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Abstract—Hypervolume indicator is a commonly accepted 
quality measure to assess the set of non-dominated solutions 
obtained by an evolutionary multiobjective optimization algorithm. 
Recently, an emerging trend in the design of evolutionary 
multiobjective optimization algorithms is to directly optimize a 
quality indicator. In this paper, we propose a hypervolume-based 
evolutionary algorithm for multiobjective optimization. There are 
two main contributions of our approach, on one hand, a unique 
fitness assignment strategy is proposed, on the other hand, we 
design a slicing based method to calculate the exclusive 
hypervolume of each individual for environmental selection. From 
an extensive comparative study with three other MOEAs on a 
number of two and three objective test problems, it is observed 
that the proposed algorithm has good performance in convergence 
and distribution.

Keywords — Evolutionary computation, Fitness assignment, 
Slicing objectives, Hypervolume indicator.

I. INTRODUCTION

In the past twenty years, there has been a growing interest 
in the studies of multiobjective optimization problems (MOPs). 
Many evolutionary algorithms have been developed, such as 
NSGA-II [1], SPEA2 [2], PAES [3] and so on. However, a new 
focus in the recent research was to apply the quality indicator 
during the operation of multiobjective evolutionary algorithms. 
Quality indicators are functions which map the solutions sets to 
real numbers. This mapped real number can be used to evaluate 
a set of non-dominated solutions obtained by an evolutionary 
multiobjective algorithm. Among those existed various quality 
indicators, hypervolume indicator is the only known unary 
indicator [6] that can assess the quality of a solutions set by the 
single value of its hypervolume. 

The hypervolume indicator was first introduced by Zitzler 
et al. in [5] where it was denoted as ‘size of the space covered’ 
and also some other terms such as ‘S-metric [7]’, ‘hyperarea 
metric [8]’ and ‘Lebesgue measure [9]’ were used. As is 
mentioned in [6], up to the present, according to the 
investigations, hypervolume indicator is the only known 
indicator which is compliant with the concept of Pareto 
dominance. It is said that whenever a set of solutions is better 
than another set, its hypervolume indicator value is higher than 
the latter one. Most of the recent proposed indicator based 
algorithms use hypervolume as the underlying indicator. The 
first algorithm that incorporates the hypervolume indicator was 
ESP which was proposed by Huband et al. [12]. Zitzler et al. 
proposed a framework of indicator based evolutionary 
algorithm (IBEA) which use two different quality indicators as 
generation update strategy [13]. Igel et al. use the hypervolume 

indicator into the CMA-ES for multiobjective optimization [14]. 
Most recently, Beume et al. [15] used the S-metric as a 
selection operator in multiobjective optimization evolutionary 
algorithm in their steady state optimizer SMS-EMOA. 
Different from the previous ones, in the selection operation, 
they would abandon the worst solution, which contributes the 
least hypervolume in the worst ranked front, from the current 
and offspring population. As is reported in [11], the search 
ability of the hypervolume-based algorithms such as 
SMS-EMOA and IBEA are compared with that of other two 
popular EMO algorithms such as SPEA2 and NSGA-II in the 
high dimensional space. 

Despite of the ideal experimental results and commonly 
accepted aforementioned advantages of the hypervolume-based 
algorithm, it inevitably has some drawbacks, too. As is 
mentioned in [16], the solutions obtained by a steady state 
MOEA may be not as good as other MEOEAs under some 
circumstances. What’s more, incorporating the quality indicator 
into EMOA as the selection operator brings the high-cost in 
calculation which grows exponentially with the increased 
number of objectives.  

In this paper, we proposed a novel hypervolume-based 
evolutionary algorithm (denoted as HvEA) to solve 
multiobjective optimization problems. More specifically, the 
main contributions of our work can be summarized as the 
following two issues: 

1)  Proposing a unique fitness assignment strategy which is 
based on the density information of each individual. 

2)  Designing a slicing based method to calculate the 
exclusive hypervolume value of each individual in the 
three dimensional space. 

The remainder of this paper is organized as follows: In 
Section II, some related definitions of hypervolume indicator 
are given at first. Next, the straightforward implementation of 
HvEA is presented and some difficulties of our algorithm are 
discussed separately. The performance of our algorithm is 
examined in Section IV through computational experiments. 
Section V concludes the paper and outlines future work. 

II. RELATED DEFINITION OF HYPERVOLUME INDICATOR

Without loss of generality, a decision vector a is said to 
dominate a vector b is defined as , ( ) ( ) , ( ) ( )i i j ji f a f b j f a f b∀ ≤ ∧ ∃ <

with { }, 1, , , :
m n

i j n f∈ → and ,
m

a b ∈ , where n is the 
number of objectives and m is the number of variables. The 
Pareto optimal solutions set is made up of the non-dominated 
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decision vectors in m . And its corresponding image under f is 
the so called Pareto front that can be found in the objective 
space. 

The common goal of hypervolume-based algorithms is to 
maximize the hypervolume indicator IHv of a set of 
non-dominated solutions. Let Leb denotes the Lebesgue 
measure, then the hypervolume indicator IHv(S) of a solution set 

m
S ⊆ can be defined as the hypervolume of the space which 
is dominated by the set S and is bounded by a reference point 

1( , , )
n

ref nr rx = ∈ :

[ ] [ ] [ ]( )1 1 2 2( ) ( ), ( ), ( ),Hv n n
x S

S Leb f x r f x r f x rI
∈

= × × ×∪

where [ ] [ ] [ ]1 1 2 2( ), ( ), ( ),n nf x r f x r f x r× × × is the n dimensional 
hypercuboid consisting of all points which are bounded by the 
point a and the reference point. 

As to a specific solution p, the hypervolume that is 
contributed by p exclusively can be defined as the exclusive 
hypervolume of p (denoted as ExcHv)

{ }( ) ( )
Hv HvExcHv I S p I p= ∪ −

where S represents a solution set.

III. OUR PROPOSED ALGORITHM

In this section, we describe an evolutionary algorithm 
named HvEA (Hypervolume-based Evolutionary Algorithm) 
for multiobjective optimization problems. 

The main loop of HvEA is given by Algorithm 1. It is 
composed of a standard structure of evolutionary algorithm and 
is formed by the successive application of mating selection, 
variation, and environmental selection. As to mating selection, 
binary tournament selection is proposed here. The variation 
operator consists of a real-parameter SBX crossover operator 
and variable-wise polynomial mutation operator to generate N
offspring. At last, in order to create a new population, pick out 
the most promising N solutions from the mixed population of 
parent and offspring population, we use environmental 
selection to create a new population.

Different from the existing algorithms, there are two major 
contributions as is mentioned previously in our proposed 
method. In the remainder of this section, we devote two 

separate subsections for describing them. 

A. Fitness Assignment 
In our method, we propose a generalized fitness assignment 

strategy which is similar to the strategy used in SPEA2. The 
fitness function F(i) consists two separate parts, which are the 
raw fitness value R(i) and the density value D(i) of each 
individual. It can be defined as 

F(i) = R(i) + D(i)

where the raw fitness value R(i) is the same as what have been 
defined in SPEA2. The density value D(i) is introduced as 
follows. 

Definition I. In the objective space, the influence factor of the 
ith individual to the individual y is defined as: 

( ) :i ylϕ → ∂ → ∂

where i yl → is the Euclidean distance from the individual i to 

individual y. In here ( )i ylϕ → is a decreasing function and it can 
perform in various forms, such as parabolic line, square wave 
function, Gaussian function. In this paper we use the standard 
normal distribution function. 

Definition II. Let an individual ny ∈ , the density information 
of y is defined as the sum of the influence factors to it:

( )( )
1

( ) ,
N

i
density y l i yϕ==

For a certain individual, this method calculating density 
information has fully considered the influence made by other 
individuals in different distances. Namely, the closer, the more 
influential; the farther, the less, even no influence. According to 
the above formula of the influence factor, with the increasing of 
the distance between two individuals, the influence to each 
other will weaken. Consequently, individuals will have no 
impact on each other when the distance reaches a certain level. 
Therefore, to improve the efficiency of density calculation, we 
ignore those individuals which are less influential. Here we 
only take N of the nearest individuals around individual y 
into account. 

Afterwards, the density value D(i) corresponding to i is 
defined by: 

( ) ( )1 2D i density i= +

In the denominator, two is added to ensure that its value is 
greater than zero and D(i) < 1. 

It is clear that the fitness value of non-dominated individual 
is less than 1. Having bigger fitness of an individual shows its 
greater density, but also means it has smaller capability of 
survival and reproduction. The density value calculation of 
each individual is of complexity O( N ), then the total 
complexity is O ( ( )2

N ).

B. Calculation of exclusive hypervolume
As is mentioned in previous sections, to compute the whole 

hypervolume of a set of points is usually a waste of time. The 
running time complexity grows exponentially with the number 
of objectives, even for the best algorithm [17] to calculate the 

Algorithm 1: HvEA main loop 

Require: reference set n

ref IRx ⊆ , population size N, number of 
generations gmax

1: initialize population P at random 
2: g = 0
3: while maxg g≤ do 
4:    P’ = MatingSelection(P, xref, N)
5:    P’’ = VariationOperator(P’, N ) 
6:    P = EnviromentalSelection(P’  P’’, R, N)
7:   g = g + 1 
8: end while
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hypervolume indicator. For the sake of saving time, there is an 
urgent to develop a dedicated algorithm to directly calculate all 
values of the exclusive hypervolume. 

For the case of two-dimensional space, the computation for 
the exclusive hypervolume of each point is similar to that has 
been discussed in [10]. The running time complexity of the 
computation procedure in this case is governed by the sorting 
algorithm that is O (nlogn). 

For the case of three objectives, we design a novel slicing 
based method which calculates the exclusive hypervolume in 
O(n3). The main frame structure is shown in Algorithm 2 and 
some of its details are described as follows. 

Algorithm 2: Calculate the hypervolume indicator 
Require: sort the input solution set ps on ascending order of 

the 1st objective value 
1: IHV (ps, p, nobj)
2: choose the appropriate points and store them into array 

prior_level, prior_dominated, next_level separately 
3: if (prior_dominated == ∅ � prior_level == ∅ )
4:   ExcHv = Sub_proc_1 (ps, nobj, N)
5: else if (prior_dominated == ∅ � prior_level! = ∅ )
6:   ExcHv = Sub_proc_2 (ps, nobj, N)
7: else if (prior_dominated != ∅ � prior_level == ∅ )
8:   ExcHv = Sub_proc_3 (ps, nobj, N)
9: else
10:  ExcHv = Sub_proc_4 (ps, nobj, N)
11: return ExcHv

Here, p denotes the current examined point. At the 
beginning, the input solutions are pre-sorted on ascending order 
of the values at the 1st objective. In this algorithm, four 
dedicated arrays are proposed to store specific points.  

1) prior_dominated[]: This array is used to store the points 
which are prior to p and dominated by it. 

2) prior_level[]: This array is used to store the points which 
are prior to p and nondominated with it. 

3) next_level[]: This array is used to store the points which 
follow p and nondominated with it. 

4) same_cur[]: This array is used to store the points which 
share the same value with p at the 1st objective.

At first, the algorithm searches forward and backward to 
find the fixed points to store into the arrays prior_level[],
prior_dominated[], and next_level[] respectively. After that, we 
begin to calculate the exclusive hypervolume. We divide the 
points to be processed into the following four cases.  

1)  Case 1: There are no points prior to p that nondominated 
and dominated by it. 

2)  Case 2: There are only some points prior to p that 
dominated by it. 

3)  Case 3: There are only some points prior to p that 
nondominated with it. 

4)  Case 4: There are both points prior to p that dominated 
and nondominated with it. 

It is obvious that Case 1 is similar to Case 4 and Case 2 is 
similar to Case 3. Therefore, only Case 1 (shown in algorithm 3) 
and Case 3 (shown in algorithm 4) are discussed here. 

Algorithm 3: Calculate the hypervolume indicator in case 1 
Require: solution set ps size N, number of objectives nobj
1: Sub_proc_1 (ps, nobj, N)
2: store the appropriate points into array same_cur
3: if (next_level == ∅ )
4:   u1 = GeUppertBound (obj1(p))
5:   slice_depth = |obj1(p)– u1|
6:   obj2(ref) = GetLowerBound (obj2(p)) 
7:   obj3(ref) = GeUppertBound (obj3(p)) 
8:   cur_area = |(obj2 (p) – obj2(ref))| ∗|(obj3 (p) – obj3(ref))|
9:   ExcHv = slice_depth * cur_area
10: else 
11:  for (i = 0; i < N; i += j)
12:    u1 = GeUppertBound (obj1(next_level[i])) 
13:    slice_depth = |obj1(next_level[i]) – u1|
14:    obj2(ref) = GetLowerBound (obj2(next_level[i])) 
15:    obj3(ref) = GeUppertBound (obj3(next_level[i])) 
16:    cur_area = |(obj2 (next_level[i])– obj2(ref))| ∗

|(obj3 (next_level[i])– obj3(ref))|
17:    ExcHv = slice_depth * cur_area
18: return ExcHv

Algorithm 4: Calculate the hypervolume indicator in case 3 
Require: solution set ps size N, number of objectives nobj
1: Sub_proc_3 (ps, nobj, N)
2: store the appropriate points into array same_cur
3: if (next_level == ∅ )
4:   u1 = GeUppertBound (obj1(p))
5:   slice_depth = |obj1(p)– u1|
6:   obj2(ref) = GetLowerBound (obj2(p)) 
7:   obj3(ref) = GeUppertBound (obj3(p)) 
8:   store the appropriate points that are needed to be deleted 

into array removal
9:   calculate the area of removal part (denoted as cut_area)
10:  total_area = |(obj2 (p) – obj2(ref))| ∗ |(obj3 (p) – obj3(ref))|
11:  cur_area = total_area – cut_area
12:  ExcHv = slice_depth * cur_area 
13: else 
14:  for (i = 0; i < N; i += j)
15:    u1 = GeUppertBound (obj1(next_level[i])) 
16:    slice_depth = |obj1(next_level[i]) – u1|
17:    obj2(ref) = GetLowerBound (obj2(next_level[i])) 
18:    obj3(ref) = GeUppertBound (obj3(next_level[i])) 
19:    store the appropriate points that are needed to be 

deleted into array removal 
20:    calculate the area of removal part (denoted as cut_area)
21:    total_area = (obj2 (next_level[i])– obj2(ref)) ∗

(obj3 (next_level[i])– obj3(ref)) 
22:    cur_area = total_area – cut_area
23:    ExcHv = slice_depth * cur_area
24: return ExcHv

After the above pre-treatment, the procedure to calculate the 
exclusive hypervolume can be achieved in the following four 
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steps: 

Step 1: Determine the depth (denoted as slice_depth) of the 
current slice. 

Step 2: Determine the shape of the current slice. 

Step 3: Reconfirm the temporary reference point. 

Step 4: Calculate the exclusive hypervolume of p.

At the beginning of calculating the exclusive hypervolume, 
we store the appropriate points into the array same_cur[]. If 
array next_level[] is empty, we only need to process the points 
prior to p, otherwise the points after p are also needed to be 
processed. Since only the non-dominated points have 
contributions to the total hypervolume indicator, the task of 
Step 2 is to scan the points of the set one after another in order 
to find the appropriate points to organize the shape of the slice. 
It is obvious that the time complexity of this process is bounded 
by O(N). When processing Case 2 or Case 4, we have to 
determine the part that will be deleted. The will-be deleted part 
is organized by some of points that are prior to p and dominated 
by it. In Step 3, the temporary reference point is composed of 
the largest lower bound at the 2nd objective and the lowest 
upper bound at the 3rd objective. In conclusion, to calculate the 
exclusive hypervolume of one point costs O(N2) time in the 
worst condition. 

 In order to illustrate the above process of calculating the 
exclusive hypervolume, Fig. 1 (given in Appendix A) gives a 
simple example. The input solution set is as follows: 

S = {(1, 8, 7), (2, 6, 3), (4, 5, 8), (5, 2, 5), (7, 3, 2), (10, 1, 9)} 

The initial reference point is chosen as (12, 12, 12). The current 
examined point is chosen as (5, 2, 5). 

IV. SIMULATION RESULTS ON TEST PROBLEMS

A. Settings
In order to validate the proposed HvEA was tested on 

several test problems. We compared our algorithm with three 
well established EMOAs: -MOEA [4], NSGA-II, SPEA2. As 
is referred above, we invoke the same variation operator and 
the same parameter settings used in previous three algorithms 
[1][2][4]. We have selected first the following bi-objective 
unconstrained problems: ZDT1 to ZDT4 and ZDT6, which are 
all defined in [19]. Then we applied functions DTLZ1 to 
DTLZ3, which are all defined in [20]. 20,000 function 
evaluations are calculated for the ZDT functions and 30,000 on 
all DTLZ functions except for DTLZ3, where 100,000 function 
evaluations are used. The population size is set to 100 for all 
functions except for DTLZ3, where 200 individuals are applied.  

To assess the performances of these algorithms on the test 
problems, the following three different aspects are normally 
taken into account: 

1)  Convergence. The distance of the obtained non-
dominated set to the Pareto optimal front; 

2)  Uniformity. The uniformity of the obtained non-
dominated solutions set; 

3)  Spread.  The distribution extent of the obtained non-

dominated solutions set. 

In this paper, four different performance metrics are 
invoked here. The generation distance (GD) [21], related with 
the first aspect, is used to evaluate the closeness to the Pareto 
front; for the second aspect, the uniform assessment (UA) [22] 
is used to assess the diversity in the solutions obtained; and 
then, the last aspect, the spread assessment (SA) [23] is used to 
assess the spread of the obtained solution set; both of the 
convergence and uniformity of the solutions found can be 
evaluated by the S-metric (hypervolume) [5]. The reference 
point which is used for the calculation of S-metric is chosen as 
(0.7, 0.7, 0.7)T, for DTLZ1 and as (1.1, 1.1, 1.1)T for the other 
functions [4]. 

B. Two-objective Test Problems
The experiment results for two-objective case are 

summarized in Table I and II (shown in Appendix B). For each 
problem, we have carried out ten independent runs, and the 
tables include the average and standard deviation. 

 For convenient comparison, the best results for 
convergence, and S-metric measures that published in [15] are 
copied into Table 1 and 2. The performances of algorithms in 
each metric for different test problems are ranked and the best 
results are shown in bold. The challenge of ZDT1, ZDT2 and 
ZDT3 lies on the high-dimensionality of these problems. Many 
MOEAs have achieved very good results on these problems. 
The results of HvEA are ranked best on both convergence and 
S-metric measures. As to the uniformity measure, HvEA get the 
best result on function ZDT1. The spread of solutions of HvEA 
is the best on function ZDT3, but are both worse than SPEA2 
and NSGA-II on functions ZDT1 and ZDT2. ZDT4 is a hard 
optimization problem with 219 local Pareto fronts that end to 
mislead the optimization algorithm. HvEA get the most 
convergent solutions on this function. NSGA-II generated the 
most extensive solutions on this function. With the test problem 
ZDT6, there are two major difficulties. The first one is the thin 
density of solutions towards the Pareto front and the second one 
lies on non-uniform spread of solutions along the front. Here, 
HvEA is ranked best on all of these measures. 

C. Three-objective Test Problems  
Now we refer to the three-objective test problems. The 

results are depicted in Table III and IV (shown in Appendix B). 
For each problem, we have carried out 5 independent runs, and 
the table includes the average and standard deviation. 

The true Pareto front of DTLZ1 lies on the linear 
hyper-plane:

1
0.5

M

mm
f= = . The difficulty in this problem is 

converging to the hyper-plane, the search space contains (11k-1) 
local Pareto optimal fronts. From Table 3 and 4, we can see that 
HvEA is ranked best on GD and S-metric measures and is 
second on UA and SA measures. Next, we consider the 
three-objective test problem of DTLZ2, the Pareto optimal front 
satisfying

1

2
1

M

i if= = . HvEA is ranked best on GD and S-metric, 
is second on UA and third on SA. DTLZ3 is a hard optimization 
problem with 39 local Pareto fronts, whereas the optimal front 
is equivalent to that of DTLZ2. HvEA has the best convergence. 
The UA and SA measures are both ranked second. 
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In conclusion, the outstanding results on GD show that the 
incorporation of hypervolume indicator as a selection operator 
makes our algorithm to be a better convergent one than the 
examined well established algorithms. Since there is no explicit 
strategy for preserving the boundary solutions, the spread of 
solutions obtained by HvEA is not as good as those of SPEA2 
and NSGA-II. Besides, the excellent result on S-metric is a very 
encouraging result even though good performance seems to be 
natural, for the hypervolume indicator is incorporated as the 
selection operator. 

V.CONCLUSIONS

In this paper, we propose HvEA (Hypervolume-based 
Evolutionary Algorithm) to solve multiobjective optimization 
problems. It incorporates a unique fitness assignment strategy 
which is based on the density information of each individual for 
mating selection. A novel slicing based method to calculate the 
exclusive hypervolume which is used for environmental 
selection is proposed here. HvEA is compared to three well 
established techniques like SPEA2, NSGA-II and -MOEA. A 
distinguishing convergence and S-metric measures are received 
from the computational experiments. 

By now, computing the hypervolume indicator is still 
time-consuming for more than three objectives. Thus greatly 
hampers HvEA to be applicable to higher dimensional 
problems. This can be an encouraging issue for future research. 
As is proposed in [18], in the hypervolume-based algorithms 
the actual hypervolume is not so important. Instead, the 
rankings of solutions which are according to the hypervolume 
indicator are more significant. Following this issue, we may 
design an estimate algorithm that just calculates the 
approximation of the hypervolume of each individual and 
remove the solutions with smaller approximation. This may 
make our algorithm effective for more than three objectives. 

REFERENCES

[1] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A 
Fast and Elitist Multiobjective Genetic Algorithm: NSGA--II, IEEE 
Transactions on Evolutionary Computation, 6(2): 182-197, 2002 

[2] Eckart Zitzler, Marco Laumanns and Lothar Thiele. SPEA2: Improving 
the strength Pareto evolutionary algorithm. TIK-Report 103, 2001 

[3] Joshua Knowles and David Corne. Approximating the nondominated 
front using the Pareto archive evolutionary strategy. Evolutionary 
Computation, 8(2): 149-172, 2000. 

[4] Kalyanmoy Deb, Manikanth Mohan, Shikhar Mishra: Evaluating the 
epsilon-Domination Based Multi-Objective Evolutionary Algorithm for a 
Quick Computation of Pareto-Optimal Solutions. Evolutionary 
Computation, 13(4):501-525 (2005) 

[5] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A 
Comparative Case Study and the Strength Pareto Approach. IEEE 
Transactions on Evolutionary Computation, 3(4):257–271, 1999. 

[6] E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and V. Grunert da 
Fonseca. Performance assessment of multiobjective optimizers: An 
analysis and review. IEEE Transactions on Evolutionary Computation,
7(2):117–132, 2003. 

[7] J. Knowles and D. Corne, “Properties of an adaptive archiving algorithm 
for storing nondominated vectors,” IEEE Transactions on Evolutionary 
Computation, vol. 7, no. 2, pp. 100–116, Apr. 2003. 

[8] D. A. V. Veldhuizen. Multiobjective Evolutionary Algorithms: 
Classifications, Analyses, and New Innovations. PhD thesis, Graduate 
School of Engineering, Air Force Institute of Technology, Air University, 
June 1999. 

[9] M. Fleischer, “The measure of Pareto optima: Applications to 
multiobjective Metaheuristics”. In C. M. Fonseca et al., editor, 

Evolutionary Multi-objective Optimization 2003 (EMO 2003), volume 
2632 of LNCS, pp. 519–533. Springer-Verlag, 2003. 

[10] M. Emmerich, N. Beume, and B. Naujoks. An EMO Algorithm Using the 
Hypervolume Measure as Selection Criterion. In Conference on 
Evolutionary Multi-Criterion Optimization 2005 (EMO 2005), volume 
3410 of LNCS, pages 62–76. Springer, 2005. 

[11] T. Wagner, N. Beume, and B. Naujoks. Pareto-, Aggregation-, and 
Indicator-based Methods in Many-objective Optimization. In S. 
Obayashi et al., editors, Conference on Evolutionary Multi-Criterion 
Optimization 2007 (EMO 2007), volume 4403 of LNCS, pages 742–756, 
Berlin Heidelberg, Germany, 2007. Springer. extended version published 
as internal report of Sonderforschungsbereich 531 Computational 
Intelligence CI-217/06, Universität Dortmund, September 2006. 

[12] S. Huband, P. Hingston, L. While, L. Barone, An evolution strategy with 
probabilistic mutation for multiobjective optimization, In 2003 IEEE 
Congress on Evolutionary Computation (CEC 2003), vol. 4, IEEE Press, 
Piscataway, NJ, 2003, pp. 2284–2291. 

[13] E. Zitzler, S. K nzli, Indicator-based selection in multiobjective search, 
in: Parallel Problem Solving from Nature (PPSN 2004), Springer, Berlin, 
2004, pp. 832 842. 

[14] C. Igel, N. Hansen, and S. Roth. Covariance Matrix Adaptation for 
Multi-objective Optimization. Evolutionary Computation, 15(1):1–28, 
2007. 

[15] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective 
selection based on dominated hypervolume. European Journal on 
Operational Research, 181:1653–1669, 2007. 

[16] L. Bradstreet, L. Barone, and L. While. Maximising Hypervolume for 
Selection in Multi-objective Evolutionary Algorithms. In 2006 IEEE 
Congress on Evolutionary Computation (CEC 2006), pages 6208–6215, 
Vancouver, BC, Canada, 2006. IEEE. 

[17] L. While, P. Hingston, L. Barone, and S. Huband. A Faster Algorithm for 
Calculating Hypervolume. IEEE Transactions on Evolutionary 
Computation, 10(1):29–38, Feb. 2006. 

[18] J. Bader and E. Zitzler. HypE: An Algorithm for Fast Hypervolume- 
Based Many-Objective Optimization. TIK Report 286, Computer 
Engineering and Networks Laboratory (TIK), ETH Zurich, November 
2008. 

[19] Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of 
Multiobjective Evolutionary Algorithms: Empirical Results. 
Evolutionary Computation, 8(2):173-195, 2000 

[20] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems 
for Evolutionary Multi-Objective Optimization. In A. Abraham, R. Jain, 
and R. Goldberg, editors, Evolutionary Multiobjective Optimization: 
Theoretical Advances and Applications, chapter 6, pages 105–145. 
Springer, 2005. 

[21] Van Veldhuizen David A. and Gary B. Lamont. Evolutionary 
Computation and Convergence to a Pareto Front, In John R. Koza, editor, 
Late Breaking Papers at the Genetic Programming Conference, 1998. 
221-228 

[22] Miqing Li, Jinhua Zheng and Guixia Xiao. Uniformity Assessment for 
Evolutionary Multi-Objective Optimization, in Proceedings of IEEE 
Congress on Evolutionary Computation  (CEC 2008), 625-632, 2008 

[23] Miqing Li and Jinhua Zheng. Spread Assessment for Evolutionary 
Multi-Objective Optimization, Evolutionary Multi-Criterion 
Optimization, 5th International Conference 2009 (EMO 2009), Nantes, 
France 216-230, 2009 

APPENDIX A 

Fig. 1 gives a simple example to illustrate the process of 
calculating the exclusive hypervolume of a specific point. In 
this figure, we choose the 4th point as the current examined 
point p. The polyhedron enclosed by p and the reference point 
(denoted as Ref) is sliced into three smaller polyhedrons 
according to the dashed lines. Then we project these 
polyhedrons into two-dimensional space separately. The 
shadowed polygons are the parts that need to be calculated. The 
red circle is the initial reference point and the green one is the 
reconfirmed temporary reference point. 
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Fig. 1 A simple example for six points

APPENDIX B 
The empirical results are summarized in the following four tables. 

Table I COVERGENCE AND UNIFORMITY MEASURE FOR 2-OBJECTIVE TEST PROBLEMS

Test 
problems MOEAs GD UA 

Average Std.Dev Rank Average Std.Dev Rank 

ZDT1 

NSGA-II 0.00054898 6.62e-05 3 0.44177108 5.31e-05 2
SPEA2 0.00100589 12.06e-05 4 0.75664550 10.12e-05 4
-MOEA 0.00039545 1.22e-05 2 0.6163923 2.12e-05 3
HvEA 0.00016414 4.21e-05 1 0.76011216 3.13e-05 1

ZDT2 

NSGA-II 0.00037851 1.88e-05 2 0.43541380 1.76e-05 4
SPEA2 0.00082852 11.38e-05 4 0.76688318 12.72e-05 1
-MOEA 0.00046448 2.47e-05 3 0.7243562 1.98e-05 3
HvEA 0.000156531 1.56e-05 1 0.73665959 2.23e-05 2

ZDT3 

NSGA-II 0.00232321 13.95e-05 3 0.33308437 9.23e-05 4
SPEA2 0.00260542 15.46e-05 4 0.72215054 12.72e-05 1
-MOEA 0.00175135  7.45e-05 2 0.7023855 5.23e-05 3
HvEA 0.000540217 17.21e-05 1 0.70727224 13.17e-05 2

ZDT4 

NSGA-II 0.00639002 0.0043 3 0.43457665 0.0062 4
SPEA2 0.00769278 0.0025 4 0.72280722 0.0073 2
-MOEA 0.00259063 0.0006 2 0.7135789 0.0013 3
HvEA 0.000256040 0.0012 1 0.73833501 0.0008 1

ZDT6 

NSGA-II 0.07896111 0.0067 4 0.51667780 0.0095 4
SPEA2 0.00573584 0.0009 2 0.70857258 0.0010 2
-MOEA 0.06792800 0.0118 3 0.6798456 0.0098 3
HvEA 0.001512960 0.0095 1 0.72680862 0.0089 1
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Table II SPREAD AND S-METRIC MEASURE FOR 2-OBJECTIVE TEST PROBLEMS 

Test 
problems MOEAs SA HV 

Average Std.Dev Rank Average Std.Dev Rank 

ZDT1 

NSGA-II 2.360414 5.21e-05 1 0.8701 3.85e-04 4
SPEA2 2.353484 9.11e-05 2 0.8708 1.86e-04 2
-MOEA 2.330971 2.16e-05 4 0.8702 8.25e-05 3
HvEA 2.346017 3.13e-05 3 0.8750 2.45e-05 1

ZDT2 

NSGA-II 1.706483 2.08e-05 1 0.5372 3.01e-04 4
SPEA2 1.703973 9.32e-05 2 0.5374 2.61e-04 3
-MOEA 1.692582 1.65e-05 4 0.5383 6.39e-05 2
HvEA 1.695270 1.05e-05 3 0.5823 4.15e-05 1

ZDT3 

NSGA-II 2.026019 12.42e-05 3 1.3285 1.72e-04 3
SPEA2 2.019513 16.12e-05 4 1.3276 2.54e-04 4
-MOEA 2.039567 6.35e-05 2 1.3287 1.31e-04 2
HvEA 2.056663 15.23e-05 1 2.7712 1.53e-4 1

ZDT4 

NSGA-II 2.347478 0.0051 4 0.8613 0.00640 2
SPEA2 2.362302 0.0046 3 0.8609 0.00536 3
-MOEA 2.363267 0.0013 2 0.8509 0.01537 4
HvEA 2.378865 0.0010 1 0.8671 0.01235 1

ZDT6 

NSGA-II 1.847677 0.0057 2 0.3959 0.00894 4
SPEA2 1.846541 0.0007 3 0.4968 0.00117 2
-MOEA 1.845432 0.00951 4 0.4112 0.01573 3
HvEA 1.849740 0.00752 1 0.8507 0.05341 1

Table III  COVERGENCE AND UNIFORMITY MEASURE FOR 3-OBJECTIVE TEST PROBLEMS

Test 
problems MOEAs GD UA 

Average Std.Dev Rank Average Std.Dev Rank 

DTLZ1 

NSGA-II 0.06791356 1.38e-03 4 0.27106877 1.23e-04 4
SPEA2 0.0033377 9.17e-03 3 0.75209725 5.32e-03 3
-MOEA 0.00245 9.52e-05 2 0.8143912 12.34e-05 1
HvEA 0.0021354 2.35e-03 1 0.7624552 3.25e-03 2

DTLZ2 

NSGA-II 0.0098249 2.72e-05 4 0.32723246 5.24e-05 4
SPEA2 0.0096292 3.45e-05 3 0.81348710 7.53e-05 1
-MOEA 0.0073462 6.35e-05 2 0.7199123 4.24e-05 3
HvEA 0.0062536 5.16e-04 1 0.7324523 9.92e-05 2

DTLZ3 

NSGA-II 0.25543011 1.06e-03 4 0.29579150 2.46e-04 4
SPEA2 0.14616599 9.03e-03 3 0.84215285 8.85e-03 1
-MOEA 0.0122290 2.23e-04 2 0.5192874 2.37e-04 3
HvEA 0.0092467 3.25e-03 1 0.5242596 2.64e-03 2

Table IV  SPREAD AND S-METRIC MEASURE FOR 2-OBJECTIVE TEST PROBLEMS 

Test 
problems MOEAs SA HV 

Average Std.Dev Rank Average Std.Dev Rank 

DTLZ1 

NSGA-II 3.442371 3.52e-04 4 0.313222 5.89e-04 3
SPEA2 4.241223 6.15e-03 1 0.315981 6.98e-04 2
-MOEA 4.127042 10.35e-05 3 0.298487 NC 4
HvEA 4.209586 2.54e-03 2 0.328475 5.25e-05 1

DTLZ2 

NSGA-II 3.063681 4.29e-05 2 0.557843 1.02e-03 3
SPEA2 3.176612 6.75e-05 1 0.711212 7.82e-05 2
-MOEA 2.828597 5.04e-05 4 NC NC NC
HvEA 2.985684 8.97e-05 3 0.782251 5.23e-04 1

DTLZ3 

NSGA-II 3.067451 3.27e-04 3 0.719123 3.24e-05 3
SPEA2 3.174212 7.89e-03 1 0.748125 3.64e-05 2
-MOEA 2.827452 3.27e-04 4 NC NC NC
HvEA 3.096782 2.25e-03 2 0.769462 4.72e-05 1
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