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Abstract—In this paper, a novel cerebellar model articulation 
controller (CMAC)-Based compensator is proposed to limit 
bound required in supervisory control systems. There are two 
structures in the proposed schemes: one is supervisory controller 
and the other is the CMAC-Based compensator. The supervisory 
controller can ensure Lyapunov stability of the controlled system 
in the presence of significant plant uncertainties, if the perfect 
control is estimated. The CMAC is employed to learn the perfect 
control, but a model error will exist in the learning process. The 
object of CMAC-based compensator is to suppress this model 
error, so that the supervisory of can be rationalized for uncertain 
nonlinear systems. Finally, simulation results demonstrate that 
the CMAC-based compensator not only can limit the bound 
required in supervisory controllers, but also can significantly 
improve the control performance. 

Keywords—CMAC, Supervisory Control, and Lyapunov 
Stability.

I. INTRODUCTION

The object of supervisory control is to drive the system into 
a reasonable region when the current control performance is 
not acceptable. Considerable research results have been 
reported for the application of adaptive fuzzy control 
techniques based on supervisory control [1][2]. In fact, those 
supervisory control approaches can also be said to be a robust 
control scheme. The first supervisory controller (SC) is 
addressed in [3] and many similar SCs are proposed to 
guarantee the initial control performance [4]-[9] under 
different original control mechanisms (the so-called main 
control [10]), such as fuzzy systems, neural networks, 
Cerebellar Model Articulation Controllers (CMAC) [11][12], 
genetic algorithms, self-tuning PID controller, etc. These 
supervisory control schemes have a promising advantage of 
requiring no prior knowledge of system dynamics. 
Nevertheless, a serious drawback of theses approaches is that 
the robust bounds of some system parameters must be 
anticipatable when implementing supervisory controllers to 
ensure the stability of the system. In fact, those bounds will be 
difficult to obtain while the system functions are unknown in 
practical applications.  

In this paper, we propose to use a learning mechanism to 
learn the perfect control in the robust control structure so that 

the supervisory controller can be implemented in practical 
systems. The model error will exist in the learning process, so 
the CMAC-based compensator is employed to suppress this 
side effect happened in the supervisory control system. It 
should be noted that the learning mechanism used is for online 
learning. Thus, it is important that the learning mechanism 
must have a quick learning property. In our implementation, 
CMAC [11][12] acts as the learning mechanism because of its 
quick learning capability. In the literature, there are also some 
CMAC based supervisory control approaches [1][2][13]. Most 
of them are to use CMAC for taking the place of the fuzzy 
estimators in adaptive fuzzy control. In reference [1], CMAC 
acts as a traditional adaptive controller in their control law and 
a sliding control based supervisory controller is also proposed. 
The authors further proposed a fuzzy mechanism to ease the 
transition between the adaptive controller and the supervisory 
controller. It can be found that the problem of model errors and 
the moderation of the requirement of the system function 
bounds are not handled in the approach. In reference [2], the 
authors added a compensated controller in the control structure 
to reduce possible model errors. In their derivation, this 
compensated controller becomes an adaptive term for ensuring 
the Lyapunov stability. They further proposed a novel 
controller in reference [13] by using a recurrent CMAC for 
replacing the original CMAC, and they also considered the 
sliding control structure in the control law design. Their 
approaches indeed can have effects when there are model 
errors in estimators, but their approaches still need to estimate 
the bound of the sliding controller. However, the estimated 
bound will increase because its slope is absolutely positive in 
their design. So we propose the CMAC-based limited bound 
compensator in supervisory control to solve above problems. 
The proposed approach not only makes the supervisory control 
be realized easily for any practical systems but also can 
improve the control performance.  

This paper is organized as follows. The supervisory control 
for a nonlinear system is considered in Section II. The basic 
concepts of CMAC are introduced in Section III. The CMAC-
based limited bound compensator is discussed in Section IV. 
Simulations and conclusions are in Section V. 
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II. SUPERVISORY CONTROL FOR NONLINEAR SYSTEMS

Consider an nth-order nonlinear system of the form 

xy
duxxxbxxxfx nnn ),,,(),,,( )1()1()(

,                (1)

where b is an unknown but bounded continuous functions, d is 
an external bounded disturbance, and   and  u y R  are the 
input and the output of the system, respectively. Let 

( 1)ˆ ( , , , )n nx x x x R  be the state vector of the system. The 
control objective is to force the system output to follow a given 
bounded reference signal r under the constraints that all signals 
involved must be bounded. Now, the task is to design a robust 
controller for an uncertain system and such a robust controller 
is designed to ensure the stability of the system in a Lyapunov 
sense.

First, consider that there is no disturbance in the system (i.e. 
d=0). It can be found that the system output can be ensured to 
approach to the reference signal r, if the control law is 

   ]ˆˆ),,,([1* )1()( ekxxxfr
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where k̂ and ê  are defined as T
nkkkkk ],,,,[ˆ

1210  and 
Tneeeee ],,,,[ˆ )1( , and e(t) is the tracking error and is 

defined as )()()( txtrte . The controller in Equation (2) is 
usually referred to as the perfect control law. Now, apply the 
perfect control law to Equation (1) with d=0, and then we have        

0ˆˆ)( eke Tn .                           (3) 

It is easy to verify that if k̂ is selected such that the roots of 
the characteristic equation as Equation (3) are all in the open 
left-half plane, then the system will asymptotically track the 
reference input r.

Secondly, with the use of the Lyapunov stability theorem 
[14] [15], Theorem 1 is introduced to ensure the stability of 
supervisory control systems. 

Theorem 1:

Consider the existence of uncertainties and external 
bounded disturbances (i.e., d 0) in a control system. If a robust 
controller is considered as:  

* su u u ,           (4) 

where the supervisory control su  is defined as  
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the lower bound of b is bL ( bbL0 ) and the upper bound of 
d is dU ( Ud d ), then the Lyapunov stability theorem will be 
satisfied.  

Proofs: 

Consider the Lyapunov function as 

           
2

1
1
2

V S ,                                          (6) 

where the sliding surface is defined as the integral of the 
characteristic polynomial, 

           dttStS )()( , where eketS Tn ˆˆ)( )( .             (7) 

If * su u u , then  
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By introducing the perfect control law as Equation (2) into 
Equation (8), Equation (9) is gotten.   

)(1 dbuSV s .                                  (9) 

It can be directly verified that if the supervisory control us
is selected as Equation (5), Equation (9) is always negative. In 
other words, the system is stable in the sense of Lyapunov.  

However, the perfect control law needs to know the 
functions f and b. If they are unknown, there is no way of 
forming the perfect control law. Thus, the CMAC will be 
employed to the perfect control law in the following two 
sections.  

III. BASIC CONCEPTS OF CMAC 
The Cerebellar Model Articulation Controllers (CMAC) 

firstly proposed by J. S. Albus in the literature [11][12], have 
several advantages including local generalization [16][17] and 
rapid learning convergence [18][19]. CMAC seems to be a 
good candidate for on-line learning control [20] and can be 
thought of as a learning mechanism that imitates the 
cerebellum of a human being. The CMAC is often referred to 
an associative neural network, where only a small subset 
memory cells mapped by the input vector or so-called state 
instantaneously determines the output. In fact, CMAC has been 
regarded as a look-up table neuron computing technique with 
fast learning convergence.  

In the output producing process, a set of association cell 
indexes T

kNkjkkv vcvcvcvcC
mk

)](,),(,),(),([ 21  via the n
dimension input vector 1 2( , , , )k nv x x x  is utilized for 
address indexes to extract the L stored weights from mN
memory cells, which are also called hypercubes in CMAC 
structure. The constant L equals the number of layers in 
CMAC, and total number of memory cells is mN . Note that 
different inputs map into at least one different memory cell, but 
the association cell indexes mapped by similar input vectors 
will share memory cells with similar input vectors [17].  
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The output producing process can be divided into two parts of 
mapping in CMAC, which are described as follows: 

PCg
CSf

W:
:

                        (10) 

where S can be n-dimension input space that is quantized into 
several discrete states according to required resolution. C is a 
set of association cell indexes, and it contains L’s activated 
elements that equal the layers of CMAC; P is the output space; 
and T

Nj m
wwwwW ],,,,,[ 21  is the corresponding weight 

vector in which the mapping information of P is stored. The 
mapping function f means that each input vector kv  in S maps 
into association cell indexes, and here are only L’s indexes that 
are activated in C. Through the mapping function g, output P
will equal the sum of the weights whose corresponding cell 
indexes are activated. Its mathematic form can be represented 
as follows. 
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Only those activated cell indexes ( )j kc v  will be set to be 1 
when mapped by input vector, and the others are set to be 0. So 
here are actually only L’s additions in Equation (11), and the 
actual output P equals the sum of those chosen weights.

The significant property of CMAC is that the learning 
algorithm changes the output values for the neighboring inputs. 
Therefore similar inputs lead to similar output even for 
untrained inputs. This property is called generalization ability 
[15, 16], which is of great use in CMAC based coding. 
Moreover, we can control the degree of generalization by 
changing the size of L. The larger L is, the wider the 
generalization region is. Thus the generalization property of 
CMAC can be successfully used for control and image 
applications, and it also will be applied to learn perfect law of 
supervisory controls in the next section. 

IV. CMAC-BASED LIMITED COMPENSATOR IN 
SUPERVISORY CONTROL SYSTEMS

In our approach, the CMAC learning mechanism will be 
employed into the supervisory controller to learn perfect 
control law and system parameters in supervisory control 
systems. The block diagram of the CMAC-based limited 
compensator in supervisory control systems is illustrated in 
Figure 1. The proposed control laws can be written as 
Equations (12)-(15). The CMAC variable as Equation (13) is 
employed to learn the perfect control law u*, whose weight 
vector can be updated by supervisory control variable su
which is described in Equation (15). The CMAC-based 
compensator is defined as Equation (14), where  is the 
estimated bound of compensator. Because the model error will 
exist in the CMAC, the CMAC-based compensator is 
proposed to suppress this model error. Finally, the supervisory 

control can be rationalized for uncertain nonlinear systems, 
and its Lyapunov stability will be assured in theorem 2. 

CMAC c su u u u                               (12) 

k

T
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Theorem 2:
The control laws of CMAC-based limited compensator in 

supervisory control systems are described as Equations (12)-
(15). If the supervisory control is defined as Equation (15), the 
CMAC updating law as is considered as Equation (16), the 
updating law of estimated bound of compensator is considered 
as Equation (17), and final bound condition (18) is satisfied, 
then the Lyapunov stability theorems will assured.  

k kW s v W vW r u C r bSC , for maxsu D                   (16) 
[ ( )]sr u r bS sign bS , for maxsu D ,

r =small positive real number.                     (17) 
supd W                                (18) 

Proofs: 
First, define the Lyapunov function as Equation (19) 

2 21 1 1( )
2

T

W

V S W W
r r .                     (19) 

The optimal weight for the CMAC is W*, the estimated 
weight vector is defined as W, so its error vector will be 

*W W W . If it exists a model error W , and then the 
perfect control can be written as *

k

T
CMAC v Wu u C W . If the 

final bound is defined as d  and its estimated bound is 
defined as , and then bound error can be written as 

d . According above definition the proposed 
controller can be rewritten as follows.                 

*
k

T
CMAC c s v W c su u u u u C W u u           (20) 

Now, take Equation (20) into the sliding surface as defined 
in Equation (7) and we have              

( ) ˆ ˆn TS e k e

( )
k

T
s c W v

db u u C W
b                      (21) 

With Equation (21), the time derivative of the Lyapunov 
function becomes  

1 1ˆ( ) [ ( ) ] ( )
k

T T
s d c W v

W

dV bS u bSu bS W W C WbS
b r r   (22) 

It is easy to verify that if conditions (14)(16)(17) are 
satisfied  and then Equation (22) becomes Equation (23)   

( ) [ ( ) ]s d W
dV bS u bS sign bS
b .                   (23) 
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If the bound of supervisory control is selected as 
Equation (15) and d Wsup  is satisfied, then the Lyapunov 
condition 0V will be assured.  

Note that Equation (16) is the updating rule of the CMAC 
learning mechanism. For the realization of Equation (16), the 
adjustable constant rm is set as, where L is the floor number 
used in the CMAC mechanism. This selection is equivalently 
to set the learning constant as 1/L for fast learning [18]-[20]. 
From the definition of saturation function, it can be found that 

su  is a bounded version of bS. Thus, in our implementation, 
su  takes the place of bS in Equation (24). Thus the updating 

rule for the CMAC learning mechanism becomes  
1

knew old s vW W u C
L .                           (24) 

In the above proposed controller as shown in Figure 1, 
the CMAC control learns the perfect control variable u*. It 
can be found that the system function f is no longer required 
to generate the perfect control variable. However, the 
estimated bound of compensator will increase with time, 
because its slope is absolutely positive in Equation (17). Thus, 
we let the adjust ratio r  be a time-decreasing function such 
that the final bound will converge to a limited region. Under 
this supposition, theorem 3 is introduced to ensure the 
convergence of final bound of compensator in the next 
paragraph. Finally, the CMAC-based limited bound 
compensator adaptive can be rationalized in supervisory 
control for uncertain nonlinear systems.                  
Theorem 3:
       If a compensator is considered as Equation (14), the 
adjust ratio of updating law r   is defined as a time decreasing 
function in Equation (25), and the initial bound equals (0) ,

       0.01( 1)( ) nr n e , n=time-step, 1n                (25) 
then the final bound condition will be assured. In other 
words, the compensator will be limited in a bounded region. 

m a x( ) ( 0 ) 1 0 0
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Proof: 

From equation ( ) sr n u  and 0.01( 1)( ) nr n e , we can 
deduce following equations.     
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Thus, the final bound condition (26) will be assured, in other 
words, the compensator will be limited in a bounded region.  

V. SIMULATIONS AND CONCLUSIONS

An inverted pendulum system as used in [13] is employed 
to illustrate the effectiveness of the proposed approaches. The 
dynamics of this nonlinear system is 
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where x1 is the angle of the pole with the range of initial angles 
in 0~ 0.2(rad), x2 is the angular velocity of the pole, g is the 
gravity (9.8m/ s2), mc is the mass of the cart (1.0kg) , m is the 
mass of the pole (0.1kg) , u is the force applied to the cart, d is
the external disturbance ( 5Nt d 5Nt), and the length of the 
pole l is 0.5m. Let the reference signal be r(t) and the tracking 
error be e(t) = r(t) y(t). The error derivative is simply 
calculated as stkekete /)]1()([)( , where ts is the sampling 
time. The reference signal is r(t)= )]3sin(3.0)[sin(10 tt (rad),
the initial value of y(0) is 0.2(rad) and the external disturbance 
is a square wave with its amplitude being 5(Nt). From the 
above conditions and Equation (32), the range of the parameter 

b is 1.38<b<1.48. According to Equation (15) ( max sup dD
b ), the 

robust control bound Dmax is set to be 4.  

Now, the proposed controller is employed. The control 
performances are shown in Figure 2 with initial estimated 
bound (0) 4  and in Figure 3 with initial estimated bound 

(0) 0.4 . The part (a) shows the reference signal r and the 
output y, the part (b) shows the control variable u and the 
external disturbance d, the part (c) shows cthe supervisory 
control, the part (d) shows the CMAC control variable, the part 
(e) shows the compensator output, and the part (f) shows the 
estimated bound of compensator. 

 From the simulation results, it can be found that although 
the reference signal is time-varying and with external 
disturbances, the output can follow reference signal very well 
with the proposed control structure. In fact, in our study, other 
values of initial bound from 0.4 to 4 were also considered, the 
final bound of compensator will also converge to a bounded 
region, and their performances and RMSEs are almost the 
same. Thus, it can be concluded that the CMAC-based limited 
bound compensator indeed can learn the perfect control law 
required in a supervisory controller for uncertain nonlinear 
systems, and the proposed controller can easily be realized for 
any practical systems even if the system function is uncertain.. 
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Figure 2. The performance of CMAC-based limited bound 
compensator in supervisory control systems with initial 
estimated bound (0) 4 . (a) the reference signal r and the 
output y, (b) the control variable u and the external 
disturbance d.
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variable, (e) the compensator output, (f) the estimated bound 
of compensator with initial estimated bound (0) 4 .
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Figure 3. The performance of CMAC-based limited bound 
compensator in supervisory control systems with initial 
estimated bound (0) 0.4 . (a) the reference signal r and the 
output y, (b) the control variable u and the external 
disturbance d.
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