2 
2     2     2 
3     2     2 
1     3     2 
2     3     2 
3     3     2 
1     1     3 
2     1     3 
3     1     3 
1     2     3 
2     2     3 
3     2     3 
1     3     3 
2     3     3 
3     3     3 

1     1     1 
2     1     1 
3     1     1 
1     1     2 
2     1     2 
3     1     2 
1     1     3 
2     1     3 
3     1     3 
1     2     1 
2     2     1 
3     2     1 
1     2     2 
2     2     2 
3     2     2 
1     2     3 
2     2     3 
3     2     3 
1     3     1 
2     3     1 
3     3     1 
1     3     2 
2     3     2 
3     3     2 
1     3     3 
2     3     3 
3     3     3 

0
1
0
1
0
0
0
0
0
1
1
0
2
0
0
1
0
0
0
1
0
1
0
0
0
0
0

Table Entries 
are y-

components of 
the Histories 

x-components of the Histories 
Number of 

Histories both 
in Shading and 

Box 3     2     1 3     1     2 2     3     1 2     1     3 1     2     3 1     3     2 

Functions 

1f

2f

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f

13f

14f

15f

16f

17f

18f

19f

20f

21f

22f

23f

24f

25f

26f

27f

1     1     1 
1     1     2 
1     1     3 
1     2     1 
1     2     2 
1     2     3 
1     3     1 
1     3     2 
1     3     3 
2     1     1 
2     1     2 
2     1     3 
2     2     1 
2     2     2 
2     2     3 
2     3     1 
2     3     2 
2     3     3 
3     1     1 
3     1     2 
3     1     3 
3     2     1 
3     2     2 
3     2     3 
3     3     1 
3     3     2 
3     3     3 

1     1     1 
1     2     1 
1     3     1 
1     1     2 
1     2     2 
1     3     2 
1     1     3 
1     2     3 
1     3     3 
2     1     1 
2     2     1 
2     3     1 
2     1     2 
2     2     2 
2     3     2 
2     1     3 
2     2     3 
2     3     3 
3     1     1 
3     2     1 
3     3     1 
3     1     2 
3     2     2 
3     3     2 
3     1     3 
3     2     3 
3     3     3 

1     1     1 
1     1     2 
1     1     3 
2     1     1 
2     1     2 
2     1     3 
3     1     1 
3     1     2 
3     1     3 
1     2     1 
1     2     2 
1     2     3 
2     2     1 
2     2     2 
2     2     3 
3     2     1 
3     2     2 
3     2     3 
1     3     1 
1     3     2 
1     3     3 
2     3     1 
2     3     2 
2     3     3 
3     3     1 
3     3     2 
3     3     3 

1     1     1 
1     2     1 
1     3     1 
2     1     1 
2     2     1 
2     3     1 
3     1     1 
3     2     1 
3     3     1 
1     1     2 
1     2     2 
1     3     2 
2     1     2 
2     2     2 
2     3     2 
3     1     2 
3     2     2 
3     3     2 
1     1     3 
1     2     3 
1     3     3 
2     1     3 
2     2     3 
2     3     3 
3     1     3 
3     2     3 
3     3     3 

1     1     1 
2     1     1 
3     1     1 
1     2     1 
2     2     1 
3     2     1 
1     3     1 
2     3     1 
3     3     1 
1     1     2 
2     1     2 
3     1     2 
1     2     2 
2     2     2 
3     2     2 
1     3     2 
2     3     2 
3     3     2 
1     1     3 
2     1     3 
3     1     3 
1     2     3 
2     2     3 
3     2     3 
1     3     3 
2     3     3 
3     3     3 

1     1     1 
2     1     1 
3     1     1 
1     1     2 
2     1     2 
3     1     2 
1     1     3 
2     1     3 
3     1     3 
1     2     1 
2     2     1 
3     2     1 
1     2     2 
2     2     2 
3     2     2 
1     2     3 
2     2     3 
3     2     3 
1     3     1 
2     3     1 
3     3     1 
1     3     2 
2     3     2 
3     3     2 
1     3     3 
2     3     3 
3     3     3 

0
1
0
1
1
0
0
1
0
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0

(a)

(b)
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in fact, one possible | |
x
Xd . An entry gives the | |

y
Xd of the 

corresponding | |
x
Xd and f. Note that an enumeration table is a 

complete description of search problems. Although its size 
grows exponentially with | X | and | Y |, the entries can be easily 
generated by inputting all permutations of X into the functions. 
Important properties of search algorithms can be determined 
from the enumeration table. 

We consider deterministic algorithms first and obtain the 
following results: 

Lemma 1. Consider a deterministic algorithm a which is a 
mapping from the set containing all possible d to the set 
containing all possible x, i.e. a(d) = x.  If there are m and n
possibilities for d and x, respectively, there will be nm possible 
different a.

Theorem 1. Given a system with the sets X and Y, with 

| | 3X and | | 2Y , there are | |
| | 1

| || |

2

X i
X

X Y

i
i possible different 

deterministic algorithms. 

Corollary 1. Given a system with the sets X and Y, with 
| | 3X and | | 2Y , the set of all deterministic algorithms is 
finite. We can list all of them by indicating the choices 
of 2x , 3x ,..., and | | 1Xx one-by-one for all the partial 
histories 1 2, ,...d d , and | | 2Xd , respectively. 

Theorem 2. For 1 | |i X , let | | ( )y
Xd i  be the value of 

iy specified in | |
y
Xd .Given a system with sets X and Y, with 

| | 3X and | | 2Y , any specific | | | | | |[ (1), (2),..., ( )]y y y
X X Xd d d i can

be determined the same number of times in the enumeration 
table by each possible deterministic algorithm. 

We find that every algorithm can be represented by a logic 
matrix [13]. Table II gives two examples of such matrices 
deduced from the enumeration table shown in Table I(a). A 
logic matrix can be interpreted like this: the 1st column stands 
for 1x , the 2nd  for 1y , the 3rd for 2x ,and so on. A row 
represents a history generated by that algorithm. We also call a 
row a primitive logic because it gives an if-then relationship 
between the past history md  and the next point 1mx for m = 1, 
2,…, |X|-1. For example, the first primitive logic of Algorithm 
1 can be interpreted as: if 1 1[( , )] [(1,1)]x y , then 2 2x . The 
whole matrix, in fact, characterizes all possible histories which 
can be generated by that algorithm.  

The analysis can be extended to probabilistic search 
algorithms [13]. A probabilistic algorithm is defined similarly 
as a deterministic algorithm, but instead of mapping to a single 

1mx , it maps to multiple 1mx with different probabilities from 
md . By considering the logic matrices and their primitive 

logics, we obtain the following results: 

Theorem 3. Given a system with the sets X and Y, with 
| | 3X and | | 2Y , the corresponding deterministic algorithms 
form the basis of its algorithmic space, which consists of all 
deterministic and probabilistic algorithms. All algorithms are 
formed by probabilistically combining some of the determinist- 

TABLE II. LOGIC MATRICES OF TWO DETERMINISTIC ALGORITHMS

Algorithm 1 Algorithm 2 

1     1     2 
1     2     2 
1     3     2 
2     1     1 
2     2     1 
2     3     1 
3     1     1 
3     2     1 
3     3     1 

1     1     2 
1     2     3 
1     3     2 
2     1     3 
2     2     1 
2     3     3 
3     1     1 
3     2     2 
3     3     1 

Figure 1. An illustration of a probabilistic algorithm with a set of 
deterministic algorithms. 

ic algorithms. 

Corollary 2. Given a system with the sets X and Y, with 
| | 3X and | | 2Y , an algorithm, both deterministic and 
probabilistic, can be represented by a probabilistic distribution 
on the set of the deterministic algorithms. 

We can demonstrate the above results with the example 
shown in Fig. 1, which depicts a scenario of solving a 
minimization problem3. In the figure, the rectangle represents 
the solution space, which is composed of all feasible solutions, 
x, of the problem. Each thin line gives a deterministic 
algorithm 4   in which the order of picking x has been 
deterministically defined when the algorithm is built. The thick 
line describes the resulting search path of a probabilistic 
algorithm. Along the path from the starting point to the global 
minimum, there are intersection points where the algorithm has 
more than one alternative path to choose from. This exactly 
fulfills the definition of probabilistic algorithms. In fact, 
Theorem 3 and Corollary 2 tell us that a probabilistic algorithm 
is characterized by a combination of deterministic algorithms, 

                                                          
3 The scenario shown in Fig. 1 is not typical. The function is ignored. 

The actual cases should be much more complicated. For simplicity, 
and without loss of generality, we use this simplified scenario to 
illustrate the results. 

4 Here we characterize a deterministic algorithm with a partial x-
component of one of its possible computable histories. In reality, it 
should be represented by a set of histories which traverse all 
solution points and each history has a different starting point. 
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i.e. the thin lines. The behavior of the probabilistic algorithm is 
intrinsically defined by the combination of the underlying 
deterministic algorithms. If we know which and how the 
underlying deterministic algorithms are combined, we can infer 
the performance of the probabilistic algorithm. 

We will make use of the above results to re-investigate 
several issues related to the NFL Theorem. 

IV. A RE-VISIT OF THE NFL THEOREM

We study the details of the NFL Theorem again, mainly 
from [10]. There are several possible enhancements of the 
theorem. We discuss the aspects of optimization algorithms, 
verification of the theorem, and performance measures 
accordingly in the following subsections. 

A. Optimization Algorithms 
In [10], a deterministic optimization algorithm is defined as 

a mapping from previously visited sets of points to a single 
previously unvisited point in X, i.e. : m ma d D { | }x

mx x d .
Then the NFL result (e.g. (1)) is developed based on a1, a2,…, 
which are different representations of the general term a. This 
implies all  a1, a2,… form the set of deterministic algorithm, Ad,
i.e. a1, a2,… dA 5. But what does Ad indeed look like? Is the set 
finite? From Theorem 1 and Corollary 1 in Section III, we have 
already given the answers. Ad is finite and all the elements can 
be listed in the form of logic matrices. 

Then the authors of [10] defines a probabilistic (i.e. 
stochastic) optimization algorithm, , as a mapping from 

m md D to a md -dependent distribution over X with zero 
probability for all x

mx d . Let pA be the set of all possible 
probabilistic algorithms. The NFL result for deterministic 
algorithms is also valid for probabilistic algorithms by 
replacing a with throughout the proof, as explained in [10]. 
Mathematically, (1) becomes 

1 2( | , , ) ( | , , )y y
m m

f F f F
P d f m P d f m

for any pair of algorithms 1 and 2 in pA . In this way, the NFL 
result is legitimate for any algorithms in dA and pA ,
respectively. The immediate follow-up question is whether the 
NFL result is still true when we consider any algorithms in 
both dA and pA at the same time, i.e., for any 1 2, d pA A ,

1 2( | , , ) ( | , , )y y
m m

f F f F
P d f m P d f m

We will prove (3) in Subsection C. 

B. Verification of the NFL Theorem 
As we can determine the important properties of search 

from the enumeration table and the NFL Theorem is one of the 
fundamental results of search, it is logical to deduce the NFL 

                                                          
5 Although Ad is not explicitly indicated in [10], it is trivial to see that 

all deterministic algorithms will form the set Ad.

Theorem from the enumeration table. In the following, we try 
to look at the NFL result, i.e. (1), in the implementation 
perspective, instead of the original approach based on 
probability theory [10]. 

For any system with X and Y specified, we can produce the 
corresponding enumeration table (as explained in Section III). 
We now consider deterministic algorithms first. By Theorem 1
and Corollary 1 in Section III, we can list all da A in the form 
of logic matrices. We can check the NFL result with the 
following procedures: 

1. Select a specific y
md for 1 | |m X ;

2. For each entry in the enumeration table, shade it if it 
matches y

md ;

3. For each da A ,

i. Put all possible y-components of the histories 
which can be generated by a in boxes; 

ii. Count how many entries are both in shadings and 
in boxes for each function, and calculate the total 
for all functions; 

iii. Delete all the boxes;  

4. Theorem 2 in Section III guarantees all the totals (of 
all da A ) are the same. 

The shaded entries and those in boxes represent those y-
components of histories which match y

md , and those which can 
be generated by a, respectively. The shaded ones in boxes 
denote computable histories with good performance by a. The 
total number of shaded entries of a in boxes reflects its 
“ability” to generate good results. In Step 3(ii), the direct 
summation to get the total implies that we give equal weight to 
every function. After finding the total, we have finished the 
examination of a particular a. Step 3(iii) restores the setting for  

y
md  only and makes it ready for another a. The positive answer 

at Step 4 tells us that the NFL result, i.e., all deterministic 
search algorithms, da A , perform statistically identically on 
solving computation problems f F .

Note that the performance of an algorithm is based on the 
histories obtained during execution and the histories are 
generated by the algorithm itself. Thus, the NFL results should 
be understood from the algorithmic perspective. On the other 
hand, the above method originates from the enumeration table, 
whose generation is independent of the execution of the 
algorithms. Therefore, we approach the NFL Theorem from a 
different angle. In fact, the above method provides an 
enumeration proof (also called exhaustive proof) for the NFL 
Theorem. Enumeration proof 6 [20] is valid when the number 
of test cases is finite. From Theorem 1 in Section III, the set of 
deterministic algorithms is finite, and thus, enumeration proof 
is valid. 

                                                          
6 An example of using enumeration proof to validate mathematical 

statements can be found in [19]. 
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To demonstrate the above method, we consider the system 
with X = {1,2,3} and Y = {1,2,3} again. Let 2m . We define 

2
yd  equal to [2 1]. Table I shows the results of completing up to 

Step 3(ii) for the two deterministic algorithms shown in Table 
II (Table I(a) and I(b) correspond to Algorithms 1 and 2, 
respectively). It is easy to check both the totals of Algorithm 1 
and 2 are equal to 9 by summing up the last columns of Table 
I(a) and I(b). 

C. Performance Measures 
In [10], performance measures are indicated by ( )y

md ,
which can be interpreted as any function with the y-component 
of the history as the input. The performance is based on 

y
md only. For example, ( ) min { ( ) : 1,..., }y y

m i md d i i m for 
minimizing  f 7.

For optimization, we doubt the performance measure 
should be based solely on y

md . When we are optimizing f with 
an algorithm a, we want to evaluate the performance of a with 
respect to the most desirable function values of f. Without 
considering f, the actual values of y

md computed by a are 
meaningless. We can illustrate the above idea with the 
following example: 

Suppose we try to minimize two different functions f1 and f2
(see Fig. 2) with the same optimization algorithm a. We are 
only interested in evaluating the performance of a after 
choosing the first three x in X, i.e. m = 3. If a generates the 
same 3 [4,3,2]yd for both f1 and f2, can we say that a has better 
performance on either f1 or f2 by solely looking at 3

yd ? If we 
have some ideas about all the y-values of the functions (e.g. we 
have the curves of the functions as in Fig. 2), we can definitely 
conclude that a has better performance on f1 than on f2 because 
the minimum of f1 has been obtained in 3

yd , but not for f2. By 
only looking at 3

yd , however, a has the same performance on 
both functions. Thus, the performance measure should be 
function-dependent, and it should reflect the relative function 
values in y

md  to the most desirable function values in question 
(e.g., for minimizing f with minimum y*, the performance 
measure can check the ratio of y

my d to y*). More general 
performance measures can then be indicated by ( )y

f md .
Let ( )y

mD { : ( ) }y y
m f md d , where can be any 

reasonable conditions for performance evaluation. For example, 
 can be specified to require 2 min{ }y y Y when m = 3. 

Equation (1), i.e. the key formula which constitutes the 
NFL Theorem, also inherits the above mentioned problem. The 
core of (1) is ( | , , )y

mP d f m a . In [10], it is interpreted as “the 
conditional probability of obtaining a particular sample 

md under the condition that an algorithm a iterates m times on a 
cost function f”. Then the performance of a is said to be 
measured with ( | , , )y

mP d f m a , by stating that 
( ( ) | , , )y

mP d f m a can be easily derived from ( | , , )y
mP d f m a .

                                                          
7 This is the original example explaining performance measures in 

[10]. 

Figure 2. Examples to illustrate the effect of the performance measure. 

If we adopt a more general ( )y
f md as the performance 

measure, the NFL Theorem should be re-stated as: the average 
over all f of ( ( ) | , , )y

f mP d f m a is independent of a, with 
( )y

md being replaced by ( )y
f md . This result can in turn be 

derived by showing that for any pair of deterministic 
algorithms 1a and 2a ,

1 2( ( ) | , , ) ( ( ) | , , )y y
m m

f F f F
P D f m a P D f m a

We are not trying to say that (1) fails to come up with the 
more reasonable interpretation of performance measures, but 
we can show that (1) can be used to derive (4). We can obtain 
the connection by observing the enumeration table of any 
system with X and Y specified. We try to demonstrate the 
connection with the simple example shown in Table I(a). We 
first discuss y

md  in (1). The system has X and Y with |X| = |Y| = 
3. Thus there are 6 (= |X|! = 3!) columns of 3

yd and each entry 
in a column is the 3

yd of the corresponding f. As  |Y| = 3, the 
maximum length of 3

yd is three. For any particular y
md , there are 

exactly | || | | |mXY Y corresponding entries in each column. Their 
locations may be different in different columns, i.e. the same 

y
md appears at rows corresponding to different functions in 

different columns. For example, 1 [1]yd , 2 [1,2]yd and

3 [1,2,3]yd  has exactly 9 ( = | || | | |XY Y ), 3 (= 2| || | | |XY Y ) and 1 
(= 3| || | | |XY Y ) entries in each column, respectively. 

We now come to ( )y
mD  in (4). Recall that ( )y

mD is a set of 
y
md with the condition  satisfied. When checking ( )y

mD from 
column to column in an enumeration table, we find that ( )y

mD
appears exactly once in every column but ( )y y

m md D may 
correspond to different f. In other words, we can consider each 

y
md in ( )y

mD  one-by-one and apply (1) to each of them. We 
have 
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1 2
( ) ( )

( | , , ) ( | , , )
y y y y
m m m m

y y
m m

f F f Fd D d D

P d f m a P d f m a

which can further yield (4). From this, we are confident that the 
NFL Theorem holds for any reasonable performance measure. 

Up to now, we have verified (4) (and (1) which is a special 
case of (4)). We are going to validate (3). Consider 
probabilistic algorithms, pA . By Theorem 3 in Section III, 
all probabilistic algorithms can be expressed as a probability 
distribution over the set of defined deterministic algorithms. 
Let the sample space equal dA . We can model each 
probabilistic algorithm by a discrete random variable H with 
probability mass function ( )p h , where h is any possible 
outcome in , i.e., ( ), p

h
hp h A . Thus, for any 

da A and pA ,

( | , , ) ( | , , ) ( )y y
m m

f F h f F
P d f m P d f m h p h

                                  ( | , , ) ( )y
m

f F h
P d f m h p h

                                  ( | , , ) .y
m

f F
P d f m d        (5) 

This means that the performance of any deterministic algorithm 
and that of any probabilistic algorithm are the same when 
averaged over all f. By combining (1), (2) and (5), we get (3). 
Similar to the way of getting (4) from (1), we have an 
immediate corollary that for any 1 2, d pA A ,

1 2( ( ) | , , ) ( ( ) | , , )y y
m m

f F f F
P D f m P D f m

We know that deterministic and probabilistic algorithms 
constitute all optimization algorithms. Therefore, any 
reasonable performance measure of any algorithms 
(deterministic and/or probabilistic) is statistically identical 
when averaged over all f.

V. CONCLUSION

Before the NFL Theorem was published, most research on 
optimization focused on solving specific problems with 
proposed algorithms. The theoretical foundation was largely 
ignored. The NFL Theorem draws our attention to the 
theoretical foundation and demonstrates a fundamental limit of 
all search algorithms. However, we find limitations of NFL 
statements in the original NFL papers. By using results from 
the nature of search algorithms, we enhance several aspects of 
the original NFL Theorem. We have identified the properties of 
deterministic and probabilistic algorithms. We provide an 
enumeration proof. In addition, we generalize the NFL results 
with more general performance measures and remove the 
limitations. 
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