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Abstract—An overwhelming phenomena across natural sys-
tems, social systems and ecosystems is discovered in recent years.
The phenomena is coined by many terms, such as 1/f noise, Zipf-
laws, or scale-free, while power-law distribution of various events
or metrics is the fundamental fact that exists in every complex
system. It is believed that there exist a mechanism to rule the
dynamics of complex system and generate the distribution. In this
paper, a general growth model which incorporate Lotka-Volterra
dynamics is developed to explain the mechanism of the power-
law distribution preliminary. In the model, the influence on power
distribution of the spreading rate and the mortality rate can be
easily analyzed and explained.

Index Terms—Power-law distribution, Lotka-Volterra equa-
tions, Dynamics

I. INTRODUCTION

There are many power-law distributions in various systems
that are discovered from the early of 20th century. They exists
in social systems, natural systems and ecosystems. Generally,
the phenomena could be expressed by the following equation:

y=a-z° (1

In the above equation, x denotes the value or the ranking of
a physical parameter, while y denotes the probability of the
parameter, o denotes the power, which is different for various
systems. For example, the ranking of the city population
follows a power law with a power 1 [1]; the degree of the
earthquake follows a power paw with a power 1.5 [2]; the
evidence from the fossil data have proved that the size of
the extinction also follows a power law with an exponent of
a = 2 [3]; Many biological researchers have pointed out that
many parameters of organisms compared to mass also follows
power law with different value of exponent. Because the
power-law distribution exists in various systems, researchers
from different areas have developed many models to explain
the source of the regularities. Next we will introduce several
main models briefly.

A. Zipf law

In 1947 Zipf studied one hundred largest cities in United
States and pointed out that if ranking in the order of decreas-
ing population-size, the rank-frequency distribution follows a
power-law with a = [l, which also be coined by Zipf law
later. He analyzed the formation of the city and pointed out that
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incorporated “minimum equation”, the force of unification, the
force of diversification and the force of innovation, the Zipf-
law of the density of persons within the domains will emerge.
He also presented many other evidences to verify Zipf-law, for
example, the number marriage compared to the distance [1].

B. Self-organized criticality

In 1987, Bak et, al presented their discovery from the
simulation of “sand pile” [4]. In the simulation, there exist
a regular 2-dimensional lattice. At each time, a piece of sand
will be added into a site, if the number of the sand at the site
exceeds a threshold, the sand will spread to its neighbor sites,
and the neighbor sites will also check whether the number
of sand exceeds the threshold. If all of the site keep stable,
another sand will be added in a randomly selected site.

In the dynamics, the avalanche is defined as the spreading of
the sands. The size of the avalanche is defined as the number of
the sites that spreading sands. The simulation result indicates
that the size of the avalanches fluctuates along with the time.
However, the power spectrum density of the fluctuation follows
a power law with the exponent equals to 1. Bak insisted that
the system will self-organize itself into a critical state. At the
state, the size of the avalanches is ruled and characterized.

Besides the self-organize criticality of sand pile model,
many other similar models are provided and studied, such as
the model on the evolution of the ecology system and the
model on the earthquake. Bak published his research on co-
evolution of the species in 1993 [5]. In his model, N species
are settled on a one-dimensional line with periodic boundary
conditions. A random barrier, B;, is assigned to each species.
At each step, the species with the lowest barrier will mutate
by assigning a new random number, then the landscape of
the neighbors is also changed, the neighbors will also mutate
to new random numbers correspondingly. If the new species
still have the lowest barrier, they will mutate and change their
neighbors barriers further. Then the avalanche will propagate
in the system and the size of the avalanche will follow a power
distribution, which is also coined by co-evolution phenomenon.

SOC could lead to the power-distribution. However, the
exact mechanism that lead to the power distribution and the
reason for the different value of the exponent are still not
revealed.



C. Mass Extinction

From 1992, many research indicated that the evolution
maybe also a self-organized criticality, there also are several
models on the mass extinction. However, Newman presented
a very simple model to reproduce the dynamic of mass
extinction [6]. In the model, the fitness a of each species is
randomly created and will be adjusted slightly. At each step,
a stress with level n impacts on the species, then the species
whose fitness is lower than the stress will become extinct.

In Newman’s model, there are no interaction among species.
However, the simulation result also reproduce the power-
distribution of the species extinction, with the power equal
to 1

D. Human Dynamics

Many social activities are driven by human behaviors. More
and more evidence indicate that human activities are not like a
Poisson processes. The dynamic of human behaviors is a burst
of activities separated by a long period of dreariness. Barabasi
presented a prior selection mechanism to characterize human
dynamics [7], [8]. In the model, there is a waiting list for the
tasks, each task has its own priority which is determined by its
importance. At each step, a new task with a random priority is
added into the list, and also the task with the highest priority
is selected and executed. After a long period of simulation, the
waiting time of the tasks displays a power distribution with the
power is 2.

E. Allometric growth

There are also many power laws in the biology, such as the
quarter-power allometries, the measurement from the muscle
speed to the lifespan all scale closely to 1/4 power of the body
mass [9]. West, et, al presented a Growth-Hydraulic model to
discover the mechanism that leads to quarter-power allometries
in organism-level structure and function. In the model, West
gave some hypotheses and attribute the power relationship to
the dimension in the growth and energy transmit [10].

F. Consideration

From the above model, we could get that many stochastic
process could produce power-law distributions with different
exponents. However, there are some common features emerge
from different areas when the mechanism of the power-
distribution formation is analyzed. Generally, the dynamics of
power-distribution phenomena could be viewed as a process of
growth, aggregation and corruption which involve individuals,
energy and resource. An event is defined as an activity that
propagates among the resource space. In the propagation, the
energy or the mass of the event will spreading to its neighbors
according to a certain rule, then the spreading energy or the
mass of its neighbors will aggregate. If the energy is too high, it
will collapse and spread to its neighbors too. The description of
the event cover many phenomena in social and natural systems.
For example, the managers of web sites enhance the influence
by expanding the popularity of web sites in the network of
peoples. Each person has his own interest for the content of the

4316

web site. If he feels the web site is useful (that is the contents
of the web site exceed the threshold), he will recommend the
web site to his friends. His friends will also evaluate the web
site and decide whether to recommend it, then the population
of the site will aggregate in a particular group of people. In
fact, the dynamics can be viewed as a growth process in a
environment with constrained resource.

II. THE FORMULATION

From the above section, It can be concluded that a power
distribution comes from a growth process in a constrained
environment. In order to explore the dynamics, we introduce a
model which incorporated Lotka-Volterra dynamics and Sand
pile model to discover the dynamical process and the resource
of the power distribution.

A. Lotka-Volterra Dynamics

The Lotka-Volterra model [11] is also referred as predator-
prey model. It discovers the dynamics between predators
and preys with two differential equations. In the dynamics,
predators and prey can influence one another’s evolution. It
was developed by A, Lotka and V. Volterra independently. The
equations are listed below.

C;—J;:oa’vP-N—q-P 2)
%:T-N—(LI'P'N 3)

where P and N denotes the number of predators and preys
respectively, ¢ denotes time, r is the growth rate of the prey,
a' denotes the searching efficiency of the predators, ¢ is
the mortality rate of the predators, while ¢ denotes predator
efficiency that turning food to offsprings.

From the equations, the dynamics of predators and preys
are discovered. When population of the predators grow, they
may consume more preys to survive. However, the population
of preys will be decreases deeply due to the predators’ flourish.
However, the population of predators will also decrease along
with the deficiency of preys. Thus the population of the
predators and preys influence each other and fluctuate along
with time.

B. A Growth Model

A growth model in a constrained environment that is similar
to the predator-prey dynamics is developed here. In the model,
an event will grow on a N-dimensional environment, the size of
the event spreading could be expressed by the below equations.

N

Cil—t:T"Na—C'Na (4)
dN,
7 =r-Ny-s (5)

In the above equations, N denotes the growth population, N,
denotes the number of the active individuals on the sites. 7
denotes the propagation or spreading rate, which is determined
by the topology of the environment and can follow a certain
distribution. ¢ denotes the mortality rate for the boundary



Number of events 10,000 I 3
Number of Sites 3000 r 4
InitialState 0.65/0.25/0.1 ¢ 04

TABLE 1
THE VALUE OF THE PARAMETERS IN EXPERIMENT 1.

constraints pr other reasons. s is determined by the proportion
of critical Eites, and s is also dynamical according to the
environment state.

In the model, the dynamics of the environment (resource)
could be expressed by the following rules.

Ng = No+ Ny — (1 No)-ao
N{=Ni+(r-No)-ag—(r Nag)-a
Ny =Nit(r-No) i1 — (r-No) -
Ni=Nr+(r-Ng)-ai1— N,
a7':N2/Ns

The state of the sites is calculated according to the above
rules. 7 denotes the number of the state for the sites, while
N; denotes the number of the sites whose state are 7. N is
the total number of the sites. N7 denotes the number of sites
which are approaching the active/critical state, while N, is the
number of the avtive/critical sites.

Here the local topology information is neglected by the
equations, only the dimension of the environment is incorpo-
rated in the model and is referred as propagation rate 7. In the
model the influence of the topology can be easily analyzed by
changing the value or distribution of the spreading rate.

From the beginning, an event with a certain energy will be
added into the sites. If the starting site presents critical state,
it will spread the energy to its neighbor sites with spreading
rate r, and also some energy will lost with the coefficient ¢ for
boundary conditions or other reasons. That is, the population of
the event will growth according to equation 4. If the neighbor
sites also present critical state for the dynamics, they will also
spread the energy to their neighbors, its state will become 0,
and its neighbors state will also update according to the above
rules. If the number of the active sites extinct, the spreading
will stop and the size of the propagation will be recorded. At
each step, the number of active sites and reproduce sites are
calculated with Monte Carlo method.

III. THE EXPERIMENTS
A. The Emergence of the Power Law

In Experiment I, we explore the dynamics of population
size. In the model, the value of the parameters is listed in
Table I

Figure 1 presents the distribution of population size in
Experiment I and random-walk model respectively. From the
figure, we can see that the distribution of population size in
Experiment I follows a power law, which is different from that
of random walk model. The result indicates that the developed
growth model could produce a power distribution of population
size.
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(b) Random walk model with
probability 0.7.

(a) L-V model with the parame-
ters listed in Table I.

Fig. 1. The distribution of population size in Experiment I and Random Walk
model respectively.

T

(a) The population dynamics
along with the time.

(b) The power spectrum of popu-
lation size distribution

Fig. 2. The dynamics of population in Experiment I.

Figure 2 presents the dynamics of population and power
spectrum of the population respectively. In Figure 2 A, the
dynamics of population size presents a punctuated equilibrium
state, which is similar to that of human dynamics [7]. From
Figure 2 B, the power spectrum shows a 1/f? distribution,
which is similar to the result of sand-pile model. The result
indicates that the growth model could also reproduce power
distribution that exist in most complex systems.

B. The Influence of Growth Rate r

In order to explore the reason of the power law distribution,
we conducted a series experiments, in which the spreading
mechanism and the mortality rate are all changed. In Experi-
ment II, the growth rate r is set from 1 to 6, the spreading rate
means number of the site that an active site can spread at each
step. It reflects the topology and dimension of the environment.
The dynamics of the distribution is showed in Figure 3, A~F.
From the figure, it can be concluded that the power distribution
of the population emerges when the growth rate » equal to 3
or 4, with the power is about 2.3 and 1.5 respectively. That
is, the power distribution is related to the growth rate, and the
power is also determined by the growth rate.

C. The Influence of Mortality Rate ¢

In Experiment III, the mortality rate ¢ changes from 0.2 to
0.9. The dynamics of the population distribution is showed in
Figure 4, A~H. From the figure, it can be concluded that the
power distribution of the population emerges when the value
of mortality rate ¢ is from 0.3 or 0.6, and the power becomes
larger along with the increasing of mortality rate ¢. When the
mortality rate is too small, for example, equals to 0.2, the
distribution of the [population size becomes irregular. If the



@r: 1. (b) r: 2.

_(c) r 3. .(d) 7 4,
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Fig. 3. The distribution of population size in Experiment II, with the growth
rate from 1 to 6.

mortality rate is larger than 0.8, the distribution is similar to
that of the random walk model (Figure 1. B).

IV. CONCLUSION

In the paper, a general growth model that incorporates
Predator-Prey dynamics and sand pile model is developed.
In the model, the growth of the population is similar to the
predator-prey equation, while the update of the environment
is similar to the sand pile model. The local information of
the sites are omit and the state of the sites are determined
according to Monte Carlo method. With the model, a power-
law distribution of population size emerges when the growth
rate and mortality rate is proper, which indicates that most
power distributions in social or natural systems come from a
constraint growth process, in which growth rate and morality
rate are important to produce the regularities and determine
the value of the power in the distribution.
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