
A Sensitivity-Based Training Algorithm with
Architecture Adjusting for Madalines

Yanjun Liu, Xiaoqin Zeng and Shuiming Zhong
Institute of Pattern Recognition and Intelligent System

Hohai University
Nangjing, P R China

{ liuyanjun, xzeng, zhongyi}@hhu.edu.cn

Shengli Wu
School of Computing and Mathematics

University of Ulster
United Kingdom

s.wu1@ulster.ac.uk

Abstract—How to design proper architectures of neural
networks for solving given problems is an important issue in
neural network research. Nowadays, the existing training
algorithms of neural networks only focus on adjusting neural
networks’ weights to improve training accuracy, and few of them
adaptively adjust the networks’ architecture. However, the
architecture is indeed very critical for training neural networks
to have high performance and needs to be coped with in the
training process. In this paper, we present a new training
algorithm of Madalines, which takes not only weight but also
architecture adjusting into consideration. The algorithm can thus
train Madalines with smaller architecture and higher
generalization ability. Experimental results have demonstrated
that our algorithm is effective.

Keywords—Neural network, Madaline, training algorithm,
architecture, sensitivity

I. INTRODUCTION

Although the research on artificial neural networks has
made great progress and been widely applied to many fields,
like pattern recognition, intelligent control, data mining and so
on, we still face a series of problems in designing and training
neural networks, such as architecture design, improvement on
training accuracy and avoidance of overtraining, which are
closely related to one another and could seriously influence the
performance of trained neural networks. The existing training
algorithms usually aim at improving training accuracy by only
adjusting the weight without considering the architecture. What
is a proper architecture of a neural network for a given
application? Unfortunately, the answer to this question is in
general not known. On the one hand, a network with a larger
size may be trained quickly and fit training data accurately.
But, it may cost more in implementation and computation and
have bad performance in generalization due to over fitting
training data. On the other hand, a network with a smaller size
may cost less in both implementation and computation and
further may have good performance in generalization. But, it
may learn very slowly or even be unable to learn at all. This
paper discusses how to involve architecture adjusting into the
training algorithm of Madalines so that it can train a Madaline
not only satisfying the required training accuracy but also
having smaller architecture and higher generalization
performance.

A Madaline is a discrete feedforward multilayer neural
network with supervised learning mechanism, which is suitable
for handling many of the inherently discrete tasks, such as
logical calculation, signal processing and pattern recognition
etc. Furthermore, its discrete feature can facilitate hardware
implementation with less cost, reduce computation complexity,
and be computationally simple to understand and interpret.
Theoretically, a Madaline can be regarded as a special case of
continuous feedforward multiplayer neural networks. It is well
known that continuous feedforward multiplayer neural
networks are the most mature in techniques, for example the
well-known back-propagation training algorithm has been
proposed. Unfortunately, most of the techniques can’t be
directly applied to Madalines due to their hard-limit activation
function that is not differentiable. In literature, there are some
studies on Madalines’ training algorithm. The most popular one
is the MRII algorithm [1, 2] proposed by Winter and Widrow
in 1988, which trains a Madaline by iteratively adapting the
weights of some neurons according to the Minimal Disturbance
Principle. But the algorithm’s success rate is very low and this
hampers its application.

The contribution of this paper is that it proposes a new
training algorithm of Madalines, which adjusts not only the
weight but also the architecture by employing a sensitivity
measure of the networks’ neurons. The algorithm automatically
search for both proper weight and as small as possible
architecture so as to find a suitable Madaline for the given
training data. The trained Madaline can satisfy required training
accuracy and meanwhile has higher generalization performance.
Since by now there has been no practical way to determine
Madalines’ architecture, especially the number of hidden
neurons, it is of great significance that the algorithm can release
Madaline users from the burden of designing the network’s
architecture and simply requires the users to only regard the
network as a black box. Some computer simulations were run
to verify the effectiveness of the algorithm. The experimental
results show that the algorithm can, under a given training
accuracy requirement and a casually given architecture, train
Madalines with smaller architecture and higher generalization
performance.

The rest of this paper is arranged as follows. Section II
briefly introduces the Madaline’s model and the notations used
in the following sections. Section III discusses the technical

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4723

essentials which are the sensitivity measure of Adalines, the
improved training procedure based on MRII with only weight
adjusting, and architecture pruning. Then in Section IV we
present our training algorithm by assembling the essentials.
The experimental verifications are presented in Secction V.
Section VI finally concludes the paper.

II. THE MADALINE MODEL AND NOTATIONS

The Madaline considered in this paper is a kind of
feedforward multilayered neural network that employs a
supervised training mechanism to establish a mapping between
its input and output. An Adaline (Adaptive linear elements) is a
basic building block of Madalines with discrete input and
output. Each element of the input takes on a bipolar value of
either +1 or -1 and is associated with an adjustable weight of
real number. The working process of an Adaline is that the
summation of weighted input elements plus a bias is computed
first, producing an analog value, which is then fed into an
uncontinuous activation function to yield a bipolar output. The
activation function adopted in our research is the commonly
used symmetrical hard-limit function:

01
01

{)(
<−
≥

=
x
x

xf (1)

Generally, a Madaline may have L (1)L ≥ layers, and

each layer l (1)l L≤ ≤ has ln (1)ln ≥ Adalines. The

form Lnnn −−− ...10 is used to represent a Madaline with a
given architectural configuration, in which each ln
(0)l L≤ ≤ not only stands for a layer from left to right
including the input layer, but also indicates the number of
Adalines in the layer. 0n is an exception, which refers to the
dimension of input vectors. Ln refers to the output layer. Links
in a Madaline only exist between Adalines of two adjacent
layers, and there is no link between Adalines in the same layer
and in any two non-adjacent layers. All Adalines in a layer are
fully linked from all the Adalines in the immediately preceding
layer and to all the Adalines in the immediately succeeding
layer. Since the number of Adalines in layer 1−l is equal to
the output dimension of that layer, which is in turn equal to the
input dimension of layer l , the input dimension of layer l is

1−ln . For Adaline i in layer l (1)li n≤ ≤ , its input vector is
Tl

n
ll

lxxX),...,(11 −= , its incoming weight vector is
Tl

in
l
i

l
i lwwW),...,(11 −= , its bias is l

ib , its output is

)(l
i

l
i

ll
i bWXfy += , and its outgoing weight vector is

1(,...,)l
i l l T

i il in
V v v += . For layer l , all its Adalines have the

same input vector lX that is the output of immediately
preceding layer, its incoming weight set is

},...,{ 1
l

n
ll

lWWW = , outgoing weight set is

1{ ,..., }l
l l l

n
V V V= ()l L< , and output vector is

Tl
n

ll
lyyY),...,(1= , which is the input of its immediately

succeeding layer. For an entire Madaline, the input vector is
1X or 0Y , its weight is LWWW ∪∪= ...1 , and its output

is LY . Let Tl
n

ll
nxxX),...,(11 −ΔΔ=Δ and

Tl
in

l
i

l
i lwwW),...,(11 −ΔΔ=Δ be the variation of input and

weight vectors at layer l , and 11' (' ,..., ')l
l l l T

n
X x x −= and

Tl
in

l
i

l
i lwwW)',...,'(' 11 −= be the corresponding varied input

and weight vectors respectively.

III. THE TECHNICAL ESSENTIALS OF THE TRAINING
ALGORITHM

A. The sensitivity measures of Adalines
Usually, the sensitivity measure of a Madaline reflects the

effects of its parameters’ variation on its output [3, 4]. In
Madalines’ training, it is expected that an adaptation of an
Adaline’s weights can result in a change of the Adaline’s
output and then a change of the corresponding Madaline’s
output. Therefore, the sensitivity of Adalines with respect to
weight variation can be a useful measure for selecting
appropriate Adaline for weight adaptation during the training
process. Taking all possible inputs into consideration, we adopt
the following definition for the sensitivity of Adalines to
weight variation.

Definition: The sensitivity of an Adaline is defined as the
probability of output inversions of the Adaline due to its weight
variation with respect to all inputs, which is expressed as:

))())((
2
1(),,(bXWfbWWXfEbWWs X +−+Δ+=Δ (2)

In (2), for simplicity, the superscript that marks the Adaline’s
layer and the subscript that marks the Adaline’s order in a layer
are omitted because the Adaline’s position in the network can
be ignored without losing generality. In a similar way, the
sensitivity of Adalines with respect to input variation can be
defined and expressed as:

))())((
2
1(),,(bXWfbWXXfEbWXs X +−+Δ+=Δ (3)

(3) reflects the variation degree of the Adaline’s output due
to its input variation, and will be employed as the basis
measure in the architecture pruning process.

[5] has given an algorithm to compute (2), in which the
sensitivity is quantified by establishing a geometric model of
hypercube and using analytical geometry and tree techniques.
For the details of the algorithm, please refer to [5].

Obviously, the difference between (2) and (3) is that they
deal with different parameters’ variation. The former focuses
on weight variation while the latter focuses on input variation.
Although (3) is different from (2) in variation, it can be easily
transformed from (3) to (2), namely from input variation to
weight variation. Because of the bipolar feature of Adalines’
input, the variation of an Adaline’s input element can only

4724

result in either jj xx =' or jj xx −=' Therefore, an affected

product in summation
=

n

j
jj wx

1

' can be expressed as

jjjjjjjj wxwxwxwx ')()(' =−=−= , this means that jx'
can easily be transformed to jw' , which is equivalent to a

change of the sign of jw . For this reason, the Adaline’s
sensitivity with respect to input variation can be attributed to
the Adaline’s sensitivity with respect to weight variation. So,
the algorithm in [5] can also be used to compute (3).

B. The improved training algorithm based on MRII
In [1] and [2], Winter and Widrow presented the MRII

algorithm for training Madalines. Different from the steepest
descent rule, MRII is one of error correction learning rules. In
MRII, the central idea is the Minimal Disturbance Principle
which means that the established mapping for previously
trained input samples should be disturbed as little as possible
when a correction to the network is needed. The absolute value
of summation of weighted input is used in MRII as one of the
main factor of confidence level, which is a kind of measure to
carry out the principle.

How to choose the Adaline to update its weights is one of
the crucial issues in Madaline training algorithms. Since the
Adaline that confidence level is closest to zero is easier to be
adjusted to reverse its output, Winter and Widrow proposed the
Adaline’s confidence level as a suitable measure for the
Minimal Disturbance Principle. However we think that the
Adaline’s confidence level only satisfies the Minimal
Disturbance Principle for current input sample and can’t reflect
disturbance degree for other trained input samples. According
to the definition of the sensitivity of Adalines, the sensitivity
measure indicates the effect of weight variation on the input-
output mapping with respect to all possible input patterns. It
means that if an Adaline has the least sensitivity, its output for
all input patterns will be varied least with a given weight
variation. So it is more suitable for replacing the absolute value
of summation of weighted input with the sensitivity to meet the
Minimal Disturbance Principle.

Another crucial issue is weight adaptation rule. In the
family of the error correction training algorithms, there are
many weight adaptation rules, such as the Perceptron rule, the
Mays rule, and the LMS rule etc. In our training algorithm, we
use the weight adaptation rule introduced in [2], which comes
from the Mays’ rule, as follows:

()(1) () [() ()]
1

d kW W k W k X L d k XW k
n

ηΔ = + − = −
+

 (4)

Where ()W k is the weight obtained at the kth iteration of
adaptation and (1)W k + is the weight after the k+1th iteration
of adaptation, ()d k is the desired response, n is the input
dimension of Adaline, η is the adaptation constant and L is
the adaptation level. If L and η are set to be 1, the output of
the Adaline can be reversed in one iteration step.

It is straightforward for us to compute weight variation,
namely WΔ , of Adalines in a layer according to (4), and then
compute their sensitivity values with the algorithm given in [3].
After that, confidence levels of Adalines can be obtained and
are used to sort the Adalines in the layer.

Summarizing the descriptions above, the improved training
algorithm based on Adaline’s senstivity can be programmed as
follows.

1) Randomly select a sample from the training data set;
2) If the Madaline responses correctly to the current

sample, go to step 4;
3) From the first layer to the last layer, do:

a) Obtain weight variations that cause output inversion
of the Adalines in current layer by (4), and compute
their sensitivity and confidence level values;

b) Sort the Adalines of current layer according to their
confidence level values;

c) For all possible k-wise (k is from 1 to min 3,
2

ln)

trials in the
2

ln least confidence level do:

If the trial can reduce the output errors of the
Madaline, accept the trail, adapt weights of the
Adalines involved in the trial, and go to step 2;
otherwise reject the trial, restore the outputs of
the Adalines involved in the trial to their
previous values, and continue to do the next trial;

d) Continue the loop to deal with the next layer.
4) Go to step 1 unless training accuracy meets the given

requirement for all training samples or training epochs
meet the given number.

5) Output obtained weights and biases, and stop.

C. The architecture pruning
As mentioned previously, a neural network with smaller

size of architecture can have many advantages. So it is desired
in the training process to find a network that is not only
trainable with given training data and required training
accuracy but also has as small as possible size of architecture.
In our research, we merge an architecture pruning procedure
into the above training algorithm. The key question in
architecture pruning is how to locate the least relevant Adalines
in a well trained Madaline so that the pruning of them will
cause as little performance loss as possible and be easy to
compensate for the loss. One reasonable answer to the question
is that a relative relevance measure of Adalines needs to be
established. Once more, the sensitivity of Adalines can be
employed for this purpose.

The sensitivity can reflect an Adaline’s response to its input
variation. Under a given input variation, the Adaline with
sensitivity being zero or a very small value contributes less in
the entire network since its output is approximately constant to
the variation in its input. But, due to the sensitivity only having
relation to the Adaline’s incoming weights and bearing no
relation to its outgoing weights, the sensitivity itself is not

4725

enough to reflect the influence of the Adaline on its
immediately succeeding layer. It is noticed that the outgoing
weights may also play an important role in determining the
input of the Adalines in the succeeding layer. Even if the
sensitivity is very small, it may be amplified by large
magnitude of the outgoing weights and thus cause a large
variation to the input of the succeeding Adalines. In order to
overcome this shortcoming, [6] takes both the sensitivity and
the outgoing weights into consideration to establish a relevance
measure for an Adaline. The relevance of an Adaline is defined
as follows.

Definition: The relevance of an Adaline is defined as the
multiplication of its sensitivity by the summation of the
absolute values of its outgoing weights, which is expressed as:

+

=

=
1

1

*
ln

j

l
ij

l
i

l
i vsr . (5)

Where l
ijv is an element of outgoing weight l

iV ; and l
is is the

sensitivity, which is an average of those sensitivity values that
are obtained by iteratively computing the sensitivity with only
one input element varied once for all input elements. In this
way we could restrict the sensitivity with input varying on a
small scale because of the bipolar feature of the input elements.

Obviously, the smaller the value of l
ir is, the less variable

the inputs of the succeeding Adalines are. Hence, the relevance
measure is more accurate than the sensitivity in reflecting the
effect of an Adaline on its succeeding Adalines. With the
relevance measure it is available for locating the least relevant
Adaline in a hidden layer.

The removal of an Adaline will more or less cause a change
in the performance of the Madaline. In order to avoid the loss
as much as possible in the established performance, it is
necessary to consider some compensations for the loss. One
way is to adjust the biases of the Adalines in the immediately
succeeding layer. If the average output of the given Adaline is

l
iy , which can be approximately calculated with training

samples, then for each Adaline, j 1(1)lj n +≤ ≤ , in the next
layer, 1+l , its bias could be adjusted by

l
ij

l
i

l
j

l
j vybb *11 += ++ . (6)

Another way is to retrain the pruned Madaline, which will be
discussed in the next section. For more detailed description of
the pruning techniques, please refer to [6].

IV. THE TRAINING ALGORITHM

In this section, we assemble the technical essentials
discussed in the last section to program an algorithm for
training Madalines. The algorithm merges the architecture
pruning into the improved training algorithm. For a given
application, the input dimension and the number of Adalines of
output layer could be determined with the application domain
knowledge. According to the Stone-Weierstrass theorem [7], if
the number of hidden Adalines is large enough, only one

hidden layer is needed for a Madaline. So the algorithm only
needs to consider automatically searching for proper number of
hidden Adalines without the need of considering the number of
hidden layers. Under a given training data set and required
training accuracy as well as a casually given architecture, the
algorithm will finally yields a Madaline with the smallest
possible architecture and suitable weights. Below is the training
algorithm:

1) Organize a Madaline with the preliminarily given
architecture and randomly assign the initial weights
and biases;

2) Use the given training data set and the algorithm of
Section III’s part B to train the Madaline;

3) If the Madaline in training can meet the required
training accuracy, then go to step 6 to prune it;

4) If there is saved Madaline, then restore the last saved
Madaline and go to step 8 to stop;

5) Increase the number of hidden Adalines with random
weights and go to step 2;

6) Save the trained Madaline, such as its architecture,
weights and biases, compute all hidden Adalines’
sensitivity and relevance values, and remove the
Adaline with the least relevance value;

7) Adjust the bias of each Adaline in the next layer of the
pruned Madaline, and go to step 2 to retrain the pruned
Madaline.

8) Output finally obtained architecture, weights and
biases, and stop.

V. EXPERIMENTAL VERIFICATIONS

This section presents some experiments that were carried
out to verify the effectiveness of the algorithm given in the last
section. In our experiments, four representative problems were
chosen. One is the XOR problem; another is the
implementation of a logical function; the third is a
classification problem from UCI repository [8]; and the fourth
is an emulation problem. Four tables, each of which
corresponding to one of the four problems, are given to show
the training performance of the algorithm with architecture
adjusting in comparison with that of the algorithm without
architecture adjusting.

In the experiments, we selected the initial weight and bias
randomly, set the training accuracy to be 100 percent to meet
the given training data, and forced the training epochs not to be
more than 1000. In the following tables, we define the success
rate as the proportion of the convergent Madalines to all the
Madalines involved, and the generalization performance is the
correctness rate of a convergent Madaline on the testing data
set. For each Madaline in training, we trained it 20 times with
the same initial architecture but different random weights and
biases. The presented results are the averages of the 20 runs’
results.

As a matter of convenience, in the tables of this section, we
abbreviate the algorithm without architecture adjustment to
Algorithm I, the algorithm with architecture adjustment to
Algorithm II, the generalization performance of a trained

4726

Madaline to Gen, and the initially given and finally trained
architecture to Initial Arc and Final Arc.

Experiment A:

In this part, the experimental results for solving the XOR
problem are presented in Table I. In the experiment, 20
Madalines with an initial architecture of 2-3-1 are trained by
both Algorithm I and Algorithm II. Table I shows that
Algorithm II can achieve 100% success rate (30% succeeded in
the architecture of 2-2-1 and 70% in 2-3-1) while Algorithm I
can only achieve 90% success rate. Further more, Algorithm II
can yield smaller size of Madalines with architecture of 2-2-1,
but Algorithm I can’t.

TABLE I. EXPERIMENTAL RESULTS FOR THE XOR PROBLEM

Initial Arc
Algorithm I Algorithm II

Success rate Final Arc Success rate

2-3-1 90%
2-2-1 30%

2-3-1 70%
Experiment B:

This experiment involves implementing a Madaline to
realize the following logical function:)()(edcbaF ∨∨∧∨= .
Since each logical variable in the expression has bipolar value
of +1 or –1, there are altogether 52 different input samples. In
the experiment, 24 samples were randomly selected as training
samples and the left 8 are reserved as testing samples. The
training starts with initial architecture of 5-2-1 and 5-3-1. The
results of success rate and generalization performance are
showed in Table II. From the table, we can see that when the
initial architecture is 5-3-1, both the two algorithms can
succeed for all the Madalines organized, but the generalization
performance of Madalines trained by Algorithm II is most of
the time better than that of Algorithm I, and 65% Madalines’
architecture can be pruned to 5-2-1. When the initial
architecture is 5-2-1, the success rate of Algorithm I declines to
65%, but the Algorithm II can still achieve 100% success rate
(90% succeeded in 5-2-1 and 10% succeeded in 5-3-1).

TABLE II. EXPERIMENTAL RESULTS FOR THE LOGICAL FUNCTION
FROBLEM

Initial
Arc

Algorithm I Algorithm II
Success

rate Gen Final
Arc

Success
rate Gen

5-2-1 65% 81.73%
5-2-1 90% 84.72%

5-3-1 10% 100%

5-3-1 100% 83.75%
5-2-1 65% 89.42%

5-3-1 35% 85.71%

Experiment C:

In this experiment, we adopted the benchmark data of the
Monk’s problem from UCI repository [8]. According to the
problem’s attribute information, except the Id attribute that is
unique for each sample, the Monk’s problem has seven
attributes including an output attribute indicating two classes
and six input attributes. Among the input attributes, four of
them have three or four possible values, and two of them have

two possible values. Since Madalines’ input elements are
bipolar, we need to use two input elements to represent each
attribute with three or four values and one input element to
represent each two-valued attribute. So, the experimental
networks for the Monk’s problem have a 10-dimensional input
and 1-dimensional output. We organized Madalines with initial
architecture of 10-4-1 and 10-2-1. The results of the success
rate and the generalization performance of trained Madalines
are showed in Table III. From the table, we can see that when
the initial architecture is 10-4-1, all the Madalines can be
trained by the two algorithms successfully, but Algorithm II
can prune all the Madalines’ architecture to 10-3-1 and the
generalization performance of the Madalines trained by it is
better than that by the Algorithm I. When the initial
architecture is 10-2-1, no Madaline can be successfully trained
by Algorithm I, but all Madalines can still be trained in
architecture 10-3-1 by Algorithm II.

TABLE III. EXPERIMENTAL RESULTS FOR THE MONK1 PROBLEM

Initial
Arc

Algorithm I Algorithm II

Success
rate Gen Final

Arc
Success

rate Gen

10-2-1 0 - 10-3-1 100% 92.29%

10-4-1 100% 91.15% 10-3-1 100% 92.97%

Experiment D:

In order to further verify the effectiveness of the algorithm
with architecture adjusting, we performed some experiments on
emulation problem. In the experiments, we set a reference
Madaline of 12-3-1 with randomly assigned weights as a
teacher, and then obtained the training dataset and testing
dataset by randomly selecting possible input patterns, 512
patterns for training and 256 patterns for testing, and their
corresponding ideal outputs from the reference Madaline. We
organized Madalines with initial architecture of 12-4-1 and 12-
3-1. Table IV shows the experimental results. From the table,
we can see that when the initial architecture is 12-4-1, the
success rate of Algorithm I is 85%, but all the Madalines can
be successfully trained by Algorithm II, and 80% of them even
have a smaller architecture of 12-3-1, so their generalization
performance is also be improved. When the initial architecture
is 12-3-1, the success rate of Algorithm I declines to 55%, but
Algorithm II can still achieve 100% success rate (95% succeed
in 12-3-1, and 5% succeed in 12-4-1).

TABLE IV. EXPERIMENTAL RESULTS FOR THE EMULATION PROBLEM

Initial
Arc

Algorithm I Algorithm II

Success
rate Gen Final

Arc
Success

rate Gen

12-3-1 55% 94.07%
12-3-1 95% 94.20%

12-4-1 5% 95.31%

12-4-1 85% 93.26%

12-3-1 80% 94.34%

12-4-1 15% 94.27%

12-5-1 5% 96.48%

4727

VI. CONCLUSION

In this paper, a new training algorithm of Madalines is
proposed, which is built on the basis of a sensitivity measure of
Adalines and Madaline architecture pruning techniques. By
introducing architecture adjusting into the training process, the
algorithm can guarantee to train a Madaline to realize the
mapping implied in given training data set and meanwhile have
as small as possible architecture.

The experimental results indicate that our algorithm can
make the following improvements over the previous
Madaline’s training algorithms:

• It can greatly improve the training success rate of
Madalines, which is very low for other training
algorithms of Madalines;

• It can automatically find a suitable architecture for the
Madaline during the training process;

• It can improve the generalization performance of the
trained Madaline.

There are still some parts in the algorithm that need to be
further studied. One is how to determine a proper weight
variation to compute the sensitivity value. In the algorithm we
used winter’s rule [2] to obtain the weight variation, which can
make the output reverse in one iteration step so as to reduce the
cost of computation. But it does not mean that thus obtained
weight variation is reasonably small. Consequently, when we
update the weight during training, we are not sure it is the least
variation of weight to meet the Minimal Disturbance Principle,
which is an important fact for the performance improvement of
the training algorithm. Another is that the sensitivity of
Adalines can only be employed to determine a sequence of
trials on the reversions of some Adalines’ outputs, but some of
the trials may be rejected if their reversions can not reduce the
output errors of the Madaline in training. Conceptually, the

sensitivity of a Madaline to weight variation directly reflects
the effect of the weight adaptation on the network’s output, and
it may be more helpful than the sensitivity of an Adaline to
locate the weight for adaptation, and thus avoid unnecessary
trials.

In our future research, we will try to find other adaption
methods for quickly getting the optimal weight variation. In
addition, we will explore how to employ the sensitivity
measure of Madalines to improve the performance of the
Madaline training algorithms.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China under grants 60571948 and 60673186.

REFERENCES

[1] R. Winter, and B. Widrow, “Madaline Rule II: A Training Algorithm for
Neural Networks,” IEEE International Conference on Neural Networks,
vol. 1, pp. 401-408, 1988.

[2] R. Winter, “Madaline Rule II: A New Method for Training Networks for
Adalines,” PhD Dissertation, Stanford University, 1989..

[3] M. Stevenson, R. Winter and B. Widrow, “Sensitivity of feedforward
neural networks to weight errors,” IEEE Transactions on Neural
Networks, vol. 1, no. 1, pp. 71-80, 1990.

[4] Y. Wang, X. Zeng, D. S. Yeung and Z. Peng, “Computation of
Madalines’ Sensitivity to Input and Weight Perturbations,” Neural
Computation, vol. 18, no. 11, pp. 2854-2877, 2006.

[5] X. Zeng, Y. Wang, and K. Zhang, “Computation of Adalines’ Sensitivity
to Weight Perturbation,” IEEE Transactions on Neural Networks, vol.
17, no. 2, pp. 515-518, 2006.

[6] X Zeng, J Shao, Y. Wang and S, Zhong, “A sensitivity-based approach
for pruning architecture of Madalines,” Neural Computing &
Applications, published online, 2008.

[7] N E. Cotter, “The Stone-Weierstrass Theorem and Its Application to
Neural Networks”, IEEE Transactions on Neural Networks, vol. 1, no. 4,
pp. 290-295 1990.

[8] http://www.ics.uci.edu/~mlearn/MLRepository.html

4728

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

