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Abstract—Wafer defect inspection is an important process 
that is performed before die packaging. Conventional wafer 
inspections are usually performed using human visual judgment. 
A large number of people visually inspect wafers and hand-mark 
the defective regions. This requires considerable personnel 
resources and misjudgment may be introduced due to human 
fatigue. In order to overcome these shortcomings, this study 
develops an automatic inspection system that can recognize 
defective LED dies. An artificial neural network is adopted in the 
inspection. Actual data obtained from a semiconductor 
manufacturing company in Taiwan were used in the experiments. 
The results show that the proposed approach successfully 
identified the defective dies on LED wafers. Personnel costs and 
misjudgment due to human fatigue can be reduced using the 
proposed approach. 

Keywords—Post-sawing LED inspection, Automatic 
inspection

I. INTRODUCTION

Post-sawing inspection is one of the essential processes to 
increase the yield before die packaging in the capital intensive 
manufacturing industries. The inspection contributes 
manufacturers to prevent unnecessary outcome on 
unrecoverable defects. Studies have been made on this field in 
[1-4]. Su et al. [1] proposed using neural networks for wafer 
post-sawing inspections where back-propagation (BP), radial-
basis function (RBF), and learning vector quantization (LVQ) 
neural networks were utilized to inspect the wafers with a mean 
feature. Before inspection can proceed, locating positions of 
respective dies is necessary. Hence, we applied one previous 
developed result of our research team [5] -- CHDDNN to locate 
the dies in this paper.  

An LED wafer contains thousands of dies. Conventional 
approaches may need operators to inspect defects manually 
with the aid of SEM. However, manual inspections requiring 
frequently zooming in and out make this approach ineffective. 
Contrastively, an automatic approach that needs no zoom in 
and out in inspection stage and can process on a large amount 
of tiny dies in a single scale determined at the image-acquiring 
stage is necessary. Thus, an automatic approach which can 
locate, inspect, and mark individual dies is proposed to inspect 
the post-sawing LEDs. 

This paper is organized as follows: Section II describes the 
proposed defect inspection approach, including the die-locating, 
the extracted features, and the inspecting networks. Section III 
discusses configurations of the training parameters, and briefly 
demonstrates the inspection results of the proposed approach. 
Conclusion and future developments are summarized in the last 
section. 

II. AUTOMATIC DIE INSPECTION

Figure 1 illustrates the automatic approach, where Chang's 
Contextual HNN [6] is adopted for the die-location; the defect 
inspection applies neural networks to inspect the located dies; 
and the inspection results are stored for the die picker to 
remove the defective dies. The normal dies may be sent to 
packaging process after the inspection. 

Figure 1. Schematic diagram of the automatic post-sawing wafer inspection 
approach. 

A. Contextual HNN 
Contextual HNN [6] proposed a pixel-labeling process that 

assigns pixels to edge points in accordance with their spatial 
contextual information. We applied this technique to label the 
wafer as die area or non-die regions. Before performing [6], we 
applied a 3×3 median filter to remove undesired noise. Figure 2 
shows the result of the die detection where dies are detected 
and colored as white regions in Fig. 2(b). These regions are 
then numbered using an 8-adjencent connecting component 
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labeling [7] as different dies. According to the labeling results, 
we are able to inspect individual dies. 

Figure 2. The die detecting result. (a) the wafer image after removing noise 
with medium fiter. (b) the die detecting results using Contextual HNN [6]. 

B. Defect Inspection 
The proposed method inspects each die on its appearance, 

light-emitting area and p-electrode. Figure 3 illustrates the 
inspection approach. If either one of the inspections fails, the 
die is marked as defective immediately. 

Figure 3. The proposed defect inspection approach. If the die fails in either 
of the inspections the die is marked as defective in the inspection result. 

1) Appearance Inspection: Because the illumination is not 
ideally identical on the wafer, thus, before the appearance 
inspection begins, a lighting compensation technique [8] is 
applied to compensate the die images. The compensating bias 
is defined as the difference of the average of the intensity of 
top-ten-percent of the input image, and that of the top-ten-
percent of the user preferred die image that located in central 
region of a wafer image. Appearance of the die is inspected 

with the width and height of the die, that are two parameters 
defining the shape (rectangular) of regular dies. The tolerances 
(Twidth and Theight) are defined as ten percent of those of a regular 
die according to the manufacturer’s specification. Once the die 
passed the appearance inspection, two masks designed 
according to the specification are applied to extract the light-
emitting area and p-electrode. Fig. 4 shows the two masks for 
the extraction. 

Figure 4.  (a) the mask (inside the border) for light-emitting area. (b) the 
mask fo the p-electrode. 

2) Light-emitting area Inspection: Because we adopted 
neural networks as the inspecting approach, some statistical 
features representing this area are extracted for the inspection. 
These representative features are used in training the radial-
basis function neural networks (RBFNN); the features are also 
the inputs of the trained RBFNN in the inspecting phase.  

a) Blocking: Blocking is based on the observation that 
some of the features change significantly when the statistical 
area changes. Thus, some of the dies can be easily found to be 
defective when the features are considered within a small 
region. This is especially true when contamination exists on the 
surface of the light-emitting area. Four-region blocking is 
adopted to separate the square and hollow shape of the light-
emitting area (refer to Blocking in Fig. 3). 

b) Feature extraction 1: Considering structural unity of 
a regular die, statistical properties, such as mean (m), mean 
square (ms), standard deviation (sd), mean deviation (md), and 
entropy (e) statistics [9] are adopted as the features of the 
light-emitting area. Let NLi denote the area of the i-th (i = 1 to 
4) blocked light-emitting area Li. The statistical features are 
obtained using the following equations: 
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where si(x, y) is an intensity value of Li at coordinate (x, y).
The m feature is a measure on an integral average of the 
intensity in Li. The ms gains intensity of the regions and 
obtains a value of greater magnitude than that of the m feature 
does. The sd and md measure the spread of intensity in Li. The 
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square root is performed to use the original units and the 
outliers increase the value of the standard deviation. Both sd
and md change when there are defects or scars in the region. 
The last feature e measures how much information is carried; 
the greater the value, the greater the uncertainty. Defects or 
scars also affect the measured entropy. The feature vector FL

of the light-emitting area is organized as  
TL

e
L

md
L

sd
L

ms
L

m FFFFF ),,,,( . 
c) RBFNN Inspection 1: In this study, the inspections of 

the light emitting area and the p-electrode are conducted using 
radial-basis function neural networks (RBFNN). RBFNN has 
the characteristics of simplicity, robustness, and optimal 
approximation. The RBFNN viewed as a curve-fitting network 
performs an input-to-output mapping with a supervised training 
strategy [10]. The network is presented with training pairs, each 
consisting of a vector from an input space and a desire network 
response. In the training stage, the network updates its weights 
to fit the desired output. Once the network is convergent and 
the training complete, we can use the network to inspect the 
region with the extracted features. Since we use the same 
inspecting networks in the light-emitting area and the p-
electrode, we will described the networks later in the p-
electrode inspection. 

3) P-electrode Inspection: P-electrode usually contains a 
probing scar after the probing test. The unprobing p-electrode 
and the overlarge probing scar are both abnormal phenomenon. 
Thus, they are both considered as defective in the inspection. 
Some features of the defects are enhanced while considering in 
pure electrode region. Thus, the inspection inspects the features 
extracted in the separated region with another inspecting 
network. 

a) Otsu’s method: With an automatic approach, we 
apply Otsu’s method to separate the p-electrode and the 
probing scar using the optimal threshold. The automatic  
algorithm [11] sequentially searches for an optimal threshold 
Topt that maximizes the class separability and analyses the 
discriminant for maximum between-class variance that is used 
to measure class separability in gray levels.  

b) Feature extraction 2: According the optimal 
threshold, statistical features of mean (m) and standard 
deviation (sd) statistics are extracted. Besides, the area of pure 
electrode (a) and the deviation that is smaller than standard 
deviation (wd) are also extracted. The features are extracted 
using the following equations:
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where s(x, y) is an intensity value at coordinate (x, y) in the p-
electrode. Because the area of the p-electrode (a) (that is larger 
than Topt.) is small and may change seriously while defect 
occurs, thus, it is considered as one of the features. The within 
standard deviation feature (wd) estimates the degree of 
“normal.” Regular p-electrode has a wd value approximately 
equal to the standard deviation. Scars may produce a low mean 
value, larger standard deviation, small area, and small within 
standard deviation in the same instance. The feature vector FO

of the p-electrode is organized as TO
wsd

O
area

O
sd

O
m FFFF ),,,( . 

c) RBFNN Inspection 2: Figure 5 shows the architecture 
of RBFNN which consists of three layers: an input layer, a 
hidden layer of nonlinear processing neurons, and an output 
layer. 

Figure 5. Architecture of the inspecting RBFNN. 

The feature vector FL (in light-emitting area inspection) or 
FO (in p-electrode inspection) organizes the input x to the input 
layer. The radial-basis function gives the hidden layer the 
nonlinear transform ability [10]. The output layer produces the 
inspection results summing up the weighted results of the 
nonlinear transformation of the hidden layer. The output of 
RBFNN is: 
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where 1×∈ nRx (vector of n×1 real numbers, organized by FL

or FO in this paper) is an input vector; )(⋅kφ  is the basis 
function; wk are the weight vectors between the output neuron 
and k-th hidden neuron; ||·||2 denotes the Euclidean norm; N is 
the number of neurons in the hidden layer; and 1×∈ n

k Rc  are 
centers of the radial-basis function (RBF) in the input vector 
space. In this paper, the Gaussian function is chosen as the 
basis function of the RBF network; it is defined as: 

( )22exp)( σφ xxk −=           (11) 

where  is the spread parameter, which is initially as : 
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K
dmax=                                                          (12) 

where dmax is the maximum Euclidean distance between the 
selected center and K is the number of centers [10]. 

In a simple training algorithm, the weights are the only 
parameter. This requires selecting a large number of centers to 
perform adequate sampling of the input. In the proposed 
method, the stochastic gradient-based supervised learning 
algorithm [10], in which the weights, position of the RBF 
centers, and the width of the RBFs are updated according to 
results of the supervised learning in each iteration, is adopted. 
The instantaneous error cost function J(n) is defined as: 
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where yd(n) is the desired network output for iteration n. The 
update equations for the network parameters are given by: 
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where { } { }[ ]TNN nnnnn ),(),(,,),(),()( 11 cxcx φφψ = , ( ) =ne
( ) ( )nynyd − , ( )nyd  is the desired network output, and wμ ,

cμ , and σμ  are the appropriate learning rate parameters. 
The stochastic gradient-based supervised learning algorithm 

can be summarized as: 
Input: The feature vectors (FL or FO), the number of neurons in the

hidden layer, the desired output yd(n), the learning rate 
parameters w, c, and , and the maximum iteration M.

Output: The convergent RBFNNs for defect inspection.
Task:
Step 1. Choose the centers for the RBF functions from the set of 

inputs. 
Step 2. Compute the initial spread parameter using (12). 
Step 3. Initialize the weights to small random values. 
Step 4. For one input vector, compute the network output using 

(10). 
Step 5. Update the parameter equations using (14), (15), and (16). 
Step 6. End the learning task if the network has converged or has 

reached the maximum iteration; otherwise, go to Step 4. 

The convergent results of the parameters are used to setup 
the RBFNN for inspections. 

III. PARAMETER CONFIGURATION

Several parameters affect performance of RBFNN, 
including the selection of initial centers, the number of the 
neurons in the hidden layer, the learning rate parameters w, c,
and  in the stochastic gradient-based learning algorithm, and 
the cease criteria. We test for a proper parameter set and higher 
accuracy of the networks by fixing a single feature as the input 
of both networks. We randomly chose twenty normal and ten 
defective dies from 100 normal and 50 defective samples, 
respectively, as the training samples, and adopt the mean of an 
integral die as the fixed feature. One of five testing images 
containing 100 dies (including normal and defective dies) is 
used. 

A. Initial centers 
In equation (10), the weight wk in the output layer and the 

centers ck of the radial-basis function dominate the properties 
of the output. We first focus on the selection of the initial 
centers and compare several center selecting methods including 
random, k-means, self-organizing map and SOM with LVQ. 
Random is the easiest approach. However, to ensure adequately 
sampling the input space, a large number of centers selecting 
from the input data are necessary [10]. k-means is a well-
known clustering approach that relies on proper initial center. 
Improper initial centers may easily reduce a local solution. The 
self-organizing map (Kohonen SOM), an alternative clustering 
approach, can be improved by combining with a supervised 
network, learning vector quantization (LVQ). We tested these 
center selecting methods for better performance. The tested 
results are given as TABLE I. It can be seen that the combing 
method of SOM with LVQ performs the best, even compared 
with the additional test of k-means with LVQ. Thus, we 
adopted the method of combining SOM with LVQ for initial 
center selection. 

TABLE I. ACCURACY TESTING USING DIFFERENT METHOD FOR INITIAL 
CENTER SELECTION.

 Random k-means SOM + 
LVQ 

k-means + 
LVQ 

Training 
sample 100% 100% 100% 100% 

Testing 
sample 80% 87% 91% 88% 

The test was set with: 10 neurons in hidden layer; random initial parameter values from 0.01 to 0.000001; 
learning rate parameters of 0.01s; at most 500 iterations 

B. Number of the Neurons in the hidden layer 
Deciding the number of the neurons in the hidden layer is 

also necessary to adequately sample the input space. Using the 
same testing samples and similar configurations, we re-tested 
using 5, 10, 15, and 20 neurons in the hidden layer with means 
of the light-emitting area and the p-electrode individually. The 
results are given in  TABLE II  that reveals that 5 or 10 neurons  

TABLE II. TESTING ACCURACY USING VARIOUS NUMBERS OF
NEURONS IN YHE HIDDEN LAYER.

Number of 
hidden neurons 5 10 15 20 

RBFNN1 85% 91% 86% 81% 
RBFNN2 91% 91% 83% 81% 

The test was set with: selecting initial centers using SOM with LVQ; random initial parameter value from 
0.01 to 0.000001; learning rate parameters of 0.01s; at most 500 iterations 
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in the hidden layer give the best accuracy for the p-electrode; 
and that 5 neurons in the hidden layer gives the best accuracy 
for inspecting the light-emitting area. Thus, we used 10 
neurons in the hidden layer of the RBFNN. 

C. Learning rate parameters and cease criteria 
Although it increases complexity, stochastic gradient-based 

supervised learning greatly improves the performance of the 
inspection and while being less complex than backpropagation 
[10]. Besides the common weights in the network, the center 
positions and spread parameters are adjustable parameters. We 
simply let the learning rate ( w) of the dominant parameter 
(weight) be larger than the others and obtain trail and error 
results using ( w, c, ) equal to (0.01, 0.001, 0.001) in the 
RBFNNs for both the light-emitting area and the p-electrode. 
We concluded a convergent training process on these training 
samples where a cease criterion may be set at reasonable 350 in 
the training process to prevent poor inspections of the well-
know problem of over-fitting [10]. 

D. Feature Combinations 
We extracted several features in light-emitting area and p-

electrode and tried to improve the inspection using their 
combinations heuristically. In features of the light-emitting area, 
we first tested the feature combinations of integral light-
emitting area and then compared the feature combinations of 
blocked light-emitting area. TABLE III shows the testing 
accuracy of using individual features and their combinations. 
Though the testing accuracy is not very high, and using 
individual features is better than using feature combinations, 
we proposed blocking the light-emitting area to improve the 
inspection, as described in Section II.B. Accuracies of the 
features and their combinations of the blocked light-emitting 
area are shown in TABLE IV. We discovered that the 
individual features did not perform better than those extracted 
integrally, but the combinations of features outperform than 
using individual features extracted from integral or blocked, 
light-emitting area. Thus, blocking the L-region can improve 
the inspection accuracy of the combinative features. 

TABLE III. ACCURACY TEST USING INDIVIDUAL FEATURES AND THEIR 
COMBINATIONS OF THE INTERGRAL LIGHT-EMITTING AREA

L
mF L

msF L
sdF L

mdF L
eF L

mF + L
msF L

mF + L
eF

Testing 
accuracy 78% 76% 63% 40% 78% 63% 65% 

TABLE IV. ACCURACY OF THE FEATURES AND THEIR COMBINATIONS 
USING FEATURES OF THE BLOCKED LIGHT-EMITTING AREA

L
mF L

msF L
sdF L

mdF L
eF L

mF + L
msF L

mF + L
eF

Testing 
accuracy 76% 72% 43% -a 70% 90% 91% 

a Mean deviation was not tested due to the poor accuracy performance in test of integral light-emitting area. 

In features of the p-electrode, we also tested accuracies of 
the features and their combinations. TABLE V  shows accuracy 

 test of the features and their combinations in p-electrode 
inspection. In p-electrode, however, we found that using all 
combination of the features performs best. Thus, all features 
were used in the p-electrode inspection. 

TABLE V. ACCURACY TEST USING INDIVIDUAL FEATURES AND THEIR 
COMBINATIONS OF P-ELECTRODE

O
mF O

sdF O
areaF O

wdF O
mF + O

sdF + O
areaF + O

wsdF
Testing 

accuracy 80% 76% 78% 74% 91% 

IV. EXPERIMENTAL RESULTS

The system was implemented with Borland C++ Builder on 
Microsoft Widows XP operating system with Intel Pentium IV 
2.8GHz processor with 2GB RAM. The testing images are 
provided by the manufacturer in Taiwan. Figure 6 shows the 
mask operation for the light-emitting area and the p-electrode. 
According the results, we were able to inspect the light-
emitting area and the p-electrode, individually. For example, 
Figure7 (a) showed the results of the light-emitting area inspec- 

Figure 6. Mask operations. (a) applying Fig. 4(a) on Fig. 2(a) with results of 
Fig. 2(b); (b) applying Fig. 4(b) on Fig. 2(a) with results of Fig. 2(b). 

Figure 7. Ispecting results. (a) the result of the light-emitting area inspection 
using the extracted region in Fig. 6(a). (b) the result of the p-electrode 

inspection using the extracted regionin Fig. 6(b). The results are directly 
shown with the die detecting result on the original wafer image, Fig. 2(a). 

Figure 8. Result of the integral inspection of the proposed approach. (a) 
inspecting results of Fig. 2(a). (b) another inspecting results of the post-sawing 

wafer. The results are obtained with Twidth = Theight =5. The physical size of 
each die was 200 m×200 m, which is equivalent to a 40×40 pixel-area. 

1681



tion with the extracted light-emitting area in Fig. 6(a), where 
two defects of die crack in the light-emitting area. Similarly, 
Fig.7 (b) showed the results of the p-electrode inspection that 
were inspected with the extracted p-electrode in Fig. 6(b), 
where the die with a pilling-off electrode were outlined 
correctly. Figure 8 showed results of the integral inspection. 
The proposed approach can successfully inspect the defects 
with correct results.  Accuracy of the system was evaluated 
using the following equation: 

( ) NNNAccuracy TNTP +=  (17) 

where NTP was the number defective (positive) inspection 
results confirmed as defective by the engineer of the 
manufacturer; NTN was the number of normal (negative) 
inspection results confirmed as normal; and N was the total 
number of dies in the inspection. The average accuracy of the 
proposed approach was illustrated in Table VI. Since the 
defective results in appearance inspection were very few, the 
implementation integrated the appearance inspection together 
with the successive inspections. The accuracy was 90.7% in the 
p-electrode inspection. It was 91.5% in the light emitting 
inspection. The integral accuracy was 92.4%. The inspection 
system had an average inspection time of 8.78ms per die for the 
500 dies in our experiments. 

TABLE VI. ACCURACY OF THE DEFECT INSPECTION

Appearance + p-
electrode 

Appearance + light 
emitting area 

Integral (the 
proposed approach)

90.7% 91.5% 92.4%

V. CONCLUSION

Conventional LED wafer inspections are inefficient. 
Automatic inspection avoids human factors, and their 
corresponding costs. The proposed approach achieves 
automatic die inspection by locating dies with contextual-
Hopfield neural network [7], inspecting dies in different 
regions, and recording the inspection results in the die map. 
The die inspection proceeds from the coarse to the fine to 
reduce unnecessary redundant inspections. Appearance 
inspection uses the width and height of the die according to the 
die-locating results. P-electrode inspection uses simple statistic 
features enhanced by Otsu’s optimal threshold. Light-emitting 

area inspection uses dies with features of regions on the light-
emitting area for better light quality.  

Experimental results show the effectiveness of the scale-
wise inspection with an average time of 8.78ms per die. A short 
inspection time is necessary for a wafer that contains thousands 
of dies. However, a short inspection time leads to accuracy loss 
because simple features are used. Thus, to improve the 
accuracy of the proposed approach, researchers may consider 
using alterative simple but powerful features in the future. 
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