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Abstract—The contribution of this paper is two-fold. First,
incremental feature selection based on correlation ranking (CR)
is proposed for classification problems. Second, we develop online
training mode using the random forests (RF) algorithm, then
evaluate the performance of the combination based on the NIPS
2003 Feature Selection Challenge dataset. Results show that
our approach achieves performance comparable to others batch
learning algorithms, including RF.

Index Terms—ensemble learning, on-line learning, feature
selection, random forests, NIPS 2003.

I. INTRODUCTION

Ensemble learning algorithms are useful in handling
large feature1 spaces even when only a small number of
features is actually be useful. Randomization-based ensemble
methods such as bagging [1], boosting [2], random forests

(RF) [3], and their variants generate extra information
enabling the importance of individual explanatory variables
to be evaluated and substantially improving performance over
single based classifiers. Most of the current ensemble learning
approaches, however, work off-line or in “pseudo-on-line”
batch processing, i.e., collecting a set of training examples,
then running off-line ensemble algorithms. This makes
ensemble learning inapplicable for many real-life machine
learning problems more naturally viewed on-line than batch
learning problems. In this paper, we use Breiman’s random
forest algorithm (RF) [3], discusses several techniques of
machine learning in terms of their applicability towards
on-line RF where the (random) feature subsets are generated
based on two different correlation-based feature rankers (CR).
We developed a new conditional permutation scheme for
the computation of variable importance measure, where a
considerable reduction in search is achieved, while contributing
to the tradeoff between marginally lower performance and a
smaller set of features necessary for learning base classifiers
(here, growing decision trees to a certain depth). Our study
provides similar performance to offline evaluation of other
benchmark learners, such as standard RF, Adaboost, support
vector machines (SVM), and K-nearest neighbors (K-NN),
while expanding on our previous results [4], [5] as follows:

1) NIPS 2003 Feature Selection Challenge dataset added to an
analysis. This new results should greatly interest the feature
selection benchmark community.

1Feature (attribute) selection, feature sub-set selection and variable selection
although are distinct but often used interchangeably in literature.

TABLE I
CHARACTERIZATION OF OUR APPROACHES TO FEATURE SELECTION IN
TERMS OF HEURISTIC SEARCH THROUGH THE SPACE OF FEATURE SETS

Approach Starting Search Halting Induction
CorrFS None Greedy Consistency RF
CorrBE All Greedy Consistency RF

2) Statistical analysis includes the Area Under the ROC Curve
(AUC) and the balanced error rate (BER) are added. These
extensions have altered some previous conclusions.

3) Statistical test results are now included in our evaluations.
4) We report the number of selected features we used compared

to other methods.

A. Our Approach

Our approach combines variable selection and variable
ranking, which requires two components- a search algorithm
that explores the combinatorial space of feature subsets, and
one or more criterion functions that evaluate the quality of
individual subsets based directly on the predictive model.
Features are ranked based on correlation ranking (CR). The
characterization of our approach is summarized in Table 1.
The induction algorithm, RF evaluates the quality of selected
feature subsets. As a search algorithm, we turn to incremental

hill climbing algorithm in which features are greedily added in
a “forward selection” step (FS), and removed in a “backward
elimination” step (BE). We resort to an implementation that
combines CR with FS and BE. We call this implementation
CorrFS and CorrBE respectively. The motivation for use of
this method specifically with ensembles and RF in particular
stem from the inherent fast training benefit of analyzing only a
few possible features. Informally, the goal of on-line RF is to
minimize prediction errors and relieve the classifier of memory
storage required in batch mode.

II. BACKGROUND AND OVERVIEW

The section that follow review review standard RF and how
it estimates the importance of variables.

A. Variable Sub-selection

Variable sub-selection is guided by two general function
evaluations: filters and wrappers [6]. Both distinguish between
variable selection and learning, and a hybrid model has been
proposed to combine their advantages [7], [8]. In another
implementation, variable selection is viewed as integral process
of learning [9], [10], searching through space, and generating
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potential variables based on their relevance to the classification
problem. Many variable selection algorithms now include
variable ranking for selection because of its simplicity and
scalability.

B. Random Forests

Breiman’s random forests (RF) is a tree-based
ensemble prediction for high-dimensional classification
and regression [3] that generates base decision trees using
two sources of randomness bootstrap replication of instances
for each tree (bagging [1]) and sampling of random subset θ
of features at each node.

Definition 1 (Random Forest) For the k-th tree, a random
vector θk is generated, independent of the past random vectors
θ1, . . . , θk−1, but with the same distribution, and a tree is
grown using training set T and θk, resulting in a classifier
h (x, θk).

θ is used to select a subset of features. m variables are
randomly sampled at each interior node using the best split
with the highest Gini index. Each tree casts a unit vote for the
most popular class at input random vector x with probability
estimate p̂ = p̂(y = 1/x). The forest is an ensemble of
tree-generated classifiers h (x, θk), k = 1, . . . , n. For the n-
th sample in data, RF computes the margin (mr) at the end
of a run, which is the proportion of votes for its true class
minus the maximum of the proportion of votes for all other
classes. The larger the margin, the greater the confidence in
the classification.

mr(X, Y ) =

Pθ(h(x, θ) = Y ) − max
j �=Y

Pθ(h(x, θ) = j) (1)

C. RF for Variable importance

The RF predictor naturally leads to numerical variable
importance measures as part of its construction. Based on
permutation accuracy and impurity decrease, the RF measures
variable importance by randomly permuting variable m values
for out-of-bag2 (OOB) cases for tree k- if variable m is
important in the classification, prediction accuracy should
decrease. We can also consider reduction accumulated at nodes
according to the criteria used at splits- an idea from the original
CART [11] formulation. Variable importance measures are
used to conduct variable selection.

D. Out-of-bag (OOB) Error Estimation

According to Breiman a forest’s error rate depends on
the correlation between any two trees and the strength of
individual tree in the forest. One can arrive at OOB prediction
as follows: for a case in original data, predict the outcome by
a plurality vote using only those trees not included in their
corresponding bootstrap sample. Contrasting OOB predictions

2There is on average I/e ≈ 36.8 of instances not taking part in construction
of the tree, provides a good estimate of the generalization error (without having
to do cross-validation).
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Fig. 1. CR components. Features selected by CR are passed to the RF
algorithm for induction and prediction.

with training set outcomes yield unbiased estimate of the
prediction error rate for that tree- and, subsequently, for the
entire forest- referred to as the OOB error rate. Despite
apparent RF success [12], no potential work has been done on
extending it for on-line learning, since it is difficult to design an
incremental solution for importance variables. Our outcomes
although simple, may provide some inspiration.

III. PROPOSED METHODS

Inspired by batch learning RF success, in this section we
have devised an on-line scheme for the integration of incre-
mental selection of variable importance. Before proceeding
with our presentation we need to establish some notations.
Given n instances of different training set T consisting of
(xi, yi) pairs, xi values represent feature vectors and yi the
value to be predicted. In classification problem yi, i = 1, . . . , c
(c is the number of class values) represents one or more
classes, several n bootstrap samples (T1, T2, . . . , Tn) are drawn
from T , and an unpruned decision tree is constructed by first
choosing important attribute f(1 ≤ f ≤ m) from elements
of {x1, x2, . . . , xm} (m is the number of variables) according
to evaluation criterion. While the instances may belong to a
well defined partition of feature space into classes, we do
not receive direct supervision in the form of class labels. We
get correlation ranking feedback, Instead. Variables are rank
based on importance scores ωixi (by convention a high score
is indicative for a valuable (relevant) feature). We write CRj

for the correlation rank of feature j and Pe for the probability
of error estimate (irrelevance).

A. Correlation-Based Feature Ranking

Unlike filter methods, we propose ranking criteria taking
into account interaction between features using Correlation

Ranking (CR) (Fig.1) We hypothesize that relevance feature
sets [6] contain features highly correlated with or predictive
of class, yet mutually uncorrelated with each other.

Definition 2 (Relevant Feature) A feature Fi is said to
be relevant iff there exists some Fi and c for which

SMC 2009

3161



P (Fi = fi) > 0 such that P (C = c|Fi = fi) �= P (C = c)

At each step and incrementally, we estimate variable
importance and, for these criteria, we have tested different
search-space methods such as sequential forward feature
selection (FS) and recursive backward feature elimination
(BE), boiling down variable ranking problem to find a suitable
measure of correlation between variables:

CRj =
| (xj − μj)

T (y − μy) |
|xj ||y| , j = 1, 2, . . . , DFeat (2)

where CRj is a rank of feature j, xj is feature vector j, y is
the class label vector, μj and μy are the expectation values of
feature j and class vector y respectively, and DFeat is feature
space dimensionality.
We first define importance score ωixi from bootstrap samples
by permutation of T : T̀ = {xi1, . . . , xij , . . . , xin} with
ωxij ≥ ωxij+1; J = 1, . . . , n−1. Using an efficient algorithm,
we then maximize total importance scores and minimize total
similarity scores of a set of features.

max
∑

i

ωixi

min
∑

i

∑
j �=1

ei,jxixj

s.t. xi ∈ {0, 1} i = 1, . . . , m∑
i

xi = t (3)

t denotes the number of selected features, xi = 1 (or 0)
indicates that feature fi is selected (or not), ωi denotes the
importance score of feature fi, and ei,j denotes the error
estimate (irrelevance) between feature fi and feature fj . We
let ei,j = ej,i. Perfectly correlated variables are truly irrelevant
because adding them provides no additional information. The
CR algorithm is shown in Algorithm 1. The first variable
selected is the variable with the smallest probability of error
(Pe). The next selected produces the minimum weighted sum
of Pe, and average correlation rank (ACR), etc. ACR is the
mean of correlation ranking scores of the candidate variable
with variables selected previously at that point. We would
ordinarily continue the process until the evaluation function no
longer improves, but at certain points, the change in function
score is very small, because of that, in our implementation
a required number of features (M) is used as the stopping
criterion. In experiments, we consider ω1 to be 0.1 and ω2 to
be 0.9.
Estimate for n samples is:

CRj =
∑n

k=1(xk,i − f̄i)(yk − ȳ)√∑n
k=1(fk,i − f̄i)2

∑n
k=1(yk − ȳ)2

(4)

B. Incremental Variable Selection

Our incremental feature selection implementation performs
the same sort of incremental hill-climbing search for generating
a concept hierarchy known as sequential selection, which may

Algorithm 1 Correlation Ranking (CR)
1: Given Pe + ACR (N, M,ω1, ω2)
2: T = φ
3: Find the feature with minimum Pe and append it to T
4: for i = 1, 2, · · · , M − 1 do
5: Find the next feature with minimum ω1(pe)+ω2(ACR)
6: Append it to T
7: end for
8: return T

be either forward (FS) or backward (BE). Note that features
arrive in stages after being correlation-ranked from the training
data. The CorrFS algorithm (Algorithm 2) starts with no
variables F0 = φ, then during each run m adds a new set f` of
features. The set of all features at stage m is denoted by Fm,
where Fm is the union of features having just arrived with the
set of features selected at stage m−1 at each step and greedily
adding one that enhances evaluation and decreases error most,
until no further addition significantly decreases error.

Fm = Fm−1 ∪ {f`} , (5)

where

f` = arg max
Fm−1∩{f`}=φ

Q (Fm−1 ∪ {f`}) (6)

Algorithm 2 Correlation Forward Selection (CorrFS)
1: Calculate variable ranking F (0)
2: LET feature f(0) = φ; error (0) = +∞
3: LET feature subset f(0) = all
4: for m = 1, 2, · · · , the number of all features in random

subset do
5: LET f(m) = f(m− 1)∪ the m-th best feature in F (0)
6: Perform a training with f(m) to obtain error rate

error(m)
7: end for
8: IF error(m) > error(m − 1) THEN
9: terminate feature select and

10: RETURN f(m − 1)
11: NEXT m

On the other hand CorrBE algorithm (Algorithm 3) starts
with all variables F0 = F and removes f` from F0 the next
worse ranked feature and trains an induction algorithm with
feature set F0 − {f`}, and F1 = F0 − {fmax}. In the next
round, the algorithm tests the feature subset F1 − {f }̀ for
each of the remaining features f` ∈ F1 and removes feature
fmax that minimizes the error of the resulting classifier to
produce F2 = F1 − {fmax}. This is repeated until a local
minimum of classifier error is reached- any further removal
increases the error significantly- or some other stop condition
is met. In practice, removing a feature may only negligibly and
negatively impact on performance, so backward elimination
become a tradeoff between marginally lower performance and
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a smaller set of features, indicating the need for some sort of
regularization. Following [6], we added a penalty c = 0.001
per feature- or equivalently, the zero-norm of the weight
vector- to force the algorithm to favor smaller subsets.

Fm = Fm−1\ {f`} , (7)

where

f` = arg max
Fm−1\{f`}�=φ

Q (Fm−1 ∪ {f`}) (8)

Algorithm 3 Backward Elimination (CorrBE)
1: Calculate variable ranking F (0)
2: LET error(0) = average error rate;
3: LET feature subset f(0) = all
4: for m = 1, 2, · · · , the number of all features do
5: REPEAT
6: Let f(m) = f(m−1) - the next worst feature in F (m−

1),
7: Perform a training cycle with f(m), calculate ranking

F
8: UNTIL error(m) ≤ error(m−1) OR no more next worst

feature
9: IF no more next worst feature THEN stop feature

selection
10: end for
11: RETURN f(m − 1)
12: LET F (m) = F
13: NEXT f

C. On-line RF with Incremental Feature Selection

To obtain an on-line algorithm, each of the steps described
in the standard RF must be on-line, where the current classifier
is updated whenever a new sample arrives (Figure 2). In
particular on-line RF works as follows: Based on feature
ranking, we develop a new conditional permutation scheme
for the computation of variable importance measure. Resulting
incremental variable importance reflects the true impact of
each predictor variable more reliably than the original marginal
approach. According to feature ranking results, different yet
random feature subsets are used as new feature spaces for
learning diverse base classifiers (decision trees). Fixed set
tree K is initialized, then individual trees in RF are in-
crementally generated by specifically selected subsets from
new feature spaces. Unlike off-line RFs where the root node
always represents the class in on-line mode, for each training
sample, the tree adapts the decision at each intermediate node
(nonterminal) from leaf node response characterized by vector
(wi, θi) with ‖wi‖ = 1. With the root node numbered 1, child
nodes 2i and 2i + 1 of node i are activated as follows:

u2i = ui.f(w
′
ix + θi) (9)

u2i+1 = ui.f(−w
′
ix + θi) (10)

where x is input data vectors, ui represents of node i activation,
and f(.) is chosen as a sigmoidal function. Considering a
sigmoidal activation function f(.), the sum of all leaf node
activation is always unity, provided that the root node has unit
activation.

New feature space based on our 
online incremental feature selection

Bootstrapped samples

Online SampleTwo class

)1)1(( =u
),( 11 θω

Grow tree:
-Assign tree depth.

Majority votes:
-
for 

Output:
-Update base learner

∑= votesxk )(μ
ckk ,...,1, =ω

),( 22 θω

))2((u )(x

Fig. 2. On-line forest. Individual intermediate nodes accept input pattern
vector x as input, and activates its two child nodes differentially based on
the embedded sigmoidal function defined by its parameters (w, θ). Root node
activation u(1) is always unity.

D. Performance of On-line RF

There are two parameters controlling the learning classi-
fication process: The depth of the tree, and the least node.
It is not clear how to select the depth of the on-line forests.
One alternative is to create a growing on-line forests where
we first start with an on-line forest of depth one. Once it
converges to a local optimum, we increase the depth, creating
our on-line forest by iteratively increasing its depth. We have
this algorithm stop when the relative difference between the
likelihood computed in two consecutive iterations does not
change by 0.0001. This constrain is justified by the fact that
this algorithm tends to converge asymptotically. We found that
the number of trees needed for good performance eventually
tails off as new data vectors are considered. Since, after a
certain depth, the performance of on-line forest does not vary
to a great extent, the user may choose K (the number of trees in
the forest) to be a fixed value or let it to grow to the maximum
possible which is at most |T | /Nk, where Nk is the user-chosen
number of the size of each decision tree.

E. Detection Instances

To classify a new instance, we estimate the average margin
of trees in instances most similar to the new instance and,
after discarding trees with a negative margin, weight the tree’s
votes with the margin, then update the set of classifiers. Any
on-line learning algorithm can update tree-base classifiers but
we update for the importance of the current sample and return a
new hypothesis updated with a new sample. Only one sample
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is used to update all base classifiers and the corresponding
voting weight.

IV. EMPIRICAL EVALUATION

A. Datasets

We evaluated using 5 publicly available datasets, all from
NIPS 2003 challenge datasets [13], and their characteristics
are listed in Table II which shows the domain each dataset
it was taken from, its type (dense, sparse, or sparse binary),
the number of features, the percentage of probes3, and the
number of examples in the training, validation, and test sets.
All problems are two-class classification. Each missing value
of feature f is treated as equal to median f̂ of f of the training
set.

B. Protocol

Classifier performance in these feature selection experi-
ments is measured by a statistic known as the Area Under
the ROC Curve (AUC) and by the balanced error rate(BER).
AUC measures of classifier performance that is independent
of the threshold, meaning it summarizes how true positive and
false positive rates change as the threshold gradually increases
from 0.0 to 1.0, i.e., it does not summarize accuracy. An ideal
perfect classifier has an AUC of 1.0 and a random classifier has
an AUC of 0.5. Because decision trees of a certain depth for
some datasets, e.g., Dorothea may be unbalanced due to data
distribution, another metric evaluation -BER- is added, i.e.,
the average of the error rate of the positive class and the error
rate of the negative class. For classifiers with binary outputs,
BER = 1 − AUC.

C. Results and Discussion

Results on the datasets are reported by different well known
machine learning algorithms; standard (RF), AdaBoost, SVM,
and KNN. To implement of AdaBoost and KNN, we use Weka
library of classifier [14]. The two variants of our on-line feature
selection algorithms, referred to as CorrFS and CorrBS were
evaluated both in forward and backward feature selection and
algorithm performance was measured after standard stratified
10-fold cross-validation. The dataset is partitioned 10-fold
with the same class distribution and all folds but the i-th
are used to iteratively train a classifier and the error rate of
this classifier is recorded on the remaining i-th fold. This
validation is repeated 10 times to avoid overfitting. Table II
I presents the BER on the datasets for all learning algorithms.
It shows that no method is the best on all datasets. Comparing
results for CorrFS and CorrBE with the standard RF in Table
III, CorrFS mostly outperforms standard RF and falls short
only once for the DOROTHEA dataset. In 3 of 5 datasets
considered, CorrBE outperforms the standard RF, showing that
our algorithms compared favorably to other machine learning
algorithms. Compared to the best reported results in the NIPS

3The probe is a number of features drawn at random from a distribution
resembling that of the real features, but carrying no information about the
class labels. Such probes have a function in performance assessment: a good
feature selection algorithm should eliminate most of the probes [13].

2003 feature selection challenge. Table III shows the number of
selected features (in brackets). Both variants of our incremental
approach select a minimal yet good sets of features for the
problem in the presence of many irrelevant or redundant
features. If the number of features is too large, an exhaustive
search of all feature subspace is prohibitive, as there are 2m

possible combinations for m features. Our results (Table II
I) confirm that a heuristic search is more realistic than an
exhaustive search but may not find optimal solutions. Note that
CorrFS and CorrBE select entirely different features because
feature important values of candidate features are modified,
sometimes drastically, according to already selected features.
In AUC results, our two variants showed slight improvement
over RF, SVM, and AdaBoost on the average and very signifi-
cant for KNN (Table IV); this can be referred to its sensitivity
in learning many irrelevances or correlated features. Another
disadvantage of KNN is its lack of functionality for variable
selection. We fell short in a comparison with RF in certain
cases, mainly because RF can use redundant features and due
to the diversity of growing decision trees.

D. Statistical Tests

We used t-test on the results for 10-fold cross-validation
to testing the statistical differences of the observed difference
in AUC and BER. This is the most widely used approach for
this type of experiment. Results reported in Table IV (between
brackets), where ‘+’, ‘-’, and ‘=’ designates a statistically
significant win, loss, and the difference is not significant
respectively. We separate for AUC and BER results with a
slash (/). For both KNN and SVM there were a great number
of statistical losses to our approaches than statistical wins.
We executed Wilcoxon signed-rank test at a significance of
0.05 to determine the significance of the difference from
our approaches. AUC results are significant even at 0.001.
Using AUC also produced a statistically significant difference
between ours and other approaches. For BER results, there was
a statistically significant difference between our approach and
all other approaches except for RF and Adaboost. When we
compared CorrFS and CorrBE, the overall best method was
CorrFS, and CorrBE appeared to be advantageous only for
problems with strong conditional dependencies.

E. Computational Complexity

Our approach is easy to implement, runs very fast, and
learns completely on-line mode, and because we do not freeze
learning feature selection and voting-weight can change over
time. Note that such adaptivity is not possible in standard
RFs. The main computational effort is spent on updating base
classifiers, which depends on time for calculating the feature
correlation. To decrease calculation time, we assume that all
feature pools are the same F1 = F2 = · · · = FM , so we
update all corresponding base classifiers only once, speeding
up the process considerably while decreasing performance only
slightly. CPU time required to build a tree is two minutes.
Parallel time could then be on the order of 2 minutes plus
communication time.
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TABLE II
NIPS 2003 CHALLENGE DATASETS. FOR EACH DATASET WE SHOW THE DOMAIN IT WAS TAKEN FROM, ITS TYPE, THE NUMBER OF FEATURES, THE

PERCENTAGE OF PROBES, AND THE NUMBER OF EXAMPLES IN THE TRAINING, VALIDATION, AND TEST SETS. ALL PROBLEMS ARE TWO-CLASS
CLASSIFICATION PROBLEMS.

Dataset Domain Type # FE % Pr # Tr # Val # Te
ARCENE (AR) Mass Spectrometry Dense 10000 30 100 100 700
DEXTER (DE) Text classification Sparse 20000 50 300 300 2000
DOROTHEA (DO) Drug discovery Sparse binary 100000 50 800 350 800
GISETTE (GI) Digit recognition Dense 5000 30 6000 1000 6500
MADELON (MA) Artificial Dense 500 96 2000 600 1800

TABLE III
10-FOLD CROSS VALIDATION BERS (%) OF EACH LEARNING ALGORITHMS ON THE DATASETS. THE NUMBER OF FEATURE (%) SELECTED ARE IN

BRACKETS.

Our methods Other methods Challenge best
Data Baseline CorrFS CorrBE RF AdaB SVM KNN BER ± δBER

AR 0.1470 11.04(15.1) 13.31(14.0) 11.25 21.43 13.31 21.43 0.1073 ± 0.0117(10.7)
DE 0.0500 8.00(34.1) 6.50(22.6) 8.00 8.33 11.67 22.00 0.0330 ± 0.0040(18.57)
DO 0.1237 21.38(35) 16.82(4.2) 12.51 39.38 33.98 14.21 0.0854 ± 0.0099(100)
GI 0.0180 1.37(2.3) 1.37(2.8) 1.80 1.80 2.10 2.08 0.0126 ± 0.0014(18.32)
MA 0.0733 13.00(14.4) 7.11(11.0) 13.00 39.85 40.17 11.60 0.0622 ± 0.0057(1.6)

TABLE IV
10-FOLD CROSS VALIDATION AUC OF EACH LEARNING ALGORITHMS ON THE DATASETS. STATISTICAL RESULTS FOR EACH DATASET AT CONFIDENCE

LEVEL OF 0.95 ARE IN BRACKETS.

Our methods Other methods
Data CorrFS CorrBE RF AdaB SVM KNN
AR 84.73(+/+) 90.63(+/+) 80.76(+/=) 69.00(+/+) 72.60(+/+) 68.60(-/-)
DE 93.50(+/+) 96.86(+/+) 95.05(+/+) 81.00(+/+) 82.47(+/+) 77.40(-/-)
DO 83.50(+/+) 77.56(+/=) 86.07(=/+) 92.18(+/+) 92.22(+/=) 91.70(+/+)
GI 92.63(+/+) 86.71(+/=) 97.42(+/+) 82.25(=/+) 90.78(+/+) 84.16(-/+)
MA 93.39(+/+) 92.89(+/+) 90.56(+/+) 74.92(+/+) 85.76(+/+) 73.94(+/+)

V. CONCLUSIONS AND PROJECTED WORK

We have described on-line classification in an ensemble
learning domain. As we have shown on-line learning and
incremental feature selection are essential for a wide variety of
machine learning problems. We have evaluated the advantage
of sequential feature subset selection for random forests is
evaluated on the basis of combining variable selection and
ranking. The use of variable selection based on correlation
ranking is justifiable for on-line learning to achieve relatively
favorable results for classification accuracy. This is crucial
in domains with a large number of available features not all
necessarily relevant to a particular classification task. Testing
and evaluation showed that our approach compares favorably
for some datasets to well-known learning algorithms in ma-
chine learning, but the difference is rarely significant. While
extending on some of our previous results, we also present
new results greatly interest the feature selection benchmark
community. We now plan experiments with possible alternative
applications using our on-line approach and evaluate other
greedy randomized attribute selection algorithms.
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