
978-1-4244-2794-9/09/$25.00 ©2009 IEEE

Generalization of the No-Free-Lunch Theorem
Albert Y.S. Lam and Victor O.K. Li

Department of Electrical and Electronic Engineering
The University of Hong Kong

Hong Kong, China
{ayslam, vli}@eee.hku.hk

Abstract— The No-Free-Lunch (NFL) Theorem provides a
fundamental limit governing all optimization/search algorithms
and has successfully drawn attention to theoretical foundation of
optimization and search. However, we find several limitations in
the original NFL paper. In this work, using results from the
nature of search algorithms, we enhance several aspects of the
original NFL Theorem. We have identified the properties of
deterministic and probabilistic algorithms. We also provide an
enumeration proof of the theorem. In addition, we show that the
NFL Theorem is still valid for more general performance
measures. This work serves as an application of the nature of
search algorithms.

Keywords— No Free Lunch, Nature of Search Algorithms,
Optimization.

I. INTRODUCTION

Search techniques have been widely employed to solve
different types of problems, ranging from sorting to
optimization. The common objective of such search algorithms
is to find an appropriate solution with desirable properties
described by the problem. The general practice in solving
search problems is: we have a problem and then try to propose
an algorithm which can find the desirable solution of the
problem among many other solutions. Most of the time, we
keep on developing algorithms according to our experiences,
intuition, and by trial-and-error. However, many problems in
science and engineering can be reducible to the standard NP-
hard or NP-complete problems [1]. According to the general
belief in the research community, P NP. In other words,
attempting to find an algorithm which guarantees the desirable
solution in polynomial time for these problems is futile.

Until the development of stochastic search algorithms a few
decades ago, there were no easy and effective ways to handle
NP-hard and NP-complete problems of large size. Stochastic
search algorithms do not guarantee the best solutions in
polynomial time, but they can normally generate good
solutions for a wider range of problems in a reasonable period
of time, when compared with deterministic algorithms.
Suppose we compare the performance of a deterministic
algorithm to that of a probabilistic algorithm. Assuming they
have the same input and running time, the set of possible
outputs generated by the latter must be larger. Each output may
correspond to good performance for a particular problem. Thus,
we conclude that the probability of a probabilistic algorithm
generating outputs with good performance for a larger range of
problems is higher. A “good” solution here means that it is
within certain tolerance of the best solution. In science and

engineering, good solutions are generally sufficient to fulfill the
requirement of various objectives.

Most of the stochastic search algorithms are nature-inspired.
Examples include Genetic Algorithm (GA) [2, 3], Simulated
Annealing [4], Ant Colony Optimization (ACO) [5, 6], and
Chemical Reaction Optimization [7]. There are also algorithms
which are not adapted from natural processes, e.g., Tabu
Search [8]. We generally classify the algorithms into heuristics
and metaheuristics. The former refers to those which are
specialized to address certain classes of problems, but normally
give unfavorable solutions to other problems. The reason is that
problem-specific information has been embedded in the
algorithm development process, and thus, they are tailored to
the specific problems very well. However, when they are
applied to other problems, the embedded problem-specific
information will not be useful anymore and they result in bad
performance. On the other hand, the latter is not tailor-made for
any particular problems and does not contain any problem-
specific information. When compared with heuristics,
metaheuristics can be applied to a wider range of problems
with good performance. Thus, there is an accuracy-flexibility
tradeoff between heuristics and metaheuristics.

Most of the stochastic search algorithms are metaheuristics.
Whenever a metaheuristic appears to work well on a particular
problem, greedy approaches or heuristic components may be
added. This is tantamount to including more problem-specific
information to the metaheuristic and making it more heuristic-
like. According to the No-Free-Lunch Theorem [9, 10], the
resulting metaheuristic is no longer able to solve other
problems as well as before. In other words, we sacrifice
flexibility for accuracy.

Different metaheuristics are developed based on distinct
underlying mechanisms or phenomena. For example, GA is
based on the idea of natural selection of living organisms while
ACO makes use of the ecological behavior of ants in finding
food. Although metaheuristics can be applied to a wide range
of problems, they do have different performance when applied
to different classes of problems. Then it is natural to ask “Is it
possible to have a metaheuristic which is universally better
than the others?” “Universally better” can be interpreted in the
sense that the metaheuristic can solve more problems with
better solutions. Some research is dedicated to developing
universally better metaheuristics and it is claimed that some
search algorithms can beat others on average [2].

Most research focuses on the construction of search
algorithms. There was hardly any work on the theoretical

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4432

foundation until Wolpert and Macready proposed the No-Free-
Lunch (NFL) Theorem [9, 10]. It states that all search
algorithms perform statistically identically on solving
computation problems. In other words, it is theoretically
impossible to have a best general-purpose universal search
strategy [11]. The NFL Theorem is controversial and raises
many discussions (e.g. [12]) on its impact and correctness.

The search for a best general-purpose metaheuristic will be
futile if the NFL Theorem holds. We believe that the theorem is
correct and the conservation of performance for search exists.
As the NFL results are important, we examine [9, 10] carefully
again. We enhance and demonstrate the theorem with the
nature of search algorithms [13]. The contributions of this work
include clarifying the properties of NFL-governed algorithms,
providing a verification method of the theorem, and
generalizing the performance measures. The rest of this paper
is organized as follows. Section II describes the terminology
used in search and optimization, and the NFL Theorem and its
extensions. In Section III, we introduce the nature of search
algorithms. We demonstrate some enhancements and an
enumeration proof of the theorem in Section IV and conclude
this paper in Section V.

II. RELATED WORK

A. Terminology
We describe a search problem as a function f F with an

argument x X and a functional value y Y , i.e. ()f x y . X
and Y are discrete and finite1. We assume that their cardinalities
are equal to |X| and |Y|, respectively, and thus, | || | | | XF Y . Let a
be a deterministic non-potentially retracing search algorithm [9,
10]. At iteration m {1,2,...,| | 1}X , a takes a history md

1 1 2 2[(,),(,),...,(,)]m mx y x y x y as input and outputs 1mx , i.e.
1()m ma d x . (We also use d to refer to a history in general.) Let

x
md and y

md denote the x- and y-components of md .
“Deterministic” means that a produces the same 1mx with
probability one whenever given the same md , while “non-
potentially retracing” indicates 1

x
m mx d .

B. An Overview of the NFL Theorem
The NFL Theorem is firstly proposed in [9, 10], and

consists of several results. The most representable one, which
establishes the core idea, is Theorem 1 in [10]. Mathematically,
it states that for any pair of deterministic algorithms 1a and 2a ,

1 2(| , ,) (| , ,)y y
m m

f F f F
P d f m a P d f m a

where 1(| , ,)y
mP d f m a represents the probability of having y

md
given f, m and 1a . Note that each f is taken from F with the
same probability. Equation (1) means that for any possible m,
the performance of an algorithm (which can be obtained

1 The discreteness and finiteness are trivial if we employ a digital

computer to solve the problems. X and Y represented in a computer
must be discrete and finite.

from ()y
mP d) is independent of the algorithm itself, when every

f F is evaluated once. In other words, all algorithms
(heuristics or metaheuristics) have equal performance when
averaged over all possible functions. However, the theorem
does not hold when we focus on a certain class of problems.
Thus it is still possible for an algorithm to outperform another
one in this situation.

C. Extensions
The original NFL Theorem requires all possible functions

to be evaluated. Some researchers think that this requirement is
far from reality as some functions are more practical (i.e. have
higher probability of occurrence) than the others. In [14], the
authors consider some special subsets of F and propose the
sharpened NFL Theorem. It states that the original NFL
Theorem stills hold in a subset of F provided that the subset is
closed under permutation (c.u.p.). Igel and Toussaint study the
necessary and sufficient conditions such that the NFL result
holds in non-uniform distributions of functions in a c.u.p.
subset [15]. Steeter investigates classes of functions where the
NFL Theorem does not hold [16] while an Almost No Free
Lunch Theorem is proposed to demonstrate how the result can
hold approximately [17]. More people have realized the
importance and impact of the NFL Theorem. The research
community has been getting more interested in it and related
papers are published every year.

III. NATURE OF SEARCH ALGORITHMS

Previously, we worked out the nature of search algorithms,
which is focused on the algorithmic perspective, instead of the
functional viewpoint [18]. We will highlight the major results
below. For more details and proofs, interested readers can refer
to [13].

We adopt the same working principle of search algorithms2,
described in Subsection II-A. With the sets X and Y defined, we
can determine the whole set of functions F. Algorithms work
on functions and generate histories. The analysis starts by
enumerating all possible histories, which include all the results,
i.e. (x, y) pairs, generated by any possible algorithms evaluating
every f F (the way to enumerate histories will be explained
soon). We group the histories in a table and name it an
enumeration table of histories. Table I(a) shows the
enumeration table for the example with X = {1,2,3} and Y =
{1,2,3} (you can ignore the shadings, boxes and the last
column about counting the number of shaded entries in boxes
at this moment). The construction of an enumeration table is
easy. Each row and column correspond to a function and a
permutation of X, respectively. For example, there are 27 (= 33)
rows and 6 (= 3!) columns in Table I(a). A permutation of X is,

2 Every algorithm should be given an input, which is equal to the

initial point where the search should start. All algorithms should not
be restricted to fixed starting points. Otherwise, they are just pieces
of codes to illustrate the pre-defined search paths, instead of tools
which we can utilize to solve different problems.

4433

TABLE I. ENUMERATION TABLES OF HISTORIES FOR X={1,2,3} AND Y={1,2,3}

Table Entries
are y-

components of
the Histories

x-components of the Histories
Number of

Histories both
in Shading and

Box 3 2 1 3 1 2 2 3 1 2 1 3 1 2 3 1 3 2

Functions

1f

2f

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f

13f

14f

15f

16f

17f

18f

19f

20f

21f

22f

23f

24f

25f

26f

27f

1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 3 3
2 1 1
2 1 2
2 1 3
2 2 1
2 2 2
2 2 3
2 3 1
2 3 2
2 3 3
3 1 1
3 1 2
3 1 3
3 2 1
3 2 2
3 2 3
3 3 1
3 3 2
3 3 3

1 1 1
1 2 1
1 3 1
1 1 2
1 2 2
1 3 2
1 1 3
1 2 3
1 3 3
2 1 1
2 2 1
2 3 1
2 1 2
2 2 2
2 3 2
2 1 3
2 2 3
2 3 3
3 1 1
3 2 1
3 3 1
3 1 2
3 2 2
3 3 2
3 1 3
3 2 3
3 3 3

1 1 1
1 1 2
1 1 3
2 1 1
2 1 2
2 1 3
3 1 1
3 1 2
3 1 3
1 2 1
1 2 2
1 2 3
2 2 1
2 2 2
2 2 3
3 2 1
3 2 2
3 2 3
1 3 1
1 3 2
1 3 3
2 3 1
2 3 2
2 3 3
3 3 1
3 3 2
3 3 3

1 1 1
1 2 1
1 3 1
2 1 1
2 2 1
2 3 1
3 1 1
3 2 1
3 3 1
1 1 2
1 2 2
1 3 2
2 1 2
2 2 2
2 3 2
3 1 2
3 2 2
3 3 2
1 1 3
1 2 3
1 3 3
2 1 3
2 2 3
2 3 3
3 1 3
3 2 3
3 3 3

1 1 1
2 1 1
3 1 1
1 2 1
2 2 1
3 2 1
1 3 1
2 3 1
3 3 1
1 1 2
2 1 2
3 1 2
1 2 2
2 2 2
3 2 2
1 3 2
2 3 2
3 3 2
1 1 3
2 1 3
3 1 3
1 2 3
2 2 3
3 2 3
1 3 3
2 3 3
3 3 3

1 1 1
2 1 1
3 1 1
1 1 2
2 1 2
3 1 2
1 1 3
2 1 3
3 1 3
1 2 1
2 2 1
3 2 1
1 2 2
2 2 2
3 2 2
1 2 3
2 2 3
3 2 3
1 3 1
2 3 1
3 3 1
1 3 2
2 3 2
3 3 2
1 3 3
2 3 3
3 3 3

0
1
0
1
0
0
0
0
0
1
1
0
2
0
0
1
0
0
0
1
0
1
0
0
0
0
0

Table Entries
are y-

components of
the Histories

x-components of the Histories
Number of

Histories both
in Shading and

Box 3 2 1 3 1 2 2 3 1 2 1 3 1 2 3 1 3 2

Functions

1f

2f

3f

4f

5f

6f

7f

8f

9f

10f

11f

12f

13f

14f

15f

16f

17f

18f

19f

20f

21f

22f

23f

24f

25f

26f

27f

1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
1 3 1
1 3 2
1 3 3
2 1 1
2 1 2
2 1 3
2 2 1
2 2 2
2 2 3
2 3 1
2 3 2
2 3 3
3 1 1
3 1 2
3 1 3
3 2 1
3 2 2
3 2 3
3 3 1
3 3 2
3 3 3

1 1 1
1 2 1
1 3 1
1 1 2
1 2 2
1 3 2
1 1 3
1 2 3
1 3 3
2 1 1
2 2 1
2 3 1
2 1 2
2 2 2
2 3 2
2 1 3
2 2 3
2 3 3
3 1 1
3 2 1
3 3 1
3 1 2
3 2 2
3 3 2
3 1 3
3 2 3
3 3 3

1 1 1
1 1 2
1 1 3
2 1 1
2 1 2
2 1 3
3 1 1
3 1 2
3 1 3
1 2 1
1 2 2
1 2 3
2 2 1
2 2 2
2 2 3
3 2 1
3 2 2
3 2 3
1 3 1
1 3 2
1 3 3
2 3 1
2 3 2
2 3 3
3 3 1
3 3 2
3 3 3

1 1 1
1 2 1
1 3 1
2 1 1
2 2 1
2 3 1
3 1 1
3 2 1
3 3 1
1 1 2
1 2 2
1 3 2
2 1 2
2 2 2
2 3 2
3 1 2
3 2 2
3 3 2
1 1 3
1 2 3
1 3 3
2 1 3
2 2 3
2 3 3
3 1 3
3 2 3
3 3 3

1 1 1
2 1 1
3 1 1
1 2 1
2 2 1
3 2 1
1 3 1
2 3 1
3 3 1
1 1 2
2 1 2
3 1 2
1 2 2
2 2 2
3 2 2
1 3 2
2 3 2
3 3 2
1 1 3
2 1 3
3 1 3
1 2 3
2 2 3
3 2 3
1 3 3
2 3 3
3 3 3

1 1 1
2 1 1
3 1 1
1 1 2
2 1 2
3 1 2
1 1 3
2 1 3
3 1 3
1 2 1
2 2 1
3 2 1
1 2 2
2 2 2
3 2 2
1 2 3
2 2 3
3 2 3
1 3 1
2 3 1
3 3 1
1 3 2
2 3 2
3 3 2
1 3 3
2 3 3
3 3 3

0
1
0
1
1
0
0
1
0
1
1
1
1
0
0
0
0
0
0
0
0
1
0
0
0
0
0

(a)

(b)

4434

in fact, one possible | |
x
Xd . An entry gives the | |

y
Xd of the

corresponding | |
x
Xd and f. Note that an enumeration table is a

complete description of search problems. Although its size
grows exponentially with | X | and | Y |, the entries can be easily
generated by inputting all permutations of X into the functions.
Important properties of search algorithms can be determined
from the enumeration table.

We consider deterministic algorithms first and obtain the
following results:

Lemma 1. Consider a deterministic algorithm a which is a
mapping from the set containing all possible d to the set
containing all possible x, i.e. a(d) = x. If there are m and n
possibilities for d and x, respectively, there will be nm possible
different a.

Theorem 1. Given a system with the sets X and Y, with

| | 3X and | | 2Y , there are | |
| | 1

| || |

2

X i
X

X Y

i
i possible different

deterministic algorithms.

Corollary 1. Given a system with the sets X and Y, with
| | 3X and | | 2Y , the set of all deterministic algorithms is
finite. We can list all of them by indicating the choices
of 2x , 3x ,..., and | | 1Xx one-by-one for all the partial
histories 1 2, ,...d d , and | | 2Xd , respectively.

Theorem 2. For 1 | |i X , let | | ()y
Xd i be the value of

iy specified in | |
y
Xd .Given a system with sets X and Y, with

| | 3X and | | 2Y , any specific | | | | | |[(1), (2),..., ()]y y y
X X Xd d d i can

be determined the same number of times in the enumeration
table by each possible deterministic algorithm.

We find that every algorithm can be represented by a logic
matrix [13]. Table II gives two examples of such matrices
deduced from the enumeration table shown in Table I(a). A
logic matrix can be interpreted like this: the 1st column stands
for 1x , the 2nd for 1y , the 3rd for 2x ,and so on. A row
represents a history generated by that algorithm. We also call a
row a primitive logic because it gives an if-then relationship
between the past history md and the next point 1mx for m = 1,
2,…, |X|-1. For example, the first primitive logic of Algorithm
1 can be interpreted as: if 1 1[(,)] [(1,1)]x y , then 2 2x . The
whole matrix, in fact, characterizes all possible histories which
can be generated by that algorithm.

The analysis can be extended to probabilistic search
algorithms [13]. A probabilistic algorithm is defined similarly
as a deterministic algorithm, but instead of mapping to a single

1mx , it maps to multiple 1mx with different probabilities from
md . By considering the logic matrices and their primitive

logics, we obtain the following results:

Theorem 3. Given a system with the sets X and Y, with
| | 3X and | | 2Y , the corresponding deterministic algorithms
form the basis of its algorithmic space, which consists of all
deterministic and probabilistic algorithms. All algorithms are
formed by probabilistically combining some of the determinist-

TABLE II. LOGIC MATRICES OF TWO DETERMINISTIC ALGORITHMS

Algorithm 1 Algorithm 2

1 1 2
1 2 2
1 3 2
2 1 1
2 2 1
2 3 1
3 1 1
3 2 1
3 3 1

1 1 2
1 2 3
1 3 2
2 1 3
2 2 1
2 3 3
3 1 1
3 2 2
3 3 1

Figure 1. An illustration of a probabilistic algorithm with a set of
deterministic algorithms.

ic algorithms.

Corollary 2. Given a system with the sets X and Y, with
| | 3X and | | 2Y , an algorithm, both deterministic and
probabilistic, can be represented by a probabilistic distribution
on the set of the deterministic algorithms.

We can demonstrate the above results with the example
shown in Fig. 1, which depicts a scenario of solving a
minimization problem3. In the figure, the rectangle represents
the solution space, which is composed of all feasible solutions,
x, of the problem. Each thin line gives a deterministic
algorithm 4 in which the order of picking x has been
deterministically defined when the algorithm is built. The thick
line describes the resulting search path of a probabilistic
algorithm. Along the path from the starting point to the global
minimum, there are intersection points where the algorithm has
more than one alternative path to choose from. This exactly
fulfills the definition of probabilistic algorithms. In fact,
Theorem 3 and Corollary 2 tell us that a probabilistic algorithm
is characterized by a combination of deterministic algorithms,

3 The scenario shown in Fig. 1 is not typical. The function is ignored.

The actual cases should be much more complicated. For simplicity,
and without loss of generality, we use this simplified scenario to
illustrate the results.

4 Here we characterize a deterministic algorithm with a partial x-
component of one of its possible computable histories. In reality, it
should be represented by a set of histories which traverse all
solution points and each history has a different starting point.

4435

i.e. the thin lines. The behavior of the probabilistic algorithm is
intrinsically defined by the combination of the underlying
deterministic algorithms. If we know which and how the
underlying deterministic algorithms are combined, we can infer
the performance of the probabilistic algorithm.

We will make use of the above results to re-investigate
several issues related to the NFL Theorem.

IV. A RE-VISIT OF THE NFL THEOREM

We study the details of the NFL Theorem again, mainly
from [10]. There are several possible enhancements of the
theorem. We discuss the aspects of optimization algorithms,
verification of the theorem, and performance measures
accordingly in the following subsections.

A. Optimization Algorithms
In [10], a deterministic optimization algorithm is defined as

a mapping from previously visited sets of points to a single
previously unvisited point in X, i.e. : m ma d D { | }x

mx x d .
Then the NFL result (e.g. (1)) is developed based on a1, a2,…,
which are different representations of the general term a. This
implies all a1, a2,… form the set of deterministic algorithm, Ad,
i.e. a1, a2,… dA 5. But what does Ad indeed look like? Is the set
finite? From Theorem 1 and Corollary 1 in Section III, we have
already given the answers. Ad is finite and all the elements can
be listed in the form of logic matrices.

Then the authors of [10] defines a probabilistic (i.e.
stochastic) optimization algorithm, , as a mapping from

m md D to a md -dependent distribution over X with zero
probability for all x

mx d . Let pA be the set of all possible
probabilistic algorithms. The NFL result for deterministic
algorithms is also valid for probabilistic algorithms by
replacing a with throughout the proof, as explained in [10].
Mathematically, (1) becomes

1 2(| , ,) (| , ,)y y
m m

f F f F
P d f m P d f m

for any pair of algorithms 1 and 2 in pA . In this way, the NFL
result is legitimate for any algorithms in dA and pA ,
respectively. The immediate follow-up question is whether the
NFL result is still true when we consider any algorithms in
both dA and pA at the same time, i.e., for any 1 2, d pA A ,

1 2(| , ,) (| , ,)y y
m m

f F f F
P d f m P d f m

We will prove (3) in Subsection C.

B. Verification of the NFL Theorem
As we can determine the important properties of search

from the enumeration table and the NFL Theorem is one of the
fundamental results of search, it is logical to deduce the NFL

5 Although Ad is not explicitly indicated in [10], it is trivial to see that

all deterministic algorithms will form the set Ad.

Theorem from the enumeration table. In the following, we try
to look at the NFL result, i.e. (1), in the implementation
perspective, instead of the original approach based on
probability theory [10].

For any system with X and Y specified, we can produce the
corresponding enumeration table (as explained in Section III).
We now consider deterministic algorithms first. By Theorem 1
and Corollary 1 in Section III, we can list all da A in the form
of logic matrices. We can check the NFL result with the
following procedures:

1. Select a specific y
md for 1 | |m X ;

2. For each entry in the enumeration table, shade it if it
matches y

md ;

3. For each da A ,

i. Put all possible y-components of the histories
which can be generated by a in boxes;

ii. Count how many entries are both in shadings and
in boxes for each function, and calculate the total
for all functions;

iii. Delete all the boxes;

4. Theorem 2 in Section III guarantees all the totals (of
all da A) are the same.

The shaded entries and those in boxes represent those y-
components of histories which match y

md , and those which can
be generated by a, respectively. The shaded ones in boxes
denote computable histories with good performance by a. The
total number of shaded entries of a in boxes reflects its
“ability” to generate good results. In Step 3(ii), the direct
summation to get the total implies that we give equal weight to
every function. After finding the total, we have finished the
examination of a particular a. Step 3(iii) restores the setting for

y
md only and makes it ready for another a. The positive answer

at Step 4 tells us that the NFL result, i.e., all deterministic
search algorithms, da A , perform statistically identically on
solving computation problems f F .

Note that the performance of an algorithm is based on the
histories obtained during execution and the histories are
generated by the algorithm itself. Thus, the NFL results should
be understood from the algorithmic perspective. On the other
hand, the above method originates from the enumeration table,
whose generation is independent of the execution of the
algorithms. Therefore, we approach the NFL Theorem from a
different angle. In fact, the above method provides an
enumeration proof (also called exhaustive proof) for the NFL
Theorem. Enumeration proof 6 [20] is valid when the number
of test cases is finite. From Theorem 1 in Section III, the set of
deterministic algorithms is finite, and thus, enumeration proof
is valid.

6 An example of using enumeration proof to validate mathematical

statements can be found in [19].

4436

To demonstrate the above method, we consider the system
with X = {1,2,3} and Y = {1,2,3} again. Let 2m . We define

2
yd equal to [2 1]. Table I shows the results of completing up to

Step 3(ii) for the two deterministic algorithms shown in Table
II (Table I(a) and I(b) correspond to Algorithms 1 and 2,
respectively). It is easy to check both the totals of Algorithm 1
and 2 are equal to 9 by summing up the last columns of Table
I(a) and I(b).

C. Performance Measures
In [10], performance measures are indicated by ()y

md ,
which can be interpreted as any function with the y-component
of the history as the input. The performance is based on

y
md only. For example, () min { () : 1,..., }y y

m i md d i i m for
minimizing f 7.

For optimization, we doubt the performance measure
should be based solely on y

md . When we are optimizing f with
an algorithm a, we want to evaluate the performance of a with
respect to the most desirable function values of f. Without
considering f, the actual values of y

md computed by a are
meaningless. We can illustrate the above idea with the
following example:

Suppose we try to minimize two different functions f1 and f2
(see Fig. 2) with the same optimization algorithm a. We are
only interested in evaluating the performance of a after
choosing the first three x in X, i.e. m = 3. If a generates the
same 3 [4,3,2]yd for both f1 and f2, can we say that a has better
performance on either f1 or f2 by solely looking at 3

yd ? If we
have some ideas about all the y-values of the functions (e.g. we
have the curves of the functions as in Fig. 2), we can definitely
conclude that a has better performance on f1 than on f2 because
the minimum of f1 has been obtained in 3

yd , but not for f2. By
only looking at 3

yd , however, a has the same performance on
both functions. Thus, the performance measure should be
function-dependent, and it should reflect the relative function
values in y

md to the most desirable function values in question
(e.g., for minimizing f with minimum y*, the performance
measure can check the ratio of y

my d to y*). More general
performance measures can then be indicated by ()y

f md .
Let ()y

mD { : () }y y
m f md d , where can be any

reasonable conditions for performance evaluation. For example,
 can be specified to require 2 min{ }y y Y when m = 3.

Equation (1), i.e. the key formula which constitutes the
NFL Theorem, also inherits the above mentioned problem. The
core of (1) is (| , ,)y

mP d f m a . In [10], it is interpreted as “the
conditional probability of obtaining a particular sample

md under the condition that an algorithm a iterates m times on a
cost function f”. Then the performance of a is said to be
measured with (| , ,)y

mP d f m a , by stating that
(() | , ,)y

mP d f m a can be easily derived from (| , ,)y
mP d f m a .

7 This is the original example explaining performance measures in

[10].

Figure 2. Examples to illustrate the effect of the performance measure.

If we adopt a more general ()y
f md as the performance

measure, the NFL Theorem should be re-stated as: the average
over all f of (() | , ,)y

f mP d f m a is independent of a, with
()y

md being replaced by ()y
f md . This result can in turn be

derived by showing that for any pair of deterministic
algorithms 1a and 2a ,

1 2(() | , ,) (() | , ,)y y
m m

f F f F
P D f m a P D f m a

We are not trying to say that (1) fails to come up with the
more reasonable interpretation of performance measures, but
we can show that (1) can be used to derive (4). We can obtain
the connection by observing the enumeration table of any
system with X and Y specified. We try to demonstrate the
connection with the simple example shown in Table I(a). We
first discuss y

md in (1). The system has X and Y with |X| = |Y| =
3. Thus there are 6 (= |X|! = 3!) columns of 3

yd and each entry
in a column is the 3

yd of the corresponding f. As |Y| = 3, the
maximum length of 3

yd is three. For any particular y
md , there are

exactly | || | | |mXY Y corresponding entries in each column. Their
locations may be different in different columns, i.e. the same

y
md appears at rows corresponding to different functions in

different columns. For example, 1 [1]yd , 2 [1,2]yd and

3 [1,2,3]yd has exactly 9 (= | || | | |XY Y), 3 (= 2| || | | |XY Y) and 1
(= 3| || | | |XY Y) entries in each column, respectively.

We now come to ()y
mD in (4). Recall that ()y

mD is a set of
y
md with the condition satisfied. When checking ()y

mD from
column to column in an enumeration table, we find that ()y

mD
appears exactly once in every column but ()y y

m md D may
correspond to different f. In other words, we can consider each

y
md in ()y

mD one-by-one and apply (1) to each of them. We
have

4437

1 2
() ()

(| , ,) (| , ,)
y y y y
m m m m

y y
m m

f F f Fd D d D

P d f m a P d f m a

which can further yield (4). From this, we are confident that the
NFL Theorem holds for any reasonable performance measure.

Up to now, we have verified (4) (and (1) which is a special
case of (4)). We are going to validate (3). Consider
probabilistic algorithms, pA . By Theorem 3 in Section III,
all probabilistic algorithms can be expressed as a probability
distribution over the set of defined deterministic algorithms.
Let the sample space equal dA . We can model each
probabilistic algorithm by a discrete random variable H with
probability mass function ()p h , where h is any possible
outcome in , i.e., (), p

h
hp h A . Thus, for any

da A and pA ,

(| , ,) (| , ,) ()y y
m m

f F h f F
P d f m P d f m h p h

 (| , ,) ()y
m

f F h
P d f m h p h

 (| , ,) .y
m

f F
P d f m d (5)

This means that the performance of any deterministic algorithm
and that of any probabilistic algorithm are the same when
averaged over all f. By combining (1), (2) and (5), we get (3).
Similar to the way of getting (4) from (1), we have an
immediate corollary that for any 1 2, d pA A ,

1 2(() | , ,) (() | , ,)y y
m m

f F f F
P D f m P D f m

We know that deterministic and probabilistic algorithms
constitute all optimization algorithms. Therefore, any
reasonable performance measure of any algorithms
(deterministic and/or probabilistic) is statistically identical
when averaged over all f.

V. CONCLUSION

Before the NFL Theorem was published, most research on
optimization focused on solving specific problems with
proposed algorithms. The theoretical foundation was largely
ignored. The NFL Theorem draws our attention to the
theoretical foundation and demonstrates a fundamental limit of
all search algorithms. However, we find limitations of NFL
statements in the original NFL papers. By using results from
the nature of search algorithms, we enhance several aspects of
the original NFL Theorem. We have identified the properties of
deterministic and probabilistic algorithms. We provide an
enumeration proof. In addition, we generalize the NFL results
with more general performance measures and remove the
limitations.

REFERENCES

[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY: W. H. Freeman & Co
Ltd, 1979.

[2] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[3] J.H. Holland, Adaptation in Natural and Artificial Systems. Cambridge,
MA: MIT Press, 1992.

[4] S. Kirkpatrick, C.D. Gelatt, Jr., and M.P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680, May
1983.

[5] E. Bonabeau, M. Dorigo, and G. Theraulaz, “Inspiration for
Optimization from Social Insect Behaviour,” Nature, vol. 406, no. 6791,
pp. 39-42, July 2000.

[6] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA:
MIT Press, 2004.

[7] A.Y.S. Lam and V.O.K. Li, “Chemical-Reaction-Inspired Metaheuristic
for Optimization,” submitted for publication.

[8] F. Glover and F. Laguna, Tabu Search. Norwell, MA: Kluwer Academic
Publishers, 1997.

[9] D.H. Wolpert and W.G. Macready, “No Free Lunch Theorems for
Search,” Santa Fe Institute, Santa Fe, NM, Tech. Rep. 95-02-010, 1995.

[10] D.H. Wolpert and W.G. Macready, “No Free Lunch Theorems for
Optimization,” IEEE Transactions on Evolutionary Computation, vol. 1,
no. 1, pp. 67-82, April 1997.

[11] Y.C. Ho and D.L. Pepyne, “Simple Explanation of the No-Free-Lunch
Theorem and Its Implications,” Journal of Optimization Theory and
Applications, vol. 115, no. 3, pp. 549-570, December 2002.

[12] J.C. Culberson, “On the futility of blind search: An algorithmic view of
"No Free Lunch,” Evolutionary Computation, vol. 6, no. 2, pp. 109-127,
1998.

[13] A.Y.S. Lam and V.O.K. Li, “Nature of Search Algorithms,” Department
of Electrical and Electronic Engineering, The University of Hong Kong,
Hong Kong, Tech. Rep. TR-2009-001, January 2009.

[14] C. Schumacher, M.D. Vose, and L.D. Whitley, “The No Free Lunch and
Problem Description Length,” In Proceedings of the Genetic and
Evolutionary Computation Conference. San Francisco, CA, Morgan
Kaufmann, pp. 565-570, 2001.

[15] C. Igel and M. Toussaint, “No-Free-Lunch theorem for non-uniform
distributions of target functions,” Journal of Mathematical Modelling
and Algorithms, vol. 3 no. 4, pp. 313-322, 2004.

[16] M.J. Streeter, “Two broad classes of functions for which a no free lunch
result does not hold,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), pp. 1418-1430, 2003.

[17] S. Droste, T. Jansen, and I. Wegener, “Optimization with randomized
search heuristics - The (A)NFL theorem, realistic scenarios, and difficult
functions,” Theoretical Computer Science, vol. 287, no. 1, pp. 131-144,
September 2002.

[18] T. English, “No more lunch: Analysis of sequential search,” in
Proceedings of the 2004 Congress on Evolutionary Computation,
Portland, OR, pp. 227-234, 2004.

[19] J. Sloan, “Two Rectangles are Constructible with Tangrams: An
Enumeartion Proof using Mathematica,” Mathematica in Education, vol.
2, no. 4, pp. 7-10, 1993.

[20] J. Sloan, Discrete Mathematics. Upper Saddle River, NJ: Prentice Hall,
2008.

4438

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

