
A Fast Feature Extraction in Object Recognition
Using Parallel processing on CPU and GPU

Junchul Kim, Eunsoo Park, Xuenan Cui and
 Hakil Kim

School of Information Engineering,
 Inha University

253, Yonghyun-dong, Nam-ku, Incheon, Rep. Korea
E-mail: {jckim, espark, xncui, hikim}@vision.inha.ac.kr

William A. Gruver
School of Engineering Science,

Simon Fraser University
8888 University Dr., Burnaby, BC V5A1S6 Canada

E-mail: gruver@cs.sfu.ca

Abstract—Due to the advents of multi-core CPU and GPU,
various parallel processing techniques have been widely applied
to many application fields including computer vision. This paper
presents a parallel processing technique for realtime feature
extraction in object recognition by autonomous mobile robots,
which utilizes both CPU and GPU by combining OpenMP, SSE
(Streaming SIMD Extension) and CUDA programming. Firstly,
the algorithms and codes for feature extraction are optimized and
implemented in parallel processing. After the parallel algorithms
are assured to maintain the same level of performance, the
process for extracting key points and obtaining dominant
orientation with respect to the key points is parallelized.
Following the extraction is the construction of a parallel
descriptor via SSE instructions. Finally, the GPU version of SIFT
is also implemented using CUDA. The experiments have shown
that the CPU version of SIFT is almost five times faster than the
original SIFT while maintaining robust performance. Further,
the GPU-Parallel descriptor achieves acceleration up to five times
higher than the CPU-Parallel descriptor at a cost of a bit lower
performance.

Keywords—Parallel processing, OpenMP, SSE, CUDA, Feature
Extraction, SIFT, SURF

I. INTRODUCTION

The process of recognizing objects can be divided into the
following three stages. In the first stage, the necessary features
are represented via global or local information. In the second
stage, an optimal decision rule for classifying the data is
designed on the basis of the extracted features [1]. The third
stage consists of matching and recognizing the new data. To
enhance performance, representation, learning, and recognition
processes have been treated in an integrated fashion rather than
independently [2-5].

Among feature-based approaches, the Scale Invariant
Feature Transform [2] algorithm has been demonstrated to have
good performance with respect to variations in the size,
rotation, and translation of the image. Mikolajczyk [7, 8] has
shown that methods based on the SIFT algorithm can also
achieve robust performance. Furthermore, to enhance
performance and accelerate processing, various algorithms
have been proposed, including PCA-SIFT [3] and SURF
(Speed up Robust Features) [4]. Because constructing and
matching descriptors in these SIFT-based methods involves a
higher-dimensional descriptor, they are very time-consuming
and difficult to apply for realtime processing. Therefore, a
stable high-speed algorithm is needed [8] to achieve realtime
recognition for mobile robots.

This paper presents a parallel processing method using
OpenMP [9], SSE (Streaming SIMD Extension)[11] and
CUDA (Compute Unified Device Architecture) programming
[13] to achieve fast feature extraction in object recognition with
autonomous mobile robots. The proposed extractor on CPU is a
derivative from the Hessian [6] that has been shown to have
stable performance. Initially, the scale space is configured in
parallel for detecting candidate points, among which unstable
features are removed by box filtering which is also
implemented in a parallel scheme by partitioning the input
image. For the stable candidate points, which we call key
points, the orientation of areas around each key point is
computed using the Haar wavelet, which is also implemented
via parallel processing by simultaneously treating multiple key
points. For extraction of the descriptor, the Haar wavelet is
applied to sub-regions in the square region, and the summation
of the Haar wavelet responses forms a set of entries in the
descriptor. This latter process requires the realignment of the
image data so that it is suitable for SIMD instructions with 128-
bit registers. The proposed extractor on GPU is similar to the
CPU method but it is faster due to the usage of multi-
processing.

II. PARALLEL PROCESSING USING OPENMP,SSE AND
CUDA

A. Parallel processing configuration using OpenMP
OpenMP is an API (Application Program Interface) used to

generate multiple threads for parallel programming in a public,
shared memory environment. It consists of three components:
compiler directives, a run-time library and environmental
variables [9]. Inserting the directive into a program can be
processed in parallel into a loop, but the OpenMP compiler
does not automatically support analysis of all issues and
parallelization. Synchronization, data dependency, and other
issues caused by parallelization should be directly handled by
pre-analysis of the sequential program [10].

B. Parallel processing configuration using SSE
The MMX instruction set was initially introduced in the

Intel Pentium II processor generation, and then SSE, SSE2,
SSE3, and SSSE3 (Supplemental SSE3) [11, 12] instruction
sets which were extended versions of MMX as provided in the
Intel Pentium 4 and Core 2 Duo processor generations. MMX
instructions can process eight 8-bit integers at the same time
via a 64-bit register, and SSE can process four SIMD 32-bit
floating point instructions via a 128-bit register, as shown in
Fig. 1. SSE2 includes SIMD instructions that can process

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3942

sixteen 8-bit integer data types and can handle two double-
precision data types at the same time. In the 90 nm processor
technology, the SSE3 instruction set includes 13 additional
instructions for SSE and SSE2 to enhance the capabilities of
x87-floating point processors. In addition to enhancing the
functions of SIMD integer arithmetic, SSSE3 includes 32
additional instructions and SSE4 includes 54 additional
instructions that were introduced in the Intel 64 bit processor
via 45 nm technologies.

Figure 1. The data construction of each instruction.

These SIMD instructions can be executed in Inline
Assembler, Automatic Vectorization, or Intrinsic functions [16,
17]. Inline Assembler directly uses SSE instructions to
accelerate processing, but it is difficult to program and
unfeasible in practice due to structural dependency. Automatic
Vectorization of the Intel C/C++ compiler improves the
performance via a loop, which is automatically implemented by
SSE and is simple from the perspective of programming.
Meanwhile, Intrinsic functions lie somewhere between Inline
Assembler and Auto Vectorization, and enable easier
utilization of SSE instructions that are supported in Intel. The
use of intrinsic functions is suitable for all Intel processors that
support the SIMD compiler, and can achieve a performance
comparable to Assembler. Therefore, the proposed method
utilizes intrinsic functions for more effective high-speed object
recognition.

C. Parallel processing configuration using CUDA
GPU is a special-purpose processing unit that is designed to

resolve the bottlenecks caused by Graphics applications. It has
been extensively studied in the field of graphics and has been
used as a general-purpose processing device due to its higher
transistor densities and SIMD parallel hardware structure [13].
This technology is generally called GP-GPU (General Purpose
Computation on GPUs) and is used to assure realtime
performance in applications related to video encoding or
computer vision that need to handle large amounts of data [14,
15].

CUDA is designed for general-purpose computing on the
GPU hardware and software architecture using C. NVIDIA
created and distributed a development toolkit of drivers and
software that can be used in high level graphical devices such
as Geforce 8, Quadro NVS 130M and Tesla. CUDA considered
GPU hardware as an independent platform that can provide a
programming environment and minimize the need for
understanding the graphics pipeline. Also, the CPU and the
GPU can be used for developing heterogeneous systems [13].

Figure 2. Heterogeneous programming model with CUDA [13].

The process of feature extraction using CUDA is performed
by the model shown in Fig. 2. When the kernel function to be
executed with CUDA is ready, a grid composed of one block
must be configured. The block generates a large number of
threads to share data with other threads and then parallel
processing can be performed. The kernel will be performed by
the thread that depends on the configuration that can affect the
execution speed.

III. PARALLEL FEATURE EXTRACTION

When compared to Harris-Laplace feature extraction, the
Hessian-Laplace method is similar to DoG (Difference of
Gaussian) but it is simpler due to utilization of the Gaussian
filtered image [2] and also has strong performance. We extract
key points based on the Hessian and ensure stability by
applying a box filter [4]. First, the process of extracting
features involves selecting candidate key-points based on a
Hessian matrix in the scale space and then a Taylor expansion
is utilized to obtain a more accurate location.

A. Parallel scale space configuration
For extracting candidate key-points using the Hessian

determinant of the image, a scale space image),,(σyxL is
computed by the convolution of a variable-scale Gaussian

),,(σyxG over the input image

),(*),,(),,(yxIyxGyxL σσ = (1)
where),,(σyxL can be regarded as a Gaussian-blurred image
with a different level of variance. This operation is invariant
with respect to scale changes of the image and is achieved by
searching for stable features across all possible scales.

Data dependency in the scale space is reduced by
refactoring code and relocating loop invariant code for
parallelization. Fig. 3 shows the configuration of parallel scale
space images. Given the number of variable scales σ1, …, σn
for Gaussian operation, the same number of threads are
required for constructing individual pyramids of m octaves
simultaneously. The initial image in each pyramid is smoothed

3943

with a different scale of Gaussian and subsequently sub-
sampled in parallel. While the values of n and m are
independent, if at least one of them increases, a trade-off
between the efficiency and computational time is required [2].
Moreover, the number of threads can be larger than the number
of processors, however, in that case, unassigned threads must
wait for the cores to complete the assigned threads which
increases overhead. In our experiments, the number of
pyramids n is four and m is also four.

Figure 3. Configuration of parallel scale space images.

B. Parallel detection of key points
In the scale space images, the Hessian matrix),,(σyxH is

computed from the second-order derivative of the Gaussian
blurred image.

 =H
),,(),,(

),,(),,(
),,(

σσ
σσ

σ
yxLyxL

yxLyxL
yx

yyxy

xyxx (2)

where Lxy is the second-order derivative of the Gaussian
image, horizontally with respect to the x-direction and
vertically with respect to the y-direction. In general, Gaussian
blurring is optimal for scale-space analysis. In practice, the
Gaussian filter is discretized and cropped, and then a box filter
as designed in SURF [4] is applied to the resulting image after
the second derivative in order to reduce the number of false
candidate points.

The 9×9 box filters in Fig. 4(a) are approximations of the
LoG (Laplacian of Gaussian) with σ = 1.2. They represent the
lowest scale (i.e., highest spatial resolution) for computing the
blob response maps. The size of the box filter increases
according to the octave of the input image. Because the
scalability of the Gaussian and the box filter sizes are fixed,
filtered responses denoted as Dxx, Dyy and Dxy can be
approximated in advance.

For the input image in Fig. 4, the number of octaves
represents the order in one pyramid, and the pyramid number
also indicates the order of the space that is shown in Fig. 3. The
process of approximation is split into k threads and computed
in parallel. As the number of threads k increases, the overhead
time also increases because the determinant should be

calculated after all threads have been completed. In this
experiment, k is set to four.

 (a) (b)

Figure 4. Parallel configuration of key point detection

These approximated responses are applied in all of the scale
space images and simultaneously processed in individual
threads by inserting the directive in the loop. They can be
processed with a very low computational cost using the integral
image = <

=
<
=

xi
i

yj
js jiIyxI 0 0),(),(. Because the integral image

only needs four additional calculations the calculation time is
independent of the filter size. The weights of the box filter are
applied uniformly for effective calculation, however, the
Hessian determinants are tuned to satisfy the equation

 θ=
FxyFxx

FxxFxy

DL

DL

)9()2.1(

)9()2.1(
 (3)

to achieve balance at each key point [4], where | | is the
Frobenius norm. The Hessian determinant is computed as

 2)()(xyyyxx DDDDet ×−= θH (4)
If the determinant exceeds a specified threshold, the
corresponding point is determined as a candidate and stored. In
our experiments the number of key points varies by adjusting
the value of the threshold.

The candidate key points extracted from previous steps still
include unstable points. Therefore, each candidate key point
must be further determined whether it is stable or not stable. If
its determinant is the maximum among the 3×3 areas centered
on the point in the three different neighborhood images, then
that point is a stable point and stored. After this non-maximum
suppression, stored points are interpolated using a Taylor series
that fits the three-dimensional model [2]. These two steps are
also reallocated into one loop to achieve optimization.

C. Construction of descriptors using SSE instructions
1) Parallel extraction of orientation

In order to achieve robustness with respect to rotation of
objects in the images, a dominant orientation is needed with
respect to each key point that will be used to construct the
descriptor. To obtain the orientation, Haar wavelet responses in
the x and y directions are calculated as shown in Fig. 5(a),
where the size of the wavelet is 4s, the calculated area is
circular with a radius of 6s around the key point, and s is the

3944

scale of each key point in this step. This process again uses the
integral image and is split into individual threads in a manner
similar to box filtering. Thus, the wavelet response is calculated
using only six additional operations and is performed
simultaneously in different circular areas using OpenMP.

 (a) (b)

Figure 5. Procedure to obtain the orientation and ROI

After the wavelet responses are obtained they are
represented as vectors. All responses within the rotating
orientation window are summed to generate an orientation
histogram. The histogram has 36 bins covering 360°. The
longest vector in the orientation histogram corresponds to the
dominant orientation of the local area. The arrows in Fig. 5 (b)
show the dominant orientation at each stored key point.

2) Parallel construction of descriptors using SSE
instructions

To construct the descriptor, we construct a square ROI
which is rotated with respect to the orientation at each key
point as shown Fig. 5 (b). The ROI area of 16s×16s is
partitioned into 16 sub-regions, each having a 4s×4s window.
The size of the ROI can be empirically determined, however,
16s is sufficient for SSE instructions because the process can
be accelerated when the data are aligned to be multiples of 16.
Then, the wavelet responses (horizontal and vertical responses,
dx and dy) are computed in the x and y directions by the same
means as extraction of the orientation.

 For each sub-region, the directional responses dx and dy
are summed into Σdx and Σdy, respectively, and the sum of
absolute values of the responses is also obtained. Therefore, a
descriptor is constructed at each sub-region as
[Σdx, Σdy, Σ|dx|, Σ|dx|] , and the descriptor of each ROI consists
of 16 vectors from 16 sub-regions. Hence, the length of the
descriptor for each ROI is 64. All these processes are
implemented by SSE instructions over 128-bit registers as
shown in Fig. 6.

Initially, in order to compute the sum of responses, dx of
the first sub-region in an ROI is loaded via _mm_load_si128
and then the absolute value |dx| is computed via
_mm_abs_epi32. Basically, since the data type of the wavelet
response is floating point (16 bits), four double-precision
floating point (32 bits) data are loaded in a 128-bit register at
the same time. As shown in Fig. 6 after all dx values are loaded
in four registers, each column is summed in parallel via the
_mm_add_epi32 function and stored in t. The four temporary
results in t are summed to Sx through the first half of the

register Tx. At the same time, the sums of |dx|, dy, and |dy| are
computed in parallel and stored in the same register Sxy along
with others. Finally, the register Sxy represents the descriptor of
a sub-region.

Figure 6. Parallel process for constructing a descriptor for a sub-region.

After 16 descriptors for 16 sub-regions in a ROI are
obtained, the descriptor vector of 64 dimensions is normalized
to achieve invariance to contrast [4]. Fig. 7 and 8 describe the
parallel processes of computing the l2-norm of an ROI
descriptor vector and dividing the ROI descriptor vector by the

l2-norm of the vector ,1
2= =

n
k kxx i.e.,],...,,[21 nxxx=x

where n = 64. To compute the l2-norm, the sum of the squared
individual components is needed.

Figure 7. Parallel process for computing the l2-norm at each ROI area.

The squared individual components can be obtained via
_mm_mul_ps. This process is iterated for computing M1, M2,
... Mn, as shown in Fig. 7, and then used to determine the sum
for the components []dydxdydx ;;; of the ROI. In
order to generate four l2-norms of the ROI area in parallel, a
shuffle operation _mm_shuffle_ps, an addition operation
_mm_add_epi32, a shuffle operation _mm_shuffle_ps, an
addition operation _mm_add_epi32, and finally a square-root
operation are applied in series to [Σdx, Σdy, Σ|dx|, Σ|dx|].

3945

In Fig. 8, four l2-norms are used to construct a unit vector
by dividing 4-dimensional descriptors of n sub-regions in
parallel with _mm_div_ps and _mm_mul_ps. The final result
represents the normalized 64-dimensional descriptor vector for
each key point. These procedures are iterated for every ROI
area corresponding to each key point as shown in Fig. 5(b).
After completion, the descriptor is stored as a register type by
_mm_store_ps.

Figure 8. Parallel process for normalizing the descriptor for each key point.

IV. PARALLEL FEATURE EXTRACTION ON GPU
The first step in constructing the descriptor based on SIFT

is to upload the input image onto the GPU as shown in Fig. 9.
The input image on GPU is down-sampled and simultaneously
filtered by Gaussian kernel that is allocated in the constant
memory. The number of block and thread at each step is
different depending on the sizes of the filter and the input
image. In the first step, 32 threads in 5×40 blocks were used
for an 800×640 image. The blurred image by each thread is
allocated to texture memory for accelerating the access speed
in the last step of descriptor construction.

Figure 9. Parallel process for constructing a descriptor using CUDA.

Each pair of adjacent blurred images is sent to blocks of the
16×16 threads in 50×40 grid, and the difference image at
different levels of Gaussian standard deviation is computed to
generate 4 difference images. The difference images are then
divided into two threesomes: the first, the second and the third
in one and the second, the third and the fourth in the other. A

3×3 window is shifted pixel by pixel on the middle image of
each threesome and if the value of the pixel in the center of the
window is maximum or minimum comparing to all pixels
within the window in the three images of the threesome, the
pixel is considered as a candidate point. For comparison within
each window, temporary variables are allocated to the shared
memory so that the execution speed can be increased by
avoiding redundant operations. Since selected candidate points
still include unstable points; those points are removed by the
fourth step as shown in Fig. 9. The number of blocks depends
on the number of candidate points for balance between each
thread. That is, the grid is divided into number-of-candidate-
points × 32 blocks and 32 threads are assigned each block to
extract the key points.

After extracting the key points, the histogram of orientation
is obtained using the variation of gradient around the key points
and the maximum angle in the histogram is stored as the
elements of that point’s angle. The process of finding the
maximum value through the histogram by comparison with the
shared value in the ROI area is similar to the third stage. Based
on the final orientation, the rotated area is constructed within
the blurred image which is on the texture memory. The
descriptor is constructed by summing the gradient in eight
directions. The number of block is set to the number of key
points in order to simplify the operation and the thread number
in each block is set to 16.

V. EXPERIMENTAL RESULTS

A performance comparison has been conducted between the
proposed and existing methods based on the CPU and GPU.
The detector and descriptor are evaluated with respect to an
800×640 graffiti [7] image using an Intel Core 2 Duo 2.66 GHz
processor in a Windows XP operating system and Nvidia
Geforce 8800 GT graphics card. Fig. 10 shows a comparison of
computational time in key point detection for Harris-Laplace,
Hessian-Laplace, Harris-Affine, Hessian-Affine, and the
proposed Parallel-Hessian with respect to the image size. In
this experiment, the Parallel-Hessian is about 2.5 times faster
than Hessian-Laplace which is the fastest among the other
methods.

Figure 10. Comparison of the detection time with respect to variation of image-size.

We also compared the performance of the proposed parallel
descriptor against SIFT [6], PCA-SIFT [9] and SURF [10] that
are based on a Hessian detector with the same conditions. The
processing time for descriptor construction includes the key
point extraction. As shown in Fig. 11, we found that the
Parallel descriptor on the CPU via OpenMP and SSE is 4.5

3946

times faster than the CPU descriptors. The GPU-parallel
method using CUDA outperformed the other CPU methods as
well as CPU-parallel method; it achieves acceleration up to 5
times and can extract 1100 features at an average frame rate of
15 Hz.

Figure 11. Comparison of descriptor time with respect to variation of feature-count.

In addition, the performance of the proposed methods was
evaluated in terms of the recall versus 1-precision as
represented in Mikolajczyk [6, 7]. An ideal descriptor provides
a recall of one for any precision. However, in practice
descriptors are affected by several factors so that the recall
slowly increases as the 1-precision is increased. Fig. 12 shows
the corresponding curves for various descriptors and the
proposed Parallel descriptor. The performance of the proposed
CPU-Parallel method is comparable to other descriptors, but
CUDA-SIFT has decreased performance caused by trade-off in
speed.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

re
ca

ll
%

1- precision

ORI-SIFT
SURF-128
CUDA-SIFT
PCA-SIFT
CPU-Parallel

Figure 12. Performance of descriptor respect to recall versus 1-precision
curve.

VI. CONCLUSIONS

This paper has presented new parallel processing schemes
using OpenMP and SSE and CUDA for fast feature extraction
in object recognition with autonomous mobile robots. A
parallel descriptor is achieved by analyzing, optimizing, and
refactoring data from the original algorithms to be suitable for
parallel processing. The proposed detector and descriptor are
compared with other methods. Our proposed GPU-parallel
method is shown to be faster than other methods including

CPU-parallel method, but the performance is somewhat less.
The CPU-parallel method using OpenMP and SSE, however, is
slower than the CUDA-based method but faster than the
original SIFT while maintaining robust performance.

The proposed fast feature extraction method represents an
important advantage for recognition of complex and dynamic
environments in realtime and it can be applied to various image
processing applications. However, the proposed GPU method
can result in additional overhead for searching and matching.

ACKNOWLEDGMENT

This work was supported by the Korea Science and
Engineering Foundation (KOSEF) under grant NO.
3148201068

REFERENCES

[1] S. Ullman, High-level Vision-Object Recognition and Visual Cognition.
MIT Press, 2000.

[2] D. G. Lowe, Distinctive image features from scale invariant keypoints,
International Journal of Computer Vision, vol. 60, no. 2, 2004, pp91-
110.

[3] Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation
for local image descriptors,” Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2004, pp 511-517.

[4] H. Bay, Y. Tuytelaars, and G. L. Van, “SURF: Speeded up robust
features,” Computer Vision and Image Understanding, vol. 110, 2008,
pp 346-359.

[5] S. Cagnoni, F. Bergenti, M. Mordonini and G. Adorni, “Evolving binary
classifiers through Parallel computation of multiple fitness cases,” IEEE
Trans. on Systems, Man, and Cybernetics, Part B, vol. 35, no. 3, 2005.

[6] K. Mikolajczyk, et al., “A comparison of affine region detectors,”
International Journal of Computer Vision, vol. 65, no. 1, 2005, pp 43-
72.

[7] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
2005, pp 1615-1630.

[8] C. H. Wu, S. J. Horng, “Run-length chain coding and scalable
computation of a shape's moments using reconfigurable optical buses,”
IEEE Trans. on Systems, Man, and Cybernetics, Part B, vol. 34 (2),
2005.

[9] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R.
Menon, Parallel Programming in OpenMP, Morgan Kaufmann, 2005.

[10] C. Nicolescu and P. Jonker, “A data and task parallel image processing
environment,” Parallel Computing, vol. 28, 2005, pp 945-965.

[11] Intel®64 and IA-32 Architectures Software Developer's Manual, Intel
Corporation, vol 2A,B, Instruction Set Reference., 2007,
http://www.intel.com

[12] S. Asadollah, B. Juurlink, and S. Vassiliadis, “Performance comparison
of SIMD implementations of the discrete wavelet transform,” Proc. of
the 16th IEEE International Conference on Application-Specific
Systems, Architecture Processors, 2005, pp 393-398.

[13] NVIDIA CUDA, Programming Guide, v2.1, Oct.2008,
http://www.nvidia.com/object/cuda_home.html

[14] J. D. Owens, D. Luebke, N. govindaraju, M. Harris, J. Kruuger, A.E.
Lefohn and T. J. Purcell, “ A Survey of General-Purpose Computation
on Graphics Hardware,” In Eurographics 2005, State of the Art Reports,
2005, pp. 21-51.

[15] N. S. Sudipta, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Feature
tracking and matching in video using programmable graphics hardware,”
Machine Vision and Applications, 2007.

3947

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

