
A Software Framework for Multimodal Human-
Computer Interaction Systems

Jie Shen
Department of Computing
Imperial College London

London, U.K.
js1907@doc.ic.ac.uk

Maja Pantic
Department of Computing

Imperial College London, U.K.
EEMCS, Univ. Twente, N.L.

maja@doc.ic.ac.uk

Abstract—This paper describes a software framework we
designed and implemented for the development and research in
the area of multimodal human-computer interface. The proposed
framework is based on publish / subscribe architecture, which
allows developers and researchers to conveniently configure, test
and expand their system in a modular and incremental manner.
In order to achieve reliable and efficient data transport between
modules while still providing a high degree of system flexibility,
the framework uses a shared-memory based data transport
protocol for message delivery together with a TCP based system
management protocol to maintain the integrity of system
structure at runtime. The framework is delivered as a
communication middleware, providing a basic system manager
and well-documented, easy-to-use and open source C++ SDKs
supporting both module development and server extension. The
experimental comparison between the proposed framework and
other similar tools available to the community indicates that our
framework greatly outperforms the others in terms of average
message latency, maximum data throughput and CPU
consumption level, especially in heavy workload scenarios. To
demonstrate the performance of our framework in real world
applications, we have built a demo system which is used to detect
faces and facial feature points in real-time captured video. The
result shows our framework is capable of delivering some tens of
megabytes of data per second effectively and efficiently even
under tight resource constraint.

Keywords—Software Framework, Multimodal Human-
Computer Interface, Publish / Subscribe Architecture

I. INTRODUCTION

With the widely accepted prediction that ubiquitous
computing will become the next milestone in the development
of computing, multimodal human-computer interface (MHCI)
has becoming an active area among the community [2]. Unlike
traditional human-computer interface, MHCI is expected to
interact with users in a more natural and human-centered way
and therefore has great potential for applications in future
pervasive systems [2].

While great attention has been attracted by algorithm
research in extracting information from different modalities,
such as speech, facial expression, gaze, gesture, and so on, the

This work has been supported by the European Research Council under the
ERC Starting Grant agreement no. ERC-2007-StG-203143 (MAHNOB).

issue regarding software framework, which is essential for
turning existing algorithms into reusable modules and
subsequently integrating such modules into applicable systems,
is largely overlooked. Although many researchers did provide
software implementation for their proposed algorithms, these
so-called modules, which are normally in OpenCV style, do not
have uniform external interface and are highly specific to their
own testing / demonstration system [3] [4] [6]. Therefore, it is
often hard to reuse a certain algorithm for new projects,
especially in cases where the system in mind is expected to be
built upon a large number of heterogamous algorithm
implementations.

This current situation not only affects projects involving
with system integration, but also has negative impact on
algorithm investigation since testing these algorithms in
realistic and collaborative context becomes difficult. Hence, it
is highly necessary to have a software framework which
regulates and facilitates rapid module development and system
integration for MHCI systems.

A. Requirements to the Framework
An ideal MHCI system is expected to be automatic,

adaptive, robust, ‘transparent’ and responsive [1] – [7]. Hence,
the following requirements are considered essential for its
underlying software framework:

• Support of heterogeneous modules integration:
Algorithms dealing with different modalities may
drastically vary in their internal structure. Thus, the
framework should not rely on a one-fits-all model for
all modules.

• Support of complex system structure: Because feature-
level and model-level (rather than decision-level)
fusion based approaches are receiving increasing
attention [4], individual algorithms are becoming more
and more interdependent. With this trend, complex
spatial and temporal module relationships within
MHCI systems are expected and therefore should be
supported by the framework.

• Support of dynamic system structure reconfiguration:
Considering that most algorithms only work well in
very specific environment, dynamic system structure
reconfiguration would be an effective approach

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2107

towards adaptive and robust performance at system
level. For instance, consider a general facial feature
point detector (FFPD) which works well for both front
view and profile view faces. Complexity of such
algorithms is usually much higher than that of
specialized detectors (e.g. two FFPDs optimized for
each case respectively which are activated / inactivated
at runtime with respect to trigger messages sent from a
front view face vs. profile view face classifier).

• Guarantee of reliable communication: Data loss may
not be that severe to systems with fixed structure where
only data messages are transmitted between modules.
However, for a system which may reconfigure its
structure using triggers, loosing such messages would
result in significant performance pitfall. Therefore, it is
important that the framework should guarantee
successful sending of every message or at least it
should notify the sender if the delivery fails.

• Low resource consumption: Because MHCI systems
are expected to use as little resource as possible to
provide real-time reactivity to users’ interactive
actions, the framework itself should also keep its
resource consumption low. Moreover, it is important
for the framework to support compiled modules (in
order words, modules written in languages such as
C/C++) in order to achieve high overall efficiency.

• Support of large data throughput: Since audio and
video signals, which are both high bit-rate streams, are
the primary information sources of most modalities
under study, the framework should be able to
efficiently deliver large amount of data. Even
considering the fact that higher level modules often
work on abstract information which contains less data,
the data flow between a small number of front-end
modules can still easily add up to a large value.

• Support of short message latency: Although the
maximum allowance for responding time is largely
application-dependent, an ‘as quick as possible’
response is always a goal. Therefore, a long time spent
on message delivery is unwanted, especially in large
systems where message latencies at each level of the
processing cycle will be eventually accumulated.

Additionally, to be of use to a broad community, we also
expect the software framework to be well-documented, easy-to-
use and BUG-free. Moreover, Open source is another
welcomed feature for the customizability it brings.

B. An Overview of Available Tools
Although there are a number of existing tools of the kind

we describe here, none of them fulfills all of the
aforementioned requirements. Table I provides an overview of
the existing tools. These tools can be categorized into two
types: SDKs based on local / remote procedure call [8] [11],
and middleware based on publish / subscribe (P/S) architecture
[9] [10] [12]. The first category is, on one hand, rather intuitive
and generally has good performance in terms of data
throughput, message latency and resource consumption level.
But on the other hand, lack of flexibility is their common

drawback. In comparison, the second category has less
restriction on the spatial and temporal structure of the system
and thus better fulfills the needs of spatially and temporally
distributed processing typical of MHCI systems. However,
their problem is that these tools are poorly implemented in
practice and cannot support high data rate and low latency
communication. Therefore, we set out to create a new software
framework which meets the outlined requirements in both
flexibility and performance.

TABLE I. AN OVERVIEW OF AVAILABLE TOOLS

Software
Framework

Features
Module Structure Configuring Reliability

Microsoft
DirectShow
[8]

Data stream
processor

No
feedback
loop

Static Guaranteed

Psyclone
AIOS [9]

No restriction Any
structure

Static and
dynamic

Message may
get lost

ActiveMQ
[10]

No restriction Any
structure

Dynamic Guaranteed

Open-
Interfacea

[11]

No restriction No
multicast

Static

Fleebleb [12] No restriction Any
structure

Static and
dynamic

Software
Framework

Features
Resource

Consumption
Data

Throughput
Message
Latency

Documentation
Support

Microsoft
DirectShow
[8]

Low Very High Very Low Comprehensive
and easy to
follow

Psyclone
AIOS [9]

Highc, d < 21 MB/s Up to
7500+ ms

Easy to follow,
but incomplete
and inconsistent

ActiveMQ
[10]

Highc, d < 10 MB/s Up to 250+
ms

Comprehensive
and easy to
follow

Open-
Interface [11]

 Very poor

Fleeble [12] Easy to follow
but incomplete

Software
Framework

Features
BUG Supported

Languages
Open

Source?
Note

Microsoft
DirectShow
[8]

Not detected C++, C#,
VB

No Module
development is
relatively hard

Psyclone
AIOS [9]

Deadlock,
access error
and
connection
failure

C++, Java No

ActiveMQ
[10]

Memory Leak C++, Java Yes

Open-
Interface [11]

No working
example

C++, Java,
Matlab

Yes

Fleeble [12] Java Yes
a. OpenInterface was not tested due to its buggy implementation.

b. Fleeble was not tested because it only supports Java and therefore will not be used anyway.
c. Very high CPU consumption rate was recorded when communication workload was heavy.

d. The initial memory consumption was more than 50 MB, which increased rapidly thereafter.

C. Organization of the Paper
The rest of this paper is organized as follows. Section II

describes the conceptual design of our proposed software
framework, including its P/S architecture and two protocols
designed to achieve high data rate communication and flexible

2108

system management, respectively. An introduction to the
implementation detail and the delivered tool set is given in
Section III. Experimental evaluation of the framework in both
artificial stress test settings and real world application settings
is described in section IV. And finally, section V concludes the
paper.

II. CONCEPTUAL DESIGN

This section describes the design of the proposed software
framework. We first introduce the publish / subscribe (P/S)
architecture used by the framework, followed by the data
transport protocol which uses shared memory to facilitate high
data rate, low latency and reliable data transport between
modules. Subsequently, the TCP based system management
protocol, which is used to support dynamic system structure
reconfiguration and maintain structure integrity at runtime, is
described.

A. Architecture
The proposed software framework is designed and

implemented as a middleware facilitating publish / subscribe
(P/S) communication between modules.

Fig. 1 illustrates an example. This example system contains
three modules. Each of them is built into a standalone
executable, which internally calls the client component of our
framework to exchange messages with other modules.
Different from local / remote procedure call based approaches,
in which modules are implemented as components (DLLs,
COM objects, and so on), and are called by the framework or
other modules, modules in our framework are granted explicit
control over their own execution route. In other words,
modules do not have to follow any predefined internal structure
model as long as they can correctly call the framework’s client
component whenever communication is needed. In this way, a
high degree of flexibility at module level is achieved.

Furthermore, as shown in Fig. 1, modules do not send
messages directly to each other, but via logical message
dispatchers, which are called channels. Channels are named
entities that allow a single message to be dispatched to any
number of receivers which have previously shown ‘interest’ in
it [12]. The mechanism behind is as follows. A module informs
the framework if it is ‘interested’ in messages of a certain type
by subscribing to the channel dedicated to that type of
messages. Then, whenever a message is sent (published) to that
channel, the message would be automatically routed to all of
the subscribed modules. With this P/S mechanism, modules at
both sending and receiving ends are effectively isolated, which
means that their dependency on the presence of assumed
upstream and / or downstream modules is eliminated. In other
words, a module can be used in any circumstance as long as
appropriate channels, which are always the same type of
entities but with different names, exist. Therefore, development
and using of context-free and stateless modules become
possible [12] [13].

Additionally, because of this isolation of modules, changes
to a part of the system do not affect the whole system, making
it possible to build the system in an incremental way, gradually
expanding on a small number of interconnected core modules.
This way of development, which is called constructionist

design methodology (CDM) [13], is suggested to be very
appropriate for the implementation of complex and multi-
functional interactive intelligent systems, in which detailed
specification of the entire system is often unclear at the
beginning [13]. This is also normally the case in MHCI
research.

With this P/S architecture, the structure of the system is
fully defined by the collection of channels and all modules’
subscriptions. This decentralized representation of system
configuration brings great flexibility to system integration for it
does not impose any explicit restriction on the topology of the
module network.

Dynamic system reconfiguration is achieved by enabling
modules to initiate and / or cancel subscriptions at runtime. In
this situation, execution of remaining modules is completely
unaffected because each module only sees its input and output
channels but not the upstream and downstream modules.
Therefore, dynamic system reconfiguration is more or less
naturally supported by our framework, without requiring
module developers to specifically consider this issue.

Besides modules and channels, a system manager (server)
is also required. The role of the system manager is a twofold.
Firstly, it hosts all channels. Secondly, the system manager also
works as a central repository which stores all information
regarding current system configuration at runtime, including a
list of channels, a list of working modules, and their
subscriptions. Although this central repository is not required in
theory, due to the framework’s decentralized and implicit
representation of system configuration, it is practically essential
for the implementation of the P/S communication using our
data transport protocol. In fact, our data transport protocol
requires each module to carry an identical copy of a part of this
information. In order to maintain consistency between all these
copies, TCP connection is established between every module
and the system manager. A system management protocol is
then designed and implemented to synchronize each module’s
local copy of configuration information with the original copy
stored in system manger whenever changes occur. More details
on this issue will be given in the next two subsections. Also
note that in order to make the system manager extendable, it is
actually built into a threaded in-process component called
server component (as shown in Fig. 1), which allows
developers to add more features into the final executable if
necessary.

Figure 1. Structure of an example system in which our framework is used.

2109

B. Data Transport
In this subsection, we describe the data transport method

used by our framework. Recall that achieving high data rate,
low latency, and reliable data transport, which tools like
Psyclone and ActiveMQ failed to meet, is one of the most
important requirements of a MHCI-supportive software
framework.

1) Choosing Inter-Process Communication Method
Because data transport between modules in our framework

is basically inter-process communication (IPC), it is important
for us to choose a proper underlying IPC method for the
protocol in order to fulfill all of aforementioned requirements.
The following criteria are crucial when choosing an appropriate
method:

• The method should be general enough to support any
number of concurrent communication sessions, with
messages having arbitrary length. Moreover, it should
be able to work in all sorts of programs.

• The method should be reliable enough to guarantee
ordered data delivery (first sent, first received).

• The method should be efficient enough, which means it
should have the potential to support high data rate and
low latency communication. This also means more
fundamental methods would be favored to avoid
performance overhead.

Although there are 11 different IPC methods for Windows
[14] [15] (which is the primary platform on which MHCI
systems run [1] [7]), our conceptual evaluation shows that most
of them are either too specific (clipboard, WM_COPYDATA
and LPC [15]), unreliable (mailslots and UDP) or inefficient
(COM, DDE, pipes and RPC). Only TCP and shared memory
may meet our requirements.

In practice, TCP is favored by many exiting tools including
Psyclone and ActiveMQ due to its convenience of use and its
cross-platform nature. However, our experimental comparison
between TCP and shared memory, which is given in table II,
shows that shared memory can support much higher (up to 10
times) data throughput than TCP under every CPU
consumption constraint. Hence, we decided to choose shared
memory as the underlying IPC method.

2) Data Transport Protocol
The data transport protocol contains two parts. The first part

specifies the peer to peer (PTP) communication protocol
directly built upon shared memory and the second half explains
how to implement P/S communication using this PTP protocol.

TABLE II. COMPARISON BETWEEN TCP AND SHARED MEMORY

CPU Usagea Data Rate of TCP Data Rate of Shared Memory
5% 9 MB/s 90 MB/s
20% 34 MB/s 230 MB/s
35% 40 MB/s 245 MB/s
50% 55 MB/s 225 MB/s
65% 73 MB/s 245 MB/s
80% 80 MB/s 280 MB/s

a. Conducted on a ThinkPad T43 laptop with 2.0 GHz Pentium M CPU and 1 GB of memory.

Unlike most IPC methods, shared memory is hardly a
communication method. It simply allows developer to create
named global memory block, which can be mapped into many
processes’ address space in order to share data across process
boundary [14]. Windows does not provide automatic locking
for the memory block to prevent data corruption, but the
content of mapped buffer is guaranteed to remain consistent
when it is accessed from different processes [14].

Therefore, as the basis of P/S communication, we have
firstly defined a protocol to implement reliable PTP
communication through shared memory. Below is a rough
description of this protocol.

• Each peer is required to allocate a named shared
memory block, used as its local inbox. The content of
this memory block should be organized as follows.
First 4 bytes are used to store an unsigned integer
representing the total amount of data currently stored in
the inbox, excluding itself. The remaining space is used
to store an array of received messages.

• The message format is defined as follows. First 4 bytes
store a tag representing application defined message
type. Following 16 bytes form an SYSTEMTIME
structure storing the sending time of the message. The
next arbitrary size of space (at least 1 byte) is used to
store a NULL ended string representing sender’s name.
Then, next 4 bytes are used to store content length of
the message as an unsigned integer. And finally, the
remaining part of the message stores its content.

• Each peer uses a named mutex to prevent simultaneous
multiple accesses to its inbox at any time.

• Each peer should also create a named event used as an
indicator representing whether there is data in its local
inbox.

• During execution, each peer uses a thread to constantly
monitor its indicator event’s state. Whenever a set state
is detected, the thread would parse its inbox’s content
(with protected read operations), split the stored data
into separate messages, clear the buffer, and then reset
the indicator event.

• When a message is sent, the sender simply appends
(with protected write operations) the whole message,
including both header and its content, into the
receiver’s inbox and set its indicator event.

To extend this protocol for P/S communication, an intuitive
way is to allocate a common inbox for each channel and let the
channel’s subscribers to constantly monitor its content.
However, this method is unreliable. Because there are
arbitrarily many subscribers, which may also unsubscribe at
any time, it is hard to determine when and whether a message
should be removed from the channel buffer, while still ensuring
successful delivery to every valid destination. Therefore, we
choose to implement the P/S communication using a collection
of individual PTP message sending sessions.

In our framework, channel only exists as a logical concept.
It consists of only a collection of subscriptions used to guide

2110

message routing. In practice, the system manager stores a
channel list. Each of its elements consists of an array
containing the name of all the channel’s subscribers. Whenever
a module needs to publish a message, it simply retrieves the
target channel’s subscriber list and then sends the message
directly to every subscriber through the PTP protocol described
above. In this way, message publishing is reduced to a number
of PTP message sending sessions, where the reliability is
guaranteed. In order to accelerate this procedure, each module
also holds a copy of the channel list and therefore eliminates
the need of frequent access to the system manager’s storage.

C. System Management Protocol
In order to support dynamic system reconfiguration and

maintain consistency between the configuration information
stored in the system manager and all its copies held by the
modules, a system management protocol is designed and
implemented. In this protocol, TCP has been chosen as the
underlying communication method for its ease of use. Given
that the messages used for these purposes are normally short,
choosing TCP, which is proved suboptimal in terms of data
throughput, should not lead to significant performance
degradation.

As stated above, each module establishes and maintains a
TCP connection to the system manager during its entire life
cycle. This connection is used by the system management
protocol for message exchanging. These messages are called
system management messages, which are privately used by the
framework itself and are transparent to module developers.

In our protocol, 3 types of system management messages
are defined:

• Request messages: module registration request, remote
channel creation request, remote channel destruction
request, module subscription request, and module
unsubscription request. These messages are sent from a
module to the system manager when the module
requests a change in the system structure. The system
manager is then required to answer these requests with
acknowledgement messages. Note that module logoff
request is unnecessary because shutting down the TCP
connection carries the same information.

• Notification messages: channel creation notification,
channel destruction notification, module subscription
notification, and module unsubscription notification.
These messages are sent from the system manager to
all modules in order to indicate changes in the system
structure. Upon receiving, modules should update their
local copy of the channel list to reflect the new
configuration. Note that there is no module registration
notification and module logoff notification because
modules are only interested in changes to the channel
list. Nevertheless, the system manager is responsible
for broadcasting appropriate channel unsubscription
notifications whenever a module logs off.

• Acknowledgement messages: ACK (approved) and
NACK (rejected) sent by the system manager as the
answer to a module’s request.

Based on these messages, a number of protocol operations
have been defined to handle the situations such as module
registration, channel creation, module subscription, and so on.
These operations, which are mostly in the typical form of
request-process-acknowledge procedure, are straightforward
and therefore further description is omitted for brevity.

III. MIDDLEWARE IMPLEMENTATION AND THE SDKS

The framework is implemented as a communication
middleware, which consists of a basic system manager
program, together with well-documented, easy-to-use and open
source C++ SDKs for both module development and server
extension. In this section, we introduce all these components
and briefly describe how they are implemented.

A. Basic System Manager
The basic system manager program is shown in Fig. 2. This

program is a shallow GUI encapsulation of the server extension
SDK. It displays the channel list, module list and all
subscriptions in two tab pages. The program constantly
monitors the two lists through the server extension SDK and
reflects any change in their content once detected. Through a
direct call to the SDK under the hood, users can also create and
destroy channels at runtime.

Compared to the equivalent program provided by Psyclone
and ActiveMQ’s (which are called Psyclone server and
ActiveMQ message broker respectively), the function of our
basic system manager is rather limited for it supports neither
loading / saving of system configuration nor message logging.
However, these additional features can be added through
programming using our SDKs. For instance, a possible way to
implement system wide message logging would be to integrate
a logger module (a module which subscribes to all channels
and records every message) into the server program.

B. Module Development SDK
Module development SDK encapsulates the implementation

of data transport protocol together with the client side of
system management protocol and exposes high level
programming interface to developers.

The SDK is developed into a C++ static library (.lib). Two
precompiled versions are provided, one for Visual Studio 2005
and the other for Visual Studio 6.0. Minor changes may be
needed to avoid compiler warnings if the source code is to be
compiled for other compiler / linker tool set. Because only
standard Windows API and C++ STL library are used during
its development, the SDK can be used in any Windows
application.

The programming interface is provided through a C++ class
called CFEClientComponent, which exports functions for
module registration / logoff, module subscription /
unsubscription, remote channel creation / destruction and
message publishing / receiving. Internal locks are used to avoid
data corruption. Therefore, objects of this class can be accessed
in parallel from different threads without explicit protection. As
the client implementation of the communication middleware,
every module should maintain an instance of this class during
its entire life cycle.

2111

Figure 2. The basic system manager program.

Inside the SDK, three worker threads are used, which are
described below.

• TCP communication thread: This thread is used to
handle low level TCP communication between the
module and the system manager. It continuously
monitors the TCP socket, splits incoming data stream
into separate system management messages and puts
them into an internal queue.

• System management protocol client thread: This thread
is used to perform the protocol operations defined in
our system management protocol. It parses the buffered
system management messages and changes the locally
stored channel list accordingly.

• Local inbox monitoring thread: This thread implements
the data transport protocol. It monitors the module’s
local inbox, extracts received data messages and moves
them to another internal buffer. These messages would
then be returned to the caller when appropriated
interface function is called.

C. Server Extension SDK
Server extension SDK provides the core implementation of

the system manager’s functions defined in our framework.
Similar to the module development SDK, it is also
implemented as a C++ static library which only uses Windows
API and C++ STL library, and is precompiled for Visual Studio
2005 and Visual Studio 6.0.

A multithread safe C++ class called CFEServerComponent
is provided as the SDK’s programming interface. This class
exports functions for server startup / termination, channel
creation / destruction and system configuration information
retrieval.

The easiest way to build an applicable but rather basic
system manager program is to create an instance of the
CFEServetComponent class as main function’s local variable,
and call CFEServetComponent::Initialize function to start its
internal worker threads when the program starts. More
powerful implementations can be obtained through a combined
use of both server extension SDK and module development
SDK, together with careful programming.

The worker threads used inside the server extension SDK
are described below.

• TCP listening thread: This thread is used to monitor the
TCP listening socket operated by the system manger. It
simply accepts every pending connection request and
allocates resource for the newly registered module.

• TCP communication thread: The server allocates one
such thread for each registered module to handle low
level communication. Similar to its counterpart in
module development SDK, the thread is responsible for
splitting individual system management messages from
the raw TCP stream.

• System management protocol server thread: This
thread is used to check buffered system management
messages received from all active modules and respond
to them according to the protocol operations defined in
our system management protocol.

IV. EXPERIMENTAL EVALUATION

In order to obtain performance measure of our proposed
framework, we have conducted two experiments. The first one
gives a quantitative comparison between our framework,
Psyclone and ActiveMQ through stress tests performed in
artificial settings. In the second experiment, we have developed
a demo system which detects faces and facial feature points in
real-time captured video stream. This system not only provides
performance measure of our framework in realistic context
with tight resource constraint, but also serves as a prototype for
further development of a GUI-enabled workbench for our
framework.

A. Comparison to Psyclone and ActiveMQ
In this experiment, we have developed a test program to

compare the performance of our framework, Psyclone and
ActiveMQ in terms of maximum data throughput, average
message latency and CPU consumption level.

The test program implements a pair of message publisher /
subscriber for each dispatcher provided by these three
frameworks. When the test is running, the publisher continually
sends messages in specified length to the subscriber through
the framework’s message dispatcher (be it a channel in our
framework, a whiteboard / stream in Psyclone or a queue /
topic in ActiveMQ). A 10 ms halt takes place between every
consecutive message publishing to avoid busy waiting. Then,
given a specified message length, its correspondent packet rate,
data throughput, average message delay and CPU consumption
rate would be estimated and recorded.

In the actual experiment, we ran the test program several
times for each framework / dispatcher combination using one
publisher and one subscriber. The initial message length was
set to 1 KB, which increased to 1024 KB by a factor of 4.
Results obtained from this experiment are shown in Table III.

As we can see from the table, for every tested framework /
dispatcher combination except of our own, there is a sharp rise
in CPU consumption rate, from less than 10% to more than
75%, between some two consecutive rows. Because using more
than 75% of CPU power solely for data delivery is clearly out

2112

of question in real-world MHCI applications, a framework /
dispatcher combination would be considered intractable after
this sharp rise takes place. Therefore, we define the practical
maximum data throughput for a combination as its data
throughput recorded immediately after this turning point. This
value is 6010.88 KB/s for Psyclone / whiteboard, 21268.48
KB/s for Psyclone / stream, 7690.24 KB/s for ActiveMQ /
queue and 6969.28 KB/s for ActiveMQ / topic, respectively. In
contrast, because a similar increase did not appear when testing
our own framework, it is safe to conclude that our framework’s
practical upper limit in data throughput is at least 102287.36
KB/s, which is already significantly larger than that of any
other tested tools.

From another perspective, because in practice, message
length is a good indicator of overall communication workload,
we can conclude that our framework consumes much less CPU
power than the others in heavy workload situations and it does
at least equally well when the workload is light.

Regarding to message latency, even if we consider only the
value obtained when all combinations were working in their
tractable range, our framework already greatly outperforms the
others except topic in ActiveMQ, which is still no match to our
framework if heavier workload situations are taken into
consideration.

B. The Facial Feature Point Detection System
In this experiment, we have developed a demo system in

order to measure the performance of our framework in the
context of a realistic system with tight resource constraint.

The demo system, which is shown in Fig. 3, is used to
detect faces and facial feature points from real-time captured
video stream. The data processing is basically performed in a
3-stage waterfall processing cycle. The front-end consists of a
video capturer, which captures real-time video frames and
pushes them down to the face detector through the original
video channel. The output of the second stage is then fed to the
facial feature point detector (FFPD) through face detection
result channel. The final result, which consists of original video
frame together with detected face boxes and facial feature
points coordinates, is published to the point detection result
channel. Each of the three channels also dispatches messages to
a correspondent renderer module, which displays them onto the
system’s main GUI for visualization.

In this system, both the face detector and FFPD are
implemented as standalone executables, which are based on
OpenCV’s implementation [16] and the algorithm explained in
[17].

In order to allow users to freely enable and disable each
stage in the processing waterfall, each renderer is also used as
the controller and monitor of its ‘input’ module. They publish
status messages to status report channel and respond to
command messages received from system command channel.
As the abstraction of the main GUI, the system command
center module lies in the other end of above two channels and
controls the overall execution of the entire system.

In the experiment, we have ran the system 4 times using
different input frame size, which implies different level in

overall data throughput (roughly 5 times of the source video’s
data rate). The average message latency and processing time at
each detection stage were then estimated and recorded.

The test results are summarized in Table IV. When
compared to the result listed in Table III, increase in message
latency becomes evident. However, this is also expected since
FFPD alone used almost 100% of the CPU power on its own
and, therefore, left very limited resource for other processes.
Nevertheless, the ratio between total latency and total
processing time is less than 0.5‰ in all cases, which indicates
that our framework is still able to deliver some tens of
megabytes of data per second highly efficient, even in
environment where tight resource constraint is imposed.

TABLE III. A QUANTITATIVE COMPARISON BETWEEN OUR FRAMEWORK,
PSYCLONE AND ACTIVEMQ

Framework
and

Dispatcher

Message
Length
(KB)

Message
Rate

(baud)

Data Rate
(KB/s)

Average
Latency

(ms)

CPU
Usage
Ratea

Our
Framework /
Channel

1 99.86 99.86 < 0.01 < 1%
4 99.86 399.43 < 0.01 < 1%
16 99.84 1597.44 < 0.01 < 1%
64 99.84 6389.76 < 0.01 < 1%
256 99.84 25559.04 < 0.01 < 1%
1024 99.89 102287.36 0.07 < 1%

Pscylone /
Whiteboard

1 98.86 98.86 0.12 < 1%
4 98.86 395.43 0.13 < 1%
16 98.56 1576.96 0.14 2%
64 98.92 6010.88 36.59 100%
256 47.88 12257.28 2320.69 100%
1024 14.66 15011.84 7677.53 100%

Psyclone /
Stream

1 99.56 99.56 0.04 <1%
4 99.46 397.83 0.07 <1%
16 99.84 1597.44 0.11 <1%
64 99.68 6379.52 0.13 2%
256 83.08 21268.48 5012.15 90%
1024 19.36 19824.64 4351.02 100%

ActiveMQ /
Queue

1 99.79 99.79 0.01 <1%
4 99.36 397.43 0.05 <1%
16 99.84 1597.44 0.02 <1%
64 93.12 5959.68 0.77 7%
256 30.04 7690.24 60.32 97%
1024 7.97 8161.28 277.41 98%

ActiveMQ /
Topic

1 99.82 99.82 <0.01 <1%
4 99.86 399.43 <0.01 <1%
16 99.84 1597.44 <0.01 <1%
64 99.84 6389.76 <0.01 2%
256 24.88 6369.28 30.31 80%
1024 4.89 5007.36 195.74 98%

a. Conducted on a ThinkPad T42 laptop with 1.7 GHz Pentium M CPU and 512 MB of memory.

TABLE IV. LATENCY AND PROCESSING TIME IN THE DEMO SYSTEM

Frame Sizea 176 x 144 320 x 240 352 x 288 640 x 480
Frame Rate (FPS) 29.916 29.916 29.916 22.006
Overall Data
Throughput (MB/s)

10.85 32.87 43.38 96.71

Average Message
Latency (ms)

0.141 0.338 0.490 4.608

Face Detection Time
per Frame (ms)

2.469 8.251 11.077 43.878

Point Detection Time
per Frame (ms)

11416.667 11538.000 13430.667 18757.000

Total Latency / Total
Processing Time

0.024‰ 0.058‰ 0.073‰ 0.490‰

a. Conducted on a HP Mobile Workstation with 2.53 GHz Core Duo CPU and 2.99 GB of memory.

2113

Figure 3. The facial feature point detection system. The buttons on the left-
hand-side of the GUI, from top to bottom, are used to: start the system;

configure video capturer; stop the system; toggle off both face detector and
FFPD; toggle off FFPD only; and toggle on all modules, respectively.

V. CONCLUSION

Based on publish / subscribe architecture, we have designed
and implemented a software framework for multimodal human-
computer interaction systems. The framework enables rapid
development and prototyping on both module and system
levels and allows developers and researchers to build their
system in a modular and incremental way. It also supports
integration of heterogeneous modules and dynamic system
structure reconfiguration, which offer great flexibility to system
design and implementation. Internally, the framework uses a
shared memory based data transport protocol to achieve
reliable and efficient message delivery between modules and a
TCP based system management protocol to maintain integrity
of system configuration at runtime.

The framework is implemented as a communication
middleware consisting of a basic system manager program
together with well-document, easy-to-use and open source
SDKs for both module development and server extension. The
SDKs are developed into two C++ static libraries. Each of them
provides a multithread safe class as its programming interface.
Because only Windows API and C++ STL library are used
during their development, both SDKs can be used in any
Windows application.

The quantitative comparison between our framework,
Psyclone and ActiveMQ in artificial stress test settings shows
that our framework greatly outperforms the others in terms of
maximum data throughput, message latency and CPU
consumption level, especially in heavy workload situations. A
facial feature point detection system was also developed as a
demo system, which is used to further test the framework’s
performance in the context of a real world application with
tight resource constraint. The result shows that our framework
works well in this realistic environment where tight resource
constraint is imposed. Though most CPU power is allocated to
the facial feature point detection algorithm, the framework can
still delivery some tens of megabytes of data per second
efficiently and effectively with relatively short transmission
latency.

In the next step, using our demo system as the basis, we
will build a workbench for our framework, which provides a
GUI allowing developers to configure the system structure
using simple drag-and-drop operations. Saving and loading the
system configuration with disk files will be supported as well.

REFERENCES

[1] R. Sharma, V. I. Pavlovic, and T. S. Huang, “Toward multimodal
human–computer interface”, proceedings of the IEEE, vol. 86, no. 5,
May 1998.

[2] M. Pantic, and L. J. M. Rothkrantz, “Towards an affect-sensitive
multimodal human-computer interaction”, Proceedings of the IEEE, vol.
91, no. 9, pp. 1370-1390, September 2003.

[3] A. Jaimes, and N. Sebe, "Multimodal human–computer interaction: a
survey", Computer Vision and Image Understanding, vol. 108, no.1-2,
pp. 116-134, 2007.

[4] M. Pantic, A. Pentland, A. Nijholt and T.S. Huang, “Human computing
and machine understanding of human behavior: a survey”, Artificial
Intelligence For Human Computing, T.S. Huang, A. Nijholt, M. Pantic
and A. Pentland, Eds. Springer, Lecture Notes in Artificial Intelligence,
vol. 4451, pp. 47-71, 2007.

[5] M. Pantic, A. Nijholt, A. Pentland, and T. Huang, “Human-centred
intelligent human-computer interaction (HCI2): how far are we from
attaining it?”, Int’l Journal of Autonomous and Adaptive
Communications Systems, vol. 1, no. 2, pp. 168-187, 2008.

[6] Z. Zeng, M. Pantic, G.I. Roisman and T.S. Huang, “A survey of affect
recognition methods: audio, visual, and spontaneous expressions”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2008.

[7] L. Maat, and M. Pantic, “Gaze-X: adaptive affective multimodal
interface for single-user office scenarios”, Artificial Intelligence for
Human Computing, T. S. Huang, A. Nijholt, M. Pantic, and A. Pentland,
Eds. Springer, Lecture Notes in Artificial Intelligence, vol. 4451, pp.
251-271, 2007.

[8] “MSDN: DirectShow (Windows)”, Dec. 4, 2008. [Online]. Available:
http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx
[Accessed: Mar. 27, 2009].

[9] “Communicative Machines: Pscylone”, 2007. [Online]. Available:
http://www.cmlabs.com/psyclone/ [Accessed: Mar. 27, 2009].

[10] “Apache ActiveMQ”, 2009. [Online], Available:
http://activemq.apache.org/ [Accessed: Mar. 27, 2009].

[11] J-Y. Lawson, J. Vanderdonckt, and B. Macq, “Rapid prototyping of
multimodal interactive applications based on off-the-shelf heterogeneous
components”, Adjunct Proceedings of the 21st Annual ACM
Symposium on User Interface Software and Technology, pp. 41-42,
2008.

[12] M. Pantic, R.J. Grootjans, and R. Zwitserloot, “Fleeble agent framework
for teaching an introductory course in AI”, IADIS International
Conference Cognition and Exploratory Learning in Digital Age,
2004.

[13] K. R. Thorisson, H. Benko, D. Abramov, A. Arnold, S. Maskey, and A.
Vaseekaran, “Constructionist design methodology for interactive
intelligences”, AI Magazine, vol. 25, no. 4, pp.77-90, 2004.

[14] “MSDN: inter-process communications”, Feb. 12, 2009. [Online].
Available:http://msdn.microsoft.com/en-
us/library/aa365574(VS.85).aspx [Accessed: Mar. 27, 2009].

[15] P. Dabak, S. Phadke, and M. Borate, “Local procedure call”,
Undocumented Windows NT, Foster City: M&T Books, 1999, pp. 143-
189.

[16] P. Viola, and M. J. Jones, “Robust real-time face detection”,
International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154,
2004.

[17] D. Vukadinovic, and M. Pantic, “Fully automatic facial feature point
detection using Gabor feature based boosted classifiers”, 2005 IEEE
International Conference on Systems, Man and Cybernetics, Waikoloa,
Hawaii, Oct. 10-12, 2005.

2114

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

