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Abstract—Due to the dynamic and anonymous nature of open
environments, it is critically important for agents to identify
trustful cooperators which work consistently as they claim. In
the e-services and e-commerce communities, trust and reputation
systems are applied broadly as one kind of decision support
systems, and aim to cope with the consistency problems caused
by uncertain trust relationships. However, challenges still exist:
on the one hand, we require more flexible trust computation
models to satisfy various personal requirements since agents in
these communities are heterogeneous; on the other hand, trust
and reputation systems calculate the trustworthiness of agents
based on the agents’ past behavior. The open environments are
dynamic, agents are anonymous and the records about agents’
past behavior are distributed in the environments, so agents have
to search the required records through the environments due
to their lack of valid information. Thus, efficient, scalable and
effective information collection strategies are required to address
these issues. In this paper we present a distributed trust and
reputation system to cope with the challenges. We propose a
novel and flexible trust computation model based on artificial
neural networks. With the advantages of ANN, our trust model
tunes the parameters automatically to adapt to various personal
requirements. We propose a broker-assisting information collec-
tion strategy based on clustering method. With the support of
brokers, subcommunities are managed by reputation mechanism
in an efficient and scalable way and help their members collect
information with high quality. We show the performance of our
trust and reputation system by simulation.

I. INTRODUCTION

In open environments, agents accomplish tasks and achieve
goals by cooperating with each other(e.g. clients finish their
tasks by using the services provided by servers). However, due
to the dynamic and anonymous nature of open environments,
agents have to cooperate with anonymous ones. Thus, it is
critically important for agents to identify whether the coop-
erators are trustworthy and whether they work consistently
as they claim in coming cooperations. Trust and reputation
system(TRS) are proposed to identify trustful cooperators,
since these problems caused by uncertain trust relationships
cannot be solved by traditional security methods [10], [11].

In e-services and e-commerce communities, trust and rep-
utation systems are applied broadly as one kind of decision
support systems. Due to the success in web-applications(e.g.
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eBay [17], Amazon [18] and so on), the research on TRS
has gained more attention in recent years. TRS is designed
to help agents analyze trust relationships and make decisions
before cooperations. Therefore the main tasks for TRS are
quantifying trustworthiness between agents and helping agents
make cooperation decisions. Meanwhile, the foundation of
TRS is the cooperation history and cooperation records col-
lected from agents. Consequently, to design a TRS we have to
take two problems into consideration: 1). how to design a trust
computation model(TCM) that provides more accurate trust
value for decision procedure; 2). how to design an efficient
and scalable information collection strategy(ICS).

A variety of TRS have been proposed in previous works
[10], [11]. However, challenges still exist. On the one hand,
agents’ understandings on trustworthiness might be quite dif-
ferent, since agents in an open environment are heterogeneous.
Though we try to adjust the parameters of a trust model man-
ually to satisfy the personal requirements, without theoretical
guarantee it is difficult to handle the adjustment procedure in
practice. Thus, we require flexible trust computation models
which can adjust the internal parameters automatically for
different agents. On the other hand, trust and reputation
systems depict the trustworthiness of agents by analyzing the
transaction records. Without a central authority agents lack
of valid information about other agents’ past behavior, since
the records are distributed in open environments, the open
environments are dynamic and agents are anonymous. In order
to improve the performance of TRS, an efficient, effective
and scalable ICS is required, and it helps agents collect valid
information and get rid of the noise information automatically.

In this paper, we propose a novel and flexible TCM based
on artificial neural networks(ANN) to quantify the trust rela-
tionships between agents. Artificial neural networks are robust
to noise data and support incremental training. Thus, our trust
model tunes the parameters automatically to adapt to personal
requirements taking the advantages of ANN. We propose
a broker-assisting information collection strategy based on
clustering method in order to improve the performance of
the system. With the support of brokers, subcommunities
are managed by reputation mechanism in an efficient and
scalable way and provide information with high quality for
their members.

The rest of this paper is organized as follows. In Section II
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we present an overview of current research on TRS. Section
III introduces our proposed TRS. In Section IV we show the
performance of our TRS by simulation. We give a conclusion
and present our future work In Section V.

II. RELATED WORK

Various trust and reputation systems have been proposed
over the last decade. These models differ mainly in how they
define trust and reputation, in how they quantify trust based on
existing information, in their assumptions on how the systems
obtains information from given networks, and in the set of trust
attributes considered by them.

Abdul-Rahman and Hailes [1] proposed a model in which
the trustworthiness falls into one of four discrete levels: very
trustworthy, trustworthy, untrustworthy and very untrustwor-
thy. Their work capture the most important characteristics of
trust and propose the general structure for developing trust
and reputation systems in open environments. Lik Mui et al.
[2] described trust relationships by probability and proposed a
computational trust and reputation model based on probability
method. Sepandar Kamvar et al. [3] depict trust with real num-
bers and calculate the global trust between agents by iterated
matrix computation. Our work integrates these previous works
[1]–[3], and introduces artificial neural networks to improve
the flexibility of trust computation models and to adapt to the
personal requirements of different agents.

In previous works, referral-chain method [12], [13] is one
of the most popular ways to collect information from agents.
Xiong et al. [14] employ trust-set strategy to collect ratings
from trusted agents. Nurit Gal-Oz et al. [4] use a clustering
method to collect ratings from similar agents and prove that
this strategy can protect agents from malicious attack effec-
tively. Our work is based on previous works [4], [12]–[14] and
introduces brokers to manage subcommunities by reputation
mechanism in an efficient and scalable way.

III. TRUST AND REPUTATION SYSTEM

In open environments, agents build two types of trust
relationships: trust in cooperators and trust in recommenders.
According to trustworthiness of cooperators, agents decides
whether it will cooperate with them; taking trustworthiness of
recommenders into account, agents decides how important the
recommendations from other agents will be.

TRS is designed to help clients make beneficial decisions.
In order to design a well-performing TRS, we have to take
two problems into consideration: 1). how to design trust
computation model; 2). how to design information collection
strategy. However, agents evaluate other agents’ behavior
by different criteria since agents in open environments are
heterogeneous [9]. Therefore the fixed global parameters for
trust models might be inappropriate for some of agents in open
environments. Though we can try to tune parameters manually
to meet different personal requirements, this procedure is
difficult to implement in practice due to the lack of theoretical
guarantee. If trust models have the capability to tune the
parameters automatically for various agents, the flexibility

will be improved greatly. Moreover, when an agent requests
transaction records from others, the records it received might
be helpless and lead to confusion in decision procedures. These
records are noise for the agent, even though the sources are
honest agents. Different preferences, habits and backgrounds
result in that the more information collected by trust models
does not mean that trust models provide more accurate decision
supports. In this paper, we assume that “less is more” [4]: while
the information collected globally might be mixed by noise, the
information collected from selected agents is more valid and
the search is more efficient. With this assumption, each agent
identifies those agents which have similar evaluation criteria
and requests records from these similar ones instead of global
search. To some extent, the agents which provide dishonest
recommendations can be considered as the agents which have
special evaluation criteria. Thus, without loss of generality we
assume that agents are honest in recommendation but have
different evaluation criteria.

In this section, we introduce our proposed trust and rep-
utation system including the TCM based on ANN and ICS
based on clustering method. First of all we will introduce
basic definitions for concepts in this paper for convenience
of following presentation.

A. Definition

In the trust and reputation community, the definitions of
trust and reputation have never come to a common agreement.
In this paper, we first give intuitive definitions for reputation
and rating, and refer the definition of trust in [10], [11].

Definition 1 (Rating): The evaluation of a transaction
between two agents, from various perspectives or general
perspective, presented by either of them or both of them.

In the rest of this paper, we will use the term rating instead
of transaction evaluation.

Definition 2 (Reputation): Reputation is a relatively
objective evaluation about past behaviors of target agent and
is derived from previous transaction ratings which could be
direct experience or recommend information from others.

As mentioned above, agent builds two types of trust
relationships: trust in cooperators and trust in recommenders.
These two types of trust can be understood as reliability trust.

Definition 3 (Reliability Trust): The subjective probability
by which an agent, A, expects that another agent, B, performs
a given action on which its welfare depends.

For simplicity, we use the term trust instead of reliability
trust.

As acknowledged by many researchers [5], [6], trust and
reputation are context-related(e.g. a good reputation in tickets
reservation can not infer a good reputation in schedule opti-
mization). In this paper, without loss of generality we consider
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trust and reputation under a uniform context(e.g. the tickets
reservation services between clients and servers). Furthermore,
ratings are provided symmetrically by both clients and servers,
however, in this paper we only consider the ratings provided by
clients for the convenience of discussion. In other words, we
assume that only clients evaluate the trustworthiness of servers
in the following.

B. Trust Computation Model

In open environments, the capabilities and the evaluation
criteria of agents are not uniform [6]. For instance, some
servers possess competitive services with high quality, while
some clients possess less competitive services with relatively
low quality. Nevertheless, both of them might meet the require-
ments of different groups of clients. From another perspective,
some clients are very picky and only these service with high
quality can satisfy their requirements, while some clients with
relatively low requirements have more choices.

As acknowledged, it is a difficult problem to predict the
character of a client. Furthermore, because the open environ-
ments are dynamic, it is much more complicated to predict
the distribution of clients with different characters on specific
time. It is necessary to improve the flexibility of trust models
for the dynamic environments. Our proposed trust model based
on artificial neural networks attempts to achieve the goal by
learning examples to tune parameters automatically to meet
various personal requirements.

1) Trust Model Based on ANN: Artificial neural network
provides a general and practical method for learning vector-
valued functions from examples and ANN learning is robust
to noise in the training data [7]. ANN system is based on
some basic units such as sigmoids [16]. A sigmoid can take
vector inputs and calculates the result by nonlinear function.
By post-processing, it produces an output as the input for other
sigmoids or the final output. For instance, given vector inputs
as x1 through xn, a sigmoid calculates the combination of
vector, and then output a real number. We can represent the
output o(x1, . . . , xn) computed by the sigmoid as :

net =
n∑

i=0

wixi, where x0 = 1,

o(x1, . . . , xn) =
1

1 + e−net
,

where each wi is a weight that determines the contribution
of input xi to the sigmoid output. The ANN is trained by
backpropagation algorithm to approach the optimal parameters
for fitting the training set of input-output pairs and the learning
result is the tuned weights w0, w1, . . . , wn for the sigmoid. A
sigmoid is designed as Fig.1.

As noted, the representation power of one single sigmoid
is limited. Multilayer networks learned by backpropagation
are capable of expressing a rich variety of decision surfaces
[16]. We use multilayer ANN to establish the trust models that
quantify the trust relationships between agents.

Ratings are valid only within a period of time. To some
extent, ratings implicate the capability of servers from clients’

Fig. 1. The Sigmoid Unit

Fig. 2. General ANN Architecture

perspectives [4], [14]. If each rating contains two dimensions:
time-stamp and evaluation, taking the most recent 20 ratings
of target server into consideration, the relationship between the
decision procedure and the rating for the transaction is depicted
as:

(x1, x2, . . . , x20) → eval.

For convenience, vector (x1, x2, . . . , x20) is represented as X ,
the relationship above is simplified as:

X → eval,

where eval is the rating and eval can be real-valued(e.g.
eval ∈ [0, 1])or discrete-valued(e.g. eval is either satisfy
or dissatisfy). Thus the input-output pairs (X, eval) are the
training instances for ANN.

Assuming that eval is discrete-valued as satisfy and
dissatisfy, we can construct an ANN with 20 inputs and
2 outputs as showed in Fig.2.

While output o1 represents the status of satisfy and output
o2 represents the status of dissatisfy. Given a trained ANN
trust model, when client p requires the trustworthiness of
server q, p first collects ratings about q from its rating pool or
requests ratings from its neighbors. The significance of ratings
from sources will be different. Obviously ratings collected by
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oneself are the most important. Without direct experience, the
importance of ratings is hinged on the similarity, which we
will introduce later, on characters of neighbors. Meanwhile,
because the ratings are only valid during a period of time, we
assume that a valid period consists of the most recent k time
units. The most significant rating in each time unit is selected
and the k ratings form an input for ANN trust model. After
computation, the trust model provides two values o1 and o2

that we can consider as the confidence in satisfy and dissatisfy
respectively. We can infer the trustworthiness tp→q as:

tp→q =
o1

o1 + o2
,

2) Incremental Training: In open environments the amount
of information is increased rapidly and it provides rich re-
sources for ANN training. In order to satisfy personal re-
quirements dynamically, it is important to make ANN trust
model adjust itself to approach the optimal configuration.
The optimal configuration for ANN is a set of parameters
which are suitable enough to learn the underlying function.
While an open environment is evolving, the potential optimal
configuration might be changed subsequently. In this paper, we
use the incremental training method to address this problem.
Supposing that ANN is trained every r time units, with training
data collected in last r time units, ANN is trained to learn
current optimal configuration dynamically.

Besides, it is necessary to make ANN trust model adjust
itself to approach the optimal architecture with the evolution
of an open environment. The optimal architecture of ANN is a
network large enough to learn the underlying function and as
small as possible to generalize well [8]. A network smaller than
the optimal one can not learn problems well while a network
larger than the optimal one results in the lack of capability
in generalization [7]. With existing incremental construction
algorithm such as MOST [8], ANN is trained to improve its
performance further. It is obvious that there is no need to search
the optimal architecture all the time. When the performance
for decision support is good enough and relatively stable, the
search procedure is set on idle status. When notable decrease in
performance is captured, the search procedure is set on active
status and searches the optimal architecture based on current
situation.

C. Information Collection Strategy

Given an established ANN trust model, when client p
requires the trustworthiness of server q, p has to collect
ratings first. The most significant ratings in each recent k time
units are organized as an input for further decision support.
It is acknowledged that ratings from oneself are the most
significant, however, when lacking of direct experience, ratings
from the neighbors, which have the highest similarity on
character, are the most important.

In this paper, we propose an information collection strat-
egy(ICS) based on clustering method. With the support of
brokers, TRS maintains the property of subcommunities by
reputation mechanism and quantifying the similarity between
clients. Besides, this method has the nature that it can protect

clients from malicious attack effectively by the maintenance
algorithm [4]: malicious clients will be separated after long-
term communication so that they cannot subvert the systems.
We will use the existing clustering algorithms [15] to initialize
the subcommunities. In the following, we will pay more
attention on how to use brokers to maintain the property of
subcommunities in an efficient and scalable way.

1) Broker: We envision that every subcommunity has its
own broker, which might be implemented by a common and
certified software package just like Microsoft R© Passport or
Liberty Alliance [6]. A broker is a delegate for a group of
clients which have similar character, while there is at most
one broker for single client. Brokers are in charge of managing
subcommunities(e.g. a broker can grant the admission to com-
petent applicants and deprive clients, which have been proved
to be inappropriate for this subcommunity, of the member
qualification).

Because most of clients are divided into subcommunities, a
client, which does not belong to any subcommunity, is eager
to enter an appropriate one where clients are willing to share
experience with it and help it make more accurate decisions.
Assuming that client a is willing to join subcommunity c, the
application procedure is described as following steps:

1. Client a delivers an application to b which is the broker
of c.

2. Broker b receives the application from a, b chooses k
target servers which might be the most popular k servers
in this community , might be the most infamous k servers
or might be chosen randomly. Then b delivers a request
for the recent ratings of these k target servers from a and
ask a to give its response before time t.

3. Client a delivers the requested k ratings to b.
4. If broker b receives the response from a before the

required time t, b chooses m target members in this
subcommunity and delivers requests for similarity com-
parison; otherwise, b rejects the application.

5. Member d receives the request from b, computes the
similarity sima,d between a and d according to pre-
defined method, and then sends the result to broker b.

6. Broker b collects results from requested m members, and
take the combination of these results as final similarity
sima for client a. If sima is greater than pre-defined
threshold β, client a is invited into this subcommunity
and has all the rights as member; otherwise, broker b
will reject the application of a.

The discussion for similarity computation methods is beyond
the scope of this paper, and here we provide an intuitive
method. The similarity between client a and member d in the
subcommunity is computed as:

sima,d = 1 −
∑k

i=1 |evala,i − evald,i|
k

,

where evalx,y represents the ratings from client x to the y-
th server assigned by broker. And the final similarity sima is
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averaged over all similarity reports as:

sima =
∑m

i=1 sima,i

m
.

When a client has joined one subcommunity, it has more
opportunities to gain helpful ratings from members and re-
ceives more helpful decision support. At the same time it also
has the obligation to share experience with other members
and provide other members helpful ratings. Once a member
is considered as an incompetent one by broker, the broker will
deprive it of the member qualification. In our work, we use a
reputation mechanism to decide whether a client is appropriate
for one subcommunity. When member a plans to initialize a
transaction with server s, a will compute the trustworthiness of
s by the ANN trust model. Due to the lack of direct experience,
a will request ratings from other members. Member a first
requests the member-list from broker b, and then sends out its
requests to other members. The reputation mechanism begins
to work here as below:

1. member d receives the request from a, and sends ratings
back to a.

2. member a receives the ratings from d and continue to
collects ratings needed until there are enough ratings to
form an input instance.

3. By computation, a get a trustworthiness value ta→s of
server s. If ta→s is greater than a pre-defined threshold
θ, this transaction will be carried out and go to step 4;
otherwise, transaction will be terminated.

4. After the transaction procedure, a will give a rating on
the performance of s, and then a will report the input
instance and final rating to broker b.

5. Broker b analyze the report, and then update the reputa-
tion of related members which have shared experience
with a like d. Here, taking d as the example, if b
find out that ratings provided by d make a positive
contribution to this transaction, the reputation of d will
increase; otherwise, the reputation value will decrease. If
the reputation of d decreases and is below a pre-defined
value ρ, member d will be considered as incompetent
one in this subcommunity and will be deprived of the
qualification.

Here we provide a simple reputation updating method as
below:

rd =
pd + C1

pd + qd + C1 + C2
,

where rd is the reputation of member d, pd and qd are the
numbers of positive influence and negative influence caused
by d respectively, and C1 and C2 are pre-defined constants. If
C1 = 1 and C2 = 1, the initial reputation for a member is 0.5.

As presented above, the overhead for a client is the request
for member-list from broker, the requests for ratings from other
members and the final report of a transaction. This information
collection strategy is of good efficiency and good scalability.

2) Broker-Assisting ICS: There are two types of clients:
clients are in subcommunities and clients are not. Supposing

that client a is in one subcommunity, when a collects informa-
tion, this procedure is carried out as the steps presented above.
Supposing that client d does not belong to any subcommu-
nity, when d collects information, it requests ratings from its
familiar clients. If a familiar client e is the member of one
subcommunity, e will just provide part of its information(e.g.
50%) to e; otherwise, e can provide information as its will.
For clients which do not belong to any subcommunities, the
better performance on decision support motivates them to enter
the appropriate subcommunities and this encourages clients to
share transaction experience at the same time.

IV. EXPERIMENTS

We evaluate our system in a simulation of e-services com-
munity in a peer-to-peer network developed on the PeerSim1.
We implement the TCM and apply the implementation for the
ANN provided by Weka2.

A. Simulation Setup

For the sake of simplicity, all the agents focus on one
type of services, and their evaluations for transactions are in
the same context. Each agent in our simulation plays only
one role, either client(services consumer) or server(services
provider). It means that agents are divided into two groups:
clients group and servers group. On the one hand, in the clients
group, to a client out of any subcommunity, it only knows
those agents directly connected with it and to a subcommunity
member, with the help of broker, it can communicate with
other members freely; on the other hand, in the servers group,
servers do not communicate with each other for simplification.
Besides, we assume that one client can communicate with any
server at any time as long as the client wants.

Transactions between clients and servers are generated
randomly. Before one transaction, the client organizes an input
and the size of the input is 20(the latest 20 time units). Each
client maintain a TCM, which is trained and works in the
way above. The rating for transaction is combined with the
input vector as a new instance for further incremental training.
Additionally, the brokers generate the test-list randomly in our
simulation.

Our simulation involves 20 different servers and 100 clients
in which there are three types of evaluation criteria for the
quality of services: low, normal and high, and we depict their
characters with real numbers. The total number of simulation
rounds is 1000. The period for incremental training is set as
100. Thus in the first 100 rounds we use the TCM based
on average method to collect initial training data, and in the
following rounds use the TCM based on ANN to continue the
simulation. We set the parameters as: β = 0.7, θ = 0.5 and
ρ = 0.6. We run this simulation for 10 times and use the means
of results as the evaluation criteria. After each transaction, a
client will present a rating: either satisfy or dissatisfy according
to its personal requirement.

1http://peersim.sourceforge.net/
2http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 3. Simulation Results

B. Results and Analysis

The goal of this simulation is to see whether the TCM
based on ANN will help clients with different characters make
accurate decisions. Thus we compare the performance, which
is in terms of percentage of satisfying transaction, of a system
consisting of clients with TCM based ANN and a system
consisting of clients with TCM based on average method. Both
systems employ the ICS proposed in this paper.

In Fig.3, we can see that the system using TCM based on
ANN performs better than the system using average method
on the normal requirement and high requirement clients,
especially between Round 100 and Round 700. Because of the
flexibility provided by ANN, the ANN system automatically
adjusts the internal parameters to adapt to personal require-
ments and thus provides relatively more accurate decision
support for different clients. However, after Round 700, we can
see that performance of the AVG system begins to approach
the performance of the ANN one. In our analysis, because
both systems employ the same information collection strategy,
when the subcommunities become stable and mature after
700 rounds, the ratings collected are more valid for decision
support. Our ICS helps clients get rid of the noise information
effectively and subsequently improves the performance of the
AVG system.

In our simulation, we use simple ANN, which consists of
three layers and only one hidden layer with three sigmoids. In
the practical application, the environment might be much more
complex and requires the use of self-adaptive construction
algorithms for ANN.

V. CONCLUSION

In this paper, we propose a novel trust and reputation
system with a flexible trust computation model and an efficient
information collection strategy. we first propose a flexible trust
computation model based on artificial neural networks which
make trust models adapt to various personal requirements in
open environments. In order to improve the performance of the
system, we propose a broker-assisting information collection

strategy based on clustering method. With the support of bro-
kers, subcommunities are managed by reputation mechanism
in an efficient and scalable way, and help their members collect
information with high quality.

In future work, we will explore how to introduce the
incremental neural network construction methods into trust
and reputation system, which will further improve accuracy
and flexibility of the system in real complex environments.
We will design a more realistic simulation environment which
has the ability to depict the characters of various agents in
real complex environments. We think this work will help us
verify the performance of our designed trust models more
effectively. Additionally, taking multi-dimensional ratings into
consideration, the complexity of personal requirements will be
increased subsequently. We will make an attempt to design
an ANN trust model which is flexible enough for multi-
dimensional trust relationships.
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