
978-1-4244-2794-9/09/$25.00 ©2009 IEEE              

Optimal RFID Networks Scheduling using Genetic 
Algorithm and Swarm Intelligence 

Chiu, Chui-Yu 
Industrial Engineering and Management Department 

National Taipei University of Technology 
Taipei, Taiwan, R.O.C. 

cychiu@ntut.edu.tw

Chen, K. Y.
Industrial Engineering and Management Department 

National Taipei University of Technology 
Taipei, Taiwan, R.O.C. 

kychen@ntut.edu.tw

                                 Ke, Cheng-Hsin 
        Industrial Engineering and Management Department 
               National Taipei University of Technology 
                               Taipei, Taiwan, R.O.C. 
                                      t6378030@ntut.edu.tw

Abstract—RFID is an emerging technique for identifying items 
and all kinds of real world applications. Multi RFID readers are 
implemented to the product line in many industries and they 
consist of varied reader resources. But there are some defects 
with the disposition of the RFID-based application. The 
phenomenon of incorrect negative reads occurs in a multi-tag and 
multi-reader environment where a tag that is present is not 
detected. Collisions occurring between readers cause the faulty or 
missing reads. The stopgap is to solve the frequency allocation 
problem for networks of RFID readers. Furthermore, finding the 
optimal structure of readers and scheduling the readers to reduce 
the total system transaction time or response time are both 
challenging problems. In the presence of interdependencies, the 
optimal scheduling problem to minimize the overall transaction 
or response time is modeled as a graph partitioning problem 
(GPP). GPP is a well known NP-complete problem. The more 
readers exist in the product line, the higher complexity of the 
problem. Designing a schedule having the maximum parallelism 
reduces the total transaction time but may not minimize it.  

In this research, we integrate genetic algorithms with binary 
particle swarm optimization (GA-BPSO) to solve the Multi RFID 
networks scheduling problem. Simulation results on a real–world 
problem show that the GA-BPSO algorithm provides robust 
solution quality and is suitable for scheduling large scale RFID 
reader networks.  

Keywords—networks of RFID readers, scheduling, GA-BPSO

I. LITERATURE REVIEW 

A. Networks of RFID Readers  
RFID (Radio Frequency Identification) technology plays 

an important role in asset tracking and management in the near 
future. We can deploy networks of RFID readers to track the 
flow of assets through various environments. Deolalikar [42] 
derived optimal scheduling schemes for networks of RFID 
readers in four cases of practical importance. The reader 
model which is about an RFID reader reading a fixed set of 
tags is modeled as operating in two time regions. A novel 

optimal scheduling scheme for networks of RFID readers 
using a symbiotic multi-species particle swarm optimizer is 
presented in [18]. In this research, readers with overlapping 
fields are fired at different times so that they do not collide. 
The frequency allocation problem for networks of RFID 
readers is to allocate frequencies to different readers. In other 
words, when two readers lie in each other's interference 
region, they are given different frequencies [11]. 

The network of RFID readers is similar to the sensor 
network. A sensor network is consisted of a large number of 
sensor nodes that are densely deployed either inside the 
phenomenon or quite close to it. The position of sensor nodes 
need not be engineered or predetermined. This allows random 
deployment in unreachable terrains or disaster relief 
operations. On the other hand, sensor networks protocols and 
algorithms must possess self-organizing capabilities. Another 
unique characteristic of sensor networks is the cooperative 
effort of sensor nodes. Sensor nodes are fitted with an onboard 
processor. They use their processing abilities to carry out 
simple computations locally and only transmit the required 
and partially processed data instead of sending the raw data to 
the nodes responsible for the fusion. 

The sensor network problem for steady state processes has 
been solved in the past by different researchers using different 
methods. Kretsovalis and Mah [2] design a sensor network for 
maximum estimation accuracy, and a more effective method is 
that using graph theory to exploit the configuration of the 
process and sensor network in the design strategy 
[34][44][46]. However, these algorithms are not sufficiently 
common and they can’t be used to optimize sensor network 
problems with respect to more than one criterion, 
simultaneously. 

The following are some researches using heuristic 
algorithms to solve sensor network problems. Wu [46] 
proposed that maximizing the coverage based on a 
probabilistic sensor model in mobile sensor networks by using 

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
1232



        

particle swarm optimization (PSO) to reduce the cost. The 
sensor network optimization problem discussing the 
relationship between the population size and the stopping 
criteria is evaluated by using GA in [4][5]. Binary particle 
swarm optimization (BPSO) is used for optimal scheduling in 
sensor networks [28]. Sensors are characterized by their 
transaction times and interdependencies. 

B. Graph Partitioning Problems 
Graph partitioning problems (GPP) are important that has 

wide applications the field of computer science, including task 
scheduling [25][38][39][45] and VLSI (Very Large Scale 
Integrated circuit) design [27]. The objective of GPP is that 
partitioning a graph G into K subgraphs such that the number 
of edges connecting nodes is minimized in different 
subgraphs. On the contrary, the number of edges connecting 
nodes is maximized in the same subgraph. 

The GPP is NP-complete problems. However, many 
algorithms have been developed that find good partitions 
reasonably. Spectral methods [3][6] have been shown to be 
very effective for partitioning unstructured problems in a 
variety of applications, but there is very high computational 
complexity in them. Geometric partition methods [7][15][32] 
are very fast but they often obtain worse partitions than those 
of more expensive methods like spectral. Furthermore, 
geometric methods are applicable only if coordinate 
information of the graph is available.  

Recently, a number of researches have explored a class of 
algorithms that have common computational complexity, and 
obtain excellent (even better than spectral) graph partitions 
[6][14][40]. The graph G is first coarsened down to a few 
hundred vertices and a half of this much smaller graph is 
calculated and then this partition is projected back towards the 
original graph (finer graph) by refining the partition 
periodically. Since the finer graph has more degrees of 
freedom, such refinements usually shorten the edge-cut. These 
are called multilevel graph partitioning schemes. A multilevel 
graph partitioning scheme produces high quality partitions in 
small amount of time [13][14].  

It is clear that multilevel graph partitioning algorithms can 
find high quality partitions for a variety of unstructured graphs 
from the experiments presented in [6][14][40]. 

C. Particle Swarm Optimization 
Particle swarm optimization (PSO) developed by Dr. 

Eberhart and Dr. Kennedy [22][23] in 1995 and inspired by 
social behavior of birds flocking is an evolutionary 
computation optimization technique. 

In standard particle swarm optimization (SPSO), each 
possible solution is a “bird” in the search scope, called 
“particle”. According to the research results for birds flocking, 
birds are finding food by flocking (not by each individual). 
Such as genetic algorithms (GA), SPSO also have a fitness 
function that takes the particle’s position and assigns it to a 
fitness value. The objective is to achieve that optimizing the 
fitness function. Each particle i which is represented as Xi =
(xi1, xi2, , xiD) has own coordinates and velocity to change 
the direction of moving in predefined search scope with D-

dimensional. All particles move through the search scope by 
following the current optimum particles.  

SPSO updates the current generation of particles (each 
particle is a candidate solution to the problem) using the 
information of the best solution obtained by each particle and 
the entire population for finding an optimal or near-optimal 
solution to the problem. SPSO is initialized with a group of 
random particles (possible solutions) called “population”, and 
then searches for the optimal solution by updating generations 
until the stopping rule meet. Each particle is updated by 
following two “best” values in every iteration. The particle 
swarm optimizer keeps track of the overall best value and its 
location, obtaining thus far by any particle in the population, 
which is called gbest (Pgd). Each particle keeps track of the 
best solution and saves a memory of its previous best position, 
called pbest (Pid) [36].  

The particle updates its velocity and coordinates after 
discovery the two best values by following Eq. (1) and (2).  

)(()
)(()

22

11

idgd

idid
old

id
new

id

Xprandc
XprandcVV

−××+
−××+=

                (1) 

new
id

old
id

new
id VXX +=                                               (2) 

Vid is the particle velocity, Xid is the particle coordinates 
(possible solution), Pid and Pgd are respective pbest and gbest.
rand() is a random number uniformly distributed in range [0, 
1].c1 and c2 are learning factors. They are usually equals to 2.0.  

The velocity of each particle is restricted to a maximum 
velocity Vmax. The velocity is limited to Vmax on the dimension. 
Hence, Vmax is an important parameter which determines the 
breadth of search among the present coordinates and the target 
(best so far) coordinates in search region. If Vmax is too tidy, 
particle might over-fly through good solutions. On the country, 
if Vmax is too small, particle may not prospect well beyond 
locally good regions.  

The maximum velocity Vmax is regarded as a constraint 
to control the global exploration ability of a particle swarm
[48]. A smaller Vmax encourages local exploitation, and a 
larger Vmax facilitates global exploration.  

Shi [48] developed the modified PSO (WPSO) for 
improving the convergence rate. The main difference from 
the original PSO is that considering an inertia weight to 
velocity update, stated as in Eq. (3) and (4): 

)(()
)(()

22

11

idgd

idid
old

id
new

id

Xprandc
XprandcVwV

−××+
−××+×=

      (3) 

new
id

old
id

new
id VXX +=                                                (4) 

It can be seen that Eq (3) and (4) are identical to Eq (1) 
and (2) except the addition of the inertia weight w. The 
computational result demonstrated that WPSO outperforms 
SPSO. w is decreased linearly from 0.9 to 0.4 as originally 
developed. Suitable selection of the inertia weight provides 
balance between global and local searching in predefined 
scope, and causes less iteration on average to find an 
approximate optimal solution. 

D. Binary Particle Swarm Optimization 

1233



        

Binary particle swarm optimization (BPSO) described in 
[22] is very similar to the velocity update equation described 
in Eq. (1). The difference is the position update equation. The 
position update equation and the sigmoid function of the 
velocity for the binary model is given by

=
<=

otherwise,0)(
))((if,1)( id

tx
tvstx

id

idid ρ
                                       (5) 

)exp(1
1)(

id
id v

vs
−+

=                                                  (6) 

where idρ  is a vector of random numbers, drawn from a 
uniform distribution between [0,1]. 

BPSO is impressionable by sigmoid function saturation, 
which occurs when the velocity value is either too large or too 
small. In such cases, the probability of a change in bit value 
approaches zero to limit the exploration. For a velocity of 0, 
the sigmoid function returns a probability of 0.5, representing 
that there is a fifty percent chance for the bit to flip. Figure 1 
shows the rage of the sigmoid function. 

                       Figure 1. The rage of the sigmoid function. 

There are some researches using BPSO. Lee [37] proposed 
a new model based on BPSO, which finds more precise 
theoretical values of options with estimates of the implied 
volatility than GA. Solving a Black-Scholes option pricing by 
original BPSO and the BPSO combined the concept of 
mutation in GA. A novel BPSO is proposed in [33]. This 
algorithm proposes a new definition for the velocity vector of 
BPSO. It has shown that this algorithm have a better 
interpretation than BPSO. Chuang [29] proposed a new BPSO 
combined with GA (IBPSO) to solve the classification 
problem. Sadri [24] proposed a GBPSO model. GBPSO also 
implements the concept of mutation in GA to BPSO. The 
above objective of BPSO combined with GA is to avoid BPSO 
trapped into the local optimal solution. 

E. Genetic Algorithms 
Genetic Algorithms (GA) were first introduced by Holland 

and explored by Goldberg [9]. The mathematical structure is 
presented in Holland’s pioneering book, “Adaptation in 
Natural and Artificial Systems” [21] published in 1975. In the 
following subsections, we will discuss about GA. 

Ever since 1975, lots of people have participated to the 
research of GA. Recently, GA have received significant 
attention regarding their potential as an optimization method 

for complex problems and have been successfully applied in 
the domain of industrial engineering [30]. The well-known 
applications include scheduling and sequencing, digital signal 
processing [26], transportation, facility layout, and many 
others.  

The main advantage of GA over the traditional 
optimization method lies in the ability of jumping out of the 
local optimal solution. The general disadvantage of those 
traditional optimization algorithms is that the solution is easy 
being trapped into a local optimal solution if the initial 
parameter is not properly set. However, this situation less 
happened to use GA as an optimization method. Another 
important advantage is that we can avoid a great deal of 
mathematical operations when dealing with complex nonlinear 
optimization problem.  

It has been proved that GA was useful in various search 
and optimization problems over the years. GA is based on the 
survival-of-the-fitness principle which tries to save more 
genetic information from generation to generation. 

The main steps of the simple genetic algorithms are 
reported in the following: 

1. Construct a fitness function from the objective function. 

2. A population of n chromosomes is randomly generated. 
Each of them is represented by a string of digits, zeros and 
ones. The string is encoded for the design variables xi ,
and with fitting accuracy that is determined by the string’s 
length. 

3. All the chromosomes of the population are estimated by 
means of the fitness function f (xi). 

4. Reproduction According to a rule that favors those 
with higher fitness, chromosomes of the old population 
are selected and put in the new one. (The better fitness, 
the bigger chance to be selected) 

5. Crossover Two randomly selected strings are mated 
among those selected in the previous step. A position 
along one string is randomly selected again and all binary 
digits following this position are switched with those of 
the second string (Single-point crossover). Then the two 
totally new strings move on to the new generation. This 
operation occurs with a defined probability (or crossover 
rate) Pc, which represents the number of chromosomes 
which taking part in the crossover process with respect to 
the total number of them. 

6. Mutation A bit of the strings of the new population is 
randomly selected by a defined probability Pm (mutation 
rate), and the value is complemented from 1 to 0 or vice 
versa. This process explores the new solution in the search 
space, protecting against the loss of useful genetic 
information. 

7. Use new generated population for a further run of 
algorithm. 

8. If the terminated condition is satisfied, return the best 
solution in current generation or else go back to step 3. 

1234



        

9. Decode This process is that transforming the best 
solution which encoded into binary string to decimal 
value. Assume the parameter of the system is encoded 
into binary string of Z bits, the search range is [ min , max]
and denote the decimal value of the binary representation 
as X. Then the parameter of the system is decoded linearly 
as follows: 

min12
minmax θ

θθ
θ +

−

−
= XZ

                                          (7) 

II. METHODOLOGY 

A. Framework 
PSO has applied into many scopes by researchers and it 

was a new heuristic algorithm in recent years. It is used the 
concept of birds searching for food. There are many 
advantages in PSO, such as having faster search speed, 
saving a memory of its previous best position and tracking the 
best solution continuously. BPSO is proposed for solving the 
discrete problems. The concept of BPSO is similar to PSO. 
The difference is that they are used respectively for solving 
different type problems. GA was proposed for long years. It 
is used the concept of biology. GA is consisted of 
reproduction, crossover and mutation. In order to create the 
next generation, offsprings, the chromosomes using some 
measures of fitness are evaluated during each generation and 
using mutation to avoid getting worse solutions. However, both 
PSO and GA also have disadvantages respectively, such as 
trapped into the local optimal solution and dropped out the 
optimal solution. The GA-BPSO uses BPSO model mainly and 
adds the concept of mutation in GA. By combining the 
advantages of the two heuristic algorithms, we proposed GA-
BPSO to solve the problem of the network of RFID readers. 

B. Problem Description and Limitation  
Multi RFID readers which consist of the RFID reader 

network are implemented to the product line in many 
industries. There are collisions occurring between readers and 
that cause faulty or missing reads. The RFID reader network 
problem still exists in nowadays and it is like the sensor 
network problem. This problem has two objectives: finding the 
optimal structure of readers and scheduling the readers to 
reduce the total system transaction time. 

1) Problem Description 
Given a collection of N RFID readers laid out in some 

types, we can construct the associated collision graph G = 
(V,E) where each vertex v∈ V corresponds to a reader and 
each edge e ∈ E points out that those two readers can be 
operated in parallel (there are no collisions between these two 
readers). For instance, a set of 6 RFID readers layout 
corresponding to the Eq. (8) is given in Figure 2 and the 
collision graph is given in Figure 3. 

C={(1,3),(1,5),(1,6),(2,5),(2,6),(3,4), (3,5), (5,6)}            (8) 

Where (Ri, Rj……Rn) are the RFID readers that have conflicts. 
   The objective function in this research is to find the optimal 
structure of readers and schedule the readers to reduce the total 
system transaction time. 

Figure 2. The set of 6 RFID readers sample layout. 

Figure 3. The Collision graph of a set of 6 RFID readers. 

2) Problem Limitation
There are two constraints that limit the parallel operation 

of RFID readers in our model RFID applications. The first is 
the reader interference or collision. At this scope, this problem 
seems like the frequency allocation problem, but the allocation 
is done along the time axis. Interfering readers are allotted 
non-overlapping periods of time in order to avoid collision 
between them. Then it may appear that this problem also 
reduces to the graph partitioning problem. The second 
constraint is the overall transaction time. It makes clear that 
partitioning the graph can’t entirely solve the time scheduling 
problem because it also requires minimizing the total 
transaction time of the RFID reader network. However, the 
frequency allocation problem is not. 

C. The Proposed Heuristic Algorithm 
We use the integration of genetic algorithms and binary 

particle swarm optimization (GA-BPSO) to solve the problem 
of scheduling RFID reader networks. This section describes 
the rule being followed, the particle representation used for 
solving the problem, the function being optimized. 

1) Rule
In the traditional graph partitioning algorithm, for optimal 

scheduling in sensor network problem is the following 4 rules

1. The partition with the maximum transaction time is given 
preference. The algorithm attempts to maximize the 
number of sensors running simultaneously in parallel 
within the partition with the transaction time. After 
removing this partition from the graph, it repeats the 
process iteratively until all sensors are in a partition. 

2. Always maximize the number of readers in a partition and 
this reduces the total number of partitions after 
partitioning the whole graph. 

1235



        

3. A special weighting value is assigned to each partition to 
minimize the variation in sensor transaction time within 
the partition. The weight is defined as the average of the 
sensors transaction times in the partition. Besides 
minimizing the range of transaction values in the 
partition, this also retains sensors with lower transaction 
times only for further partitioning and reduces total 
transaction time of the system. 

4. A higher preference is given to the sensor with the most 
conflicts. The reason is that it will cause minimum affects 
on the number of edges in the graph due to partition of 
such a sensor into a partition early. It should be noted that 
the higher the number of edges in the graph, the greater 
the possibility of finding the optimal partition is. 

These four rules result in values that are attached to the 
partition as it is constructed and is evaluated for possible 
selection in the algorithm. Again these rules are specific to 
reduce the total transaction time of the system. These rules are 
incorporated as shown later. 

2) Particle Representation 
The particle representation we used in this research is 

binary and each particle has a dimension equal to the number 
of readers. Each particle has a binary representation and is a 
possible partition. For example, “011101” is a particle for 6 
readers in the system and a bit “1” implies the presence of that 
particular reader in the partition which the particle is 
representing. On the country, a bit “0” implies the absence of 
that particular reader in the partition which the particle is 
representing. The partition contains readers 2, 3, 4, 6 in the 
above example. 

3) Fitness Function 
“Fitness” is a mathematical quantity evaluated uses the 

implied load imbalance and communication costs. If the ith

reader is adjacent to the i+1 reader for each i in the system, 
then “11100011” would more fit than “10101011” (which has 
6 inter-partition edges), but less fit then “11100001” (which is 
a more balanced partition). A predefined cost function should 
be formulated for evaluating the performance of an individual. 
The cost function considers four parameters. f is the fitness 
function computed as the reciprocal of  the summation of Ci as 
follows: 

Ci =w (N) + w (T) + w (W) + w4 (I) (N)         (9) 

f = 
iC

1                                                          (10) 

where N is the number of readers and T is the transaction time 
of the partition and can be calculated as: 

)max( itT =                                                     (11) 

where ti is the transaction time of the ith reader that 
constructing the partition. W is the weight attached to the 
partition and can be calculated as: 

= itN
W 1                                                     (12) 

It is the average of the transaction times of the readers 
constructing the partition. The weight is necessary to avoid 
that there are two solutions each consisting the same 
dominating reader in terms of transaction time and having 
equal number of readers. The first two N and T will be equal 
for both the partitions in the situation. However, a better 
solution will be the partition having the readers with high 
transaction times when compared to other. 

I is the summation of all the possible collision which the 
members of the partition have with the readers still remaining 
to be partitioned in the graph. Intuitively, this makes sense 
since removal of the partition leaves a lot of scope for further 
formation of partitions in remaining nodes and would not 
cause much loss of edges in the graph.                     

=
=

otherwise.,0
 violatedareesdependenci theofanyif,1000

p
p                (13) 

N is multiplied by p in the cost function and also represents 
the number of readers that violate dependency in the term. The 
swarm converges to a partition containing all the readers 
which is based on minimization of the fitness function to 
achieve optimal results. 

w1, w2, w3, w4 are the weights given to each term of the 
fitness function separately and w2 w1 w4 w3 representing 
the importance of each term. 

From above discussion, it can be seen that the design of a 
cost function is very important for any optimization algorithm. 
For GA-BPSO, it gives the direction to the particles in the 
search space. 

4) Scheduling the network of RFID Readers By GA-BPSO 
Because the particle representation is binary, we use the 

BPSO concept to evolve the partitions. The dependencies and 
the transaction times are inputs to GA-BPSO. The GA-BPSO 
will find the optimal maximum partition. The readers 
constructing the partition are removed. The dependencies and 
the transaction times are updated, too. The new dependencies 
and the transaction times are put into GA-BPSO again. This is 
repeated iteratively till all the readers are grouped. Assuming 
that there is no specific sequence required, the groups can be 
scheduled one after another. Figure 4 shows the flowchart of 
GA-BPSO implemented for finding the optimal groups of the 
readers, which can be run in parallel. 

The procedure of GA-BPSO is as follows and shown as 
Figure 5: 

Step1. Set up parameters including the population size (the 
number of particles), Maximal velocity (Vmax), inertial 
weight (w), and two learning factors (c1 and c2). The 
two random variables, rand1 and rand2 are in [0, 1]. 

Step2. Initialize each particle with initial position (Xid)
randomly and the velocity (Vid) in the range of 
maximal speed (Vmax).

Step3. Calculate every particle’s fitness value using Eq. (10). 
Record the particle of better fitness value. 

Step4. Update the local best position (Pid) and global best 

1236



        

position (Pgd). If Pid and Pgd change, go to the step 6, 
or go to the next step. 

Step5. Due to the Pid and Pgd do not change, use mutation to 
stir the particle for jumping out the local solution. The 
following is the update equation: 

=
=

otherwise,0
0if,1 old

idnew
id

X
X                                      (14) 

Step6. According to the updated Pid and Pgd, use Eq. (3), (5) 
and (6) to update the velocity and position for every 
particle. 

Step7. Calculate every particle’s fitness value by 
implementing the new

idX , then replace the particle with 
worst fitness value in step 3 by using elitist policy. 

Step8. Use the following three Equations to update the 
velocity and position for every particle by 
implementing the updated Pid and Pgd.

Step9. Stop if the specified number of generations is satisfied 
or go back to step 3. 

Figure 4. Implementation of GA-BPSO. 

Figure 5. Flowchart of GA-BPSO. 

III. SIMULATION TEST AND ANALYSIS

In this section, a RFID reader network application, 
including 10 readers is scheduled to validate the capability of 
the proposed method. Table I list the processing times for this 
10 readers networks and the collision graph are shown as in 
Figure 6. The simulation results that obtained by our algorithm 
are listed in Table II. 

It should be noted that the GA-BPSO algorithm can 
constantly find an optimal schedule results. In fact, with an 
increasing in the number of the readers (hence the degree of 
the graph), the problem of finding best solution becomes 
intractable. However, for the larger scale reader networks, our 

1237



        

proposed method is able to find the optimal schedule results 
robustly and consistently. 

Figure 6. Collision graph of 10 RFID readers 

Table I. Processing times of 10 readers 

Table II. Schedule result of 10 readers 

IV. CONCLUSIONS AND FUTURE WORK

This paper is devoted to giving a new strategy for 
scheduling reader networks in RFID-based ubiquitous 
computing environment. A symbiotic mechanism based 
algorithm, symbiotic multi-species optimizer, is proposed to 
search through space for an optimization problem. Simulation 
results on both mathematical benchmark functions and a real–
world problem (i.e., the optimal scheduling for RFID reader 
networks) show that the GA-BPSO algorithm offers more 
robust and consistent performance in term of both solution 
quality and convergence rate. In fact our proposed method is 
suitable for scheduling large scale RFID reader networks. 

REFERENCE 
[1] A. George and J. W.-H. Liu, Computer Solution of 

Large Sparse Positive Definite Systems, Englewood 
Cliffs: Prentice-Hall, 1981. 

[2] A. Kretsovalis and R. S. H. Mah, “Effect of redundancy 
on estimation accuracy in process data reconciliation,” 
Chemical Engineering Science, vol. 42, no. 9, 1987, pp. 
2115-2121. 

[3] A. Pothen, H. D. Simon and K.-P. Liou, “Partitioning 
sparse matrices with eigenvectors of graphs,” SIAM 
Journal of Matrix Analysis and Applications, vol. 11, no. 
3, 1990, pp. 430–452. 

[4] A. L. Buczak, H. Darabi and M.A. Jafari, “Research on 
genetic algorithm convergence for sensor network 
optimization problem,” Information Sciences, vol. 5, no. 
1, 2000, pp. 1035-1039. 

[5] A. L. Buczak, H. Wang, H. Darabi and M.A. Jafari, 
“Genetic convergence research for sensor network 
optimization,” Information Sciences, vol.133, no. 3-4, 
2001, pp. 267-282. 

[6] B. Hendrickson and R. Leland, “A multilevel algorithm 
for partitioning graphs,” Technical Report, SAND93-
1301, 1993. 

[7] B. Nour-Omid, A. Raefsky and G. Lyzenga, “Solving 
finite element equations on concurrent computers,” 
American Society of Mechanical Engineers, Applied 
Mechanics Division, AMD 86, 1987, pp. 209-227. 

[8] D. B. West, Introduction to Graph Theory, Prentice 
Hall, second edition, 2000. 

[9] D. E. Goldberg, Genetic Algorithms in Search, 
Optimization and Machine Learning, MA: Addison-
Wesley, 1989.   

[10] E. J. Larry, Proceedings of the Sixth International 
Conference on Genetic Algorithms, CA: Morgan 
Kaufmann Publishers, 1995.  

[11] E. Malesinska, Graph-theoretical models for frequency 
assignment problems, Ph.D. thesis, Technischen 
University, Berlin, 1997.    

[12] Forrest and Stephanie, Proceedings of the Fifth 
International Conference on Genetic Algorithms, CA: 
Morgan, 1993. 

[13] G. Karypis and V. Kumar. “METIS: Unstructured graph 
partitioning and sparse matrix ordering system,” 
Technical report, 1995. 

[14] G. Karypis and V. Kumar. “A fast and high quality 
multilevel scheme for partitioning irregular graphs,” 
Technical Report, TR 95-035, 1995. 

[15] G. L. Miller, S.-H. Teng, W. Thurston and S. A. 
Vavasis, “Automatic mesh partitioning in sparse matrix 
computations: Graph theory issues and algorithms,” an 
IMA workshop volume, 1993. 

[16] Grefenstette and J. John. Proceedings of an 
International Conference on Genetic Algorithms and 
Their Applications, NJ: Lawrence Erlbaum Associates, 
1985. 

[17] Grefenstette and J. John, Genetic Algorithms and Their 
Applications: Proceedings of the Second International 
Conference on Genetic Algorithms, Hillsdale, NJ 
Lawrence Erlbaum Associates, 1987. 

[18] H. Chen, Y. Zhu, K. Hu and B. Niu, “Application of a 
multi-species optimizer in ubiquitous computing for 
RFID networks scheduling,” Proceedings - Third 
International Conference on Natural Computation, 
ICNC 2007 2, no. 4304589, 2007, pp. 420-425. 

[19] J. A. Miller, W. D. Potter, R. V. Gandham and C. N. 
Lapena, “An evaluation of local improvement operators 
for genetic algorithm,” IEEE Trans, vol. 23, 1993, pp. 
1340-1351. 

[20] J. C. Potts, T. D. Giddens and S. B. Yadav, “The 
Development and Evaluation of an Improved Genetic 
Algorithm Based on Migration and Artificial Selection,” 
IEEE Trans, vol. 24, no. 1, 1994, pp. 73-86. 

Reader 1 2 3 4 5
Time 14.7606  3.9499  3.0008  14.7618 9.4537 

Reader 6 7 8 9 10
Time 14.6680  15.9297  9.9700  9.2377  9.2131 

Time step Readers Processing time Total time 
1  1 5 6 8 10 14.7606 14.7606 
2  4 7 15.9297 30.6903 
3  9 9.2377 39.928 
4  2 3.9499 43.8779 
5  3 3.0008 46.8787 

1238



        

[21] J. H. Holland, Adaptation in Natural and Artificial 
Systems, MA: University of Michigan Press, 1975. 

[22] J. Kennedy and R. C. Eberhart and Y. Shi, Swarm 
Intelligence, Morgan Kaufmann, 2002. 

[23] J. Kennedy and R. C. Eberhart, “Particle swarm 
optimization,” IEEE International Conference on Neural 
Networks - Conference Proceedings, vol. 4, 1995, pp. 
1942-1948. 

[24] J. Sadri, C.Y. Suen, “A genetic binary particle swarm 
optimization model,” IEEE Congress on Evolutionary 
Computation, CEC 2006, no. 1688373, 2006, pp. 656-
663. 

[25] J. Shield, “Partitioning concurrent VLSI simulation 
programs onto a multiprocessor by simulated 
annealing,” IEE Proceedings E: Computers and Digital 
Techniques, vol. 134, no. 1, 1987, pp. 24-30. 

[26] K. F. Man, K. S. Tang and S. Kwong, Genetic 
Algorithm, Springer, 1999.  

[27] K. Shahookar and P. Mazumder, “VLSI placement 
techniques,” ACM Computing Surveys, vol. 23, no. 2, 
1991. 

[28] L.A. Osadciw and K. Veeramachaneni, Optimal 
Scheduling in Sensor Networks Using Swarm 
Intelligence, CISS, Princeton, NewJersy, 2004. 

[29] L.-Y. Chuang, H.-W. Chang, C.-J. Tu, C.-H. Yang, 
“Improved binary PSO for feature selection using gene 
expression data,” Computational Biology and 
Chemistry, vol. 32, no. 1, 2008, pp. 29-37. 

[30] M. Gen and R. Cheng, Genetic algorithms and 
engineering design, New York: Wiley, 1997. 

[31] M. Srinivas and L. M. Patnaik, “Genetic Algorithms: A 
Survey,” Computer, vol. 276, 1994, pp. 17-26. 

[32] M. T. Heath and P. Raghavan, “A Cartesian nested 
dissection algorithm,” SIAM Journal on Matrix Analysis 
and Applications, 1994. 

[33] M. A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, “A 
novel binary particle swarm optimization,” 
Mediterranean Conference on Control and Automation,
MED, no. 4433821, 2007. 

[34] P.-M. Zhang and G.. Rong, “Sensor network design for 
linear processes,” System Engineering Theory and 
Practice, vol. 21, no. 12, 2001, pp. 36. 

[35] R. Belew and L. Booker, Proceedings of the Fourth 
International Conference on Genetic Algorithms, CA: 
Morgan Kaufmann, 1991. 

[36] R. C. Eberhart and J. Kennedy, A new optimizer using 
particle swarm theory, 6th International Symposium on 

Micro Machine and Human Science, Nagoya Japan, 
1995, pp. 39-43. 

[37] S. Lee, J. Lee, D. Shim and M. Jeon, “Binary particle 
swarm optimization for black-scholes option pricing,” 
Computer Science, 4692 LNAI (PART 1), 2007, pp. 85-
92. 

[38] S. Selvakumar and C. Siva Ram Murthy, “An efficient 
algorithm for mapping parallel programs onto 
multicomputers,” Microprocessing and 
Microprogramming, vol. 36, no. 2, 1993, pp. 83-92. 

[39] S.H. Bokhari, “On the mapping problem,” IEEE
Transactions on Computers, vol. 30, no. 3, 1981, pp. 
207-214. 

[40] T. Bui and C. Jones. “A heuristic for reducing fill in 
sparse matrix factorization,” Parallel Processing for 
Scientific Computing, 1993, pp. 445–452. 

[41] T. Y. Chen and C. J. Chen, “Improvements of Simple 
Genetic Algorithm in Structural Design,” International 
Journal for Numerical Methods in Engineering, vol. 40, 
1997, pp. 1323-1334. 

[42] V. Deolalikar, J. Recker, M. Mesarina and S. Pradhan, 
“Optimal scheduling for networks of RFID readers,”
Computer Science, 3823 LNCS, 2005, pp. 1025-1035. 

[43] V. Kumar, A. Grama, A. Gupta and G.. Karypis, 
Introduction to Parallel Computing: Design and 
Analysis of Algorithms, Redwood City: Benjamin/ 
Cummings Publishing Company, 1994. 

[44] V. Vaclavek and M. Loucka, “Selection of 
measurements necessary to achieve multicomponent 
mass balances in chemical plants,” Chemical 
Engineering Science, vol. 31, no. 12, 1976, pp. 1199-
1205. 

[45] V. M. Lo, “Heuristic algorithms for task assignment in 
distributed systems,” IEEE Transactions on Computers,
vol. 37, no. 11, 1988, pp. 1384-1397. 

[46] X. Wu, S. Lei, W. Jin, J. Cho and S. Lee, “Energy-
efficient deployment of mobile sensor networks by 
PSO,” Computer Science, 3842 LNCS, 2006, pp. 373-
382. 

[47] Y. Ali, and S. Narasimhan, “Sensor network design for 
maximizing reliability,” AIChE Journal, vol. 42, no. 9, 
1996, pp. 2563-2575.  

[48] Y. Shi and R. C. Eberhart, “A modified particle swarm 
optimizer,” Proceedings of the IEEE International 
Conference on Evolutionary Computation, 1998, pp. 69-
73. 

1239



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


