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Abstract—How to design proper architectures of neural 
networks for solving given problems is an important issue in 
neural network research. Nowadays, the existing training 
algorithms of neural networks only focus on adjusting neural 
networks’ weights to improve training accuracy, and few of them 
adaptively adjust the networks’ architecture. However, the 
architecture is indeed very critical for training neural networks 
to have high performance and needs to be coped with in the 
training process. In this paper, we present a new training 
algorithm of Madalines, which takes not only weight but also 
architecture adjusting into consideration. The algorithm can thus 
train Madalines with smaller architecture and higher 
generalization ability. Experimental results have demonstrated 
that our algorithm is effective.  

Keywords—Neural network, Madaline, training algorithm, 
architecture, sensitivity

I. INTRODUCTION

Although the research on artificial neural networks has 
made great progress and been widely applied to many fields, 
like pattern recognition, intelligent control, data mining and so 
on, we still face a series of problems in designing and training 
neural networks, such as architecture design, improvement on 
training accuracy and avoidance of overtraining, which are 
closely related to one another and could seriously influence the 
performance of trained neural networks. The existing training 
algorithms usually aim at improving training accuracy by only 
adjusting the weight without considering the architecture. What 
is a proper architecture of a neural network for a given 
application? Unfortunately, the answer to this question is in 
general not known. On the one hand, a network with a larger 
size may be trained quickly and fit training data accurately. 
But, it may cost more in implementation and computation and 
have bad performance in generalization due to over fitting 
training data. On the other hand, a network with a smaller size 
may cost less in both implementation and computation and 
further may have good performance in generalization. But, it 
may learn very slowly or even be unable to learn at all. This 
paper discusses how to involve architecture adjusting into the 
training algorithm of Madalines so that it can train a Madaline 
not only satisfying the required training accuracy but also 
having smaller architecture and higher generalization 
performance. 

A Madaline is a discrete feedforward multilayer neural 
network with supervised learning mechanism, which is suitable 
for handling many of the inherently discrete tasks, such as 
logical calculation, signal processing and pattern recognition 
etc. Furthermore, its discrete feature can facilitate hardware 
implementation with less cost, reduce computation complexity, 
and be computationally simple to understand and interpret. 
Theoretically, a Madaline can be regarded as a special case of 
continuous feedforward  multiplayer neural networks. It is well 
known that continuous feedforward multiplayer neural 
networks are the most mature in techniques, for example the 
well-known back-propagation training algorithm has been 
proposed. Unfortunately, most of the techniques can’t be 
directly applied to Madalines due to their hard-limit activation 
function that is not differentiable. In literature, there are some 
studies on Madalines’ training algorithm. The most popular one 
is the MRII algorithm [1, 2] proposed by Winter and Widrow 
in 1988, which trains a Madaline by iteratively adapting the 
weights of some neurons according to the Minimal Disturbance 
Principle. But the algorithm’s success rate is very low and this 
hampers its application. 

The contribution of this paper is that it proposes a new 
training algorithm of Madalines, which adjusts not only the 
weight but also the architecture by employing a sensitivity 
measure of the networks’ neurons. The algorithm automatically 
search for both proper weight and as small as possible 
architecture so as to find a suitable Madaline for the given 
training data. The trained Madaline can satisfy required training 
accuracy and meanwhile has higher generalization performance. 
Since by now there has been no practical way to determine 
Madalines’ architecture, especially the number of hidden 
neurons, it is of great significance that the algorithm can release 
Madaline users from the burden of designing the network’s 
architecture and simply requires the users to only regard the 
network as a black box. Some computer simulations were run 
to verify the effectiveness of the algorithm. The experimental 
results show that the algorithm can, under a given training 
accuracy requirement and a casually given architecture, train 
Madalines with smaller architecture and higher generalization 
performance. 

The rest of this paper is arranged as follows. Section II 
briefly introduces the Madaline’s model and the notations used 
in the following sections. Section III discusses the technical 
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essentials which are the sensitivity measure of Adalines, the 
improved training procedure based on MRII with only weight 
adjusting, and architecture pruning. Then in Section IV we 
present our training algorithm by assembling the essentials. 
The experimental verifications are presented in Secction V. 
Section VI finally concludes the paper. 

II. THE MADALINE MODEL AND NOTATIONS

The Madaline considered in this paper is a kind of 
feedforward multilayered neural network that employs a 
supervised training mechanism to establish a mapping between 
its input and output. An Adaline (Adaptive linear elements) is a 
basic building block of Madalines with discrete input and 
output. Each element of the input takes on a bipolar value of 
either +1 or -1 and is associated with an adjustable weight of 
real number. The working process of an Adaline is that the 
summation of weighted input elements plus a bias is computed 
first, producing an analog value, which is then fed into an 
uncontinuous activation function to yield a bipolar output. The 
activation function adopted in our research is the commonly 
used symmetrical hard-limit function: 
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Generally, a Madaline may have L ( 1)L ≥  layers, and 

each layer l (1 )l L≤ ≤  has ln ( 1)ln ≥  Adalines. The 

form Lnnn −−− ...10  is used to represent a Madaline with a 
given architectural configuration, in which each ln
(0 )l L≤ ≤  not only stands for a layer from left to right 
including the input layer, but also indicates the number of 
Adalines in the layer. 0n  is an exception, which refers to the 
dimension of input vectors. Ln  refers to the output layer. Links 
in a Madaline only exist between Adalines of two adjacent 
layers, and there is no link between Adalines in the same layer 
and in any two non-adjacent layers. All Adalines in a layer are 
fully linked from all the Adalines in the immediately preceding 
layer and to all the Adalines in the immediately succeeding 
layer. Since the number of Adalines in layer 1−l  is equal to 
the output dimension of that layer, which is in turn equal to the 
input dimension of layer l , the input dimension of layer l  is 
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succeeding layer. For an entire Madaline, the input vector is 
1X  or 0Y , its weight is LWWW ∪∪= ...1 , and its output 

is LY . Let Tl
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and weight vectors respectively. 

III. THE TECHNICAL ESSENTIALS OF THE TRAINING 
ALGORITHM

A. The sensitivity measures of Adalines 
Usually, the sensitivity measure of a Madaline reflects the 

effects of its parameters’ variation on its output [3, 4]. In 
Madalines’ training, it is expected that an adaptation of an 
Adaline’s weights can result in a change of the Adaline’s 
output and then a change of the corresponding Madaline’s 
output. Therefore, the sensitivity of Adalines with respect to 
weight variation can be a useful measure for selecting 
appropriate Adaline for weight adaptation during the training 
process. Taking all possible inputs into consideration, we adopt 
the following definition for the sensitivity of Adalines to 
weight variation. 

Definition: The sensitivity of an Adaline is defined as the 
probability of output inversions of the Adaline due to its weight 
variation with respect to all inputs, which is expressed as: 

))())((
2
1(),,( bXWfbWWXfEbWWs X +−+Δ+=Δ  (2) 

In (2), for simplicity, the superscript that marks the Adaline’s 
layer and the subscript that marks the Adaline’s order in a layer 
are omitted because the Adaline’s position in the network can 
be ignored without losing generality. In a similar way, the 
sensitivity of Adalines with respect to input variation can be 
defined and expressed as:  

))())((
2
1(),,( bXWfbWXXfEbWXs X +−+Δ+=Δ  (3) 

(3) reflects the variation degree of the Adaline’s output due 
to its input variation, and will be employed as the basis 
measure in the architecture pruning process. 

[5] has given an algorithm to compute (2), in which the 
sensitivity is quantified by establishing a geometric model of 
hypercube and using analytical geometry and tree techniques. 
For the details of the algorithm, please refer to [5].  

Obviously, the difference between (2) and (3) is that they 
deal with different parameters’ variation. The former focuses 
on weight variation while the latter focuses on input variation. 
Although (3) is different from (2) in variation, it can be easily 
transformed from (3) to (2), namely from input variation to 
weight variation. Because of the bipolar feature of Adalines’ 
input, the variation of an Adaline’s input element can only 
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can easily be transformed to jw' , which is equivalent to a 

change of the sign of jw . For this reason, the Adaline’s 
sensitivity with respect to input variation can be attributed to 
the Adaline’s sensitivity with respect to weight variation. So, 
the algorithm in [5] can also be used to compute (3). 

B. The improved training algorithm based on MRII 
In [1] and [2], Winter and Widrow presented the MRII 

algorithm for training Madalines. Different from the steepest 
descent rule, MRII is one of error correction learning rules. In 
MRII, the central idea is the Minimal Disturbance Principle 
which means that the established mapping for previously 
trained input samples should be disturbed as little as possible 
when a correction to the network is needed. The absolute value 
of summation of weighted input is used in MRII as one of the 
main factor of confidence level, which is a kind of measure to 
carry out the principle. 

How to choose the Adaline to update its weights is one of 
the crucial issues in Madaline training algorithms. Since the 
Adaline that confidence level is closest to zero is easier to be 
adjusted to reverse its output, Winter and Widrow proposed the 
Adaline’s confidence level as a suitable measure for the 
Minimal Disturbance Principle. However we think that the 
Adaline’s confidence level only satisfies the Minimal 
Disturbance Principle for current input sample and can’t reflect 
disturbance degree for other trained input samples. According 
to the definition of the sensitivity of Adalines, the sensitivity 
measure indicates the effect of weight variation on the input-
output mapping with respect to all possible input patterns. It 
means that if an Adaline has the least sensitivity, its output for 
all input patterns will be varied least with a given weight 
variation. So it is more suitable for replacing the absolute value 
of summation of weighted input with the sensitivity to meet the 
Minimal Disturbance Principle. 

Another crucial issue is weight adaptation rule. In the 
family of the error correction training algorithms, there are 
many weight adaptation rules, such as the Perceptron rule, the 
Mays rule, and the LMS rule etc. In our training algorithm, we 
use the weight adaptation rule introduced in [2], which comes 
from the Mays’ rule, as follows: 

( )( 1) ( ) [ ( ) ( )]
1

d kW W k W k X L d k XW k
n

ηΔ = + − = −
+

  (4) 

Where ( )W k  is the weight obtained at the kth iteration of 
adaptation and ( 1)W k +  is the weight after the k+1th iteration 
of adaptation, ( )d k  is the desired response, n  is the input 
dimension of Adaline, η  is the adaptation constant and L  is 
the adaptation level. If L  and η  are set to be 1, the output of 
the Adaline can be reversed in one iteration step. 

It is straightforward for us to compute weight variation, 
namely WΔ , of Adalines in a layer according to (4), and then 
compute their sensitivity values with the algorithm given in [3]. 
After that, confidence levels of Adalines can be obtained and 
are used to sort the Adalines in the layer.  

Summarizing the descriptions above, the improved training 
algorithm based on Adaline’s senstivity can be programmed as 
follows. 

1)  Randomly select a sample from the training data set;
2)  If the Madaline responses correctly to the current 

sample, go to step 4; 
3)  From the first layer to the last layer, do: 

a) Obtain weight variations that cause output inversion 
of the Adalines in current layer by (4), and compute 
their sensitivity and confidence level values; 

b) Sort the Adalines of current layer according to their 
confidence level values; 

c) For all possible k-wise (k is from 1 to min 3,
2

ln )

trials in the
2

ln  least confidence level do: 

If the trial can reduce the output errors of the 
Madaline, accept the trail, adapt weights of the 
Adalines involved in the trial, and go to step 2; 
otherwise reject the trial, restore the outputs of 
the Adalines involved in the trial to their 
previous values, and continue to do the next trial; 

d) Continue the loop to deal with the next layer.  
4)  Go to step 1 unless training accuracy meets the given 

requirement for all training samples or training epochs 
meet the given number. 

5) Output obtained weights and biases, and stop. 

C. The architecture pruning 
As mentioned previously, a neural network with smaller 

size of architecture can have many advantages. So it is desired 
in the training process to find a network that is not only 
trainable with given training data and required training 
accuracy but also has as small as possible size of architecture. 
In our research, we merge an architecture pruning procedure 
into the above training algorithm. The key question in 
architecture pruning is how to locate the least relevant Adalines 
in a well trained Madaline so that the pruning of them will 
cause as little performance loss as possible and be easy to 
compensate for the loss. One reasonable answer to the question 
is that a relative relevance measure of Adalines needs to be 
established. Once more, the sensitivity of Adalines can be 
employed for this purpose.  

The sensitivity can reflect an Adaline’s response to its input 
variation. Under a given input variation, the Adaline with 
sensitivity being zero or a very small value contributes less in 
the entire network since its output is approximately constant to 
the variation in its input. But, due to the sensitivity only having 
relation to the Adaline’s incoming weights and bearing no 
relation to its outgoing weights, the sensitivity itself is not 
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enough to reflect the influence of the Adaline on its 
immediately succeeding layer. It is noticed that the outgoing 
weights may also play an important role in determining the 
input of the Adalines in the succeeding layer. Even if the 
sensitivity is very small, it may be amplified by large 
magnitude of the outgoing weights and thus cause a large 
variation to the input of the succeeding Adalines. In order to 
overcome this shortcoming, [6] takes both the sensitivity and 
the outgoing weights into consideration to establish a relevance 
measure for an Adaline. The relevance of an Adaline is defined 
as follows. 

Definition: The relevance of an Adaline is defined as the 
multiplication of its sensitivity by the summation of the 
absolute values of its outgoing weights, which is expressed as: 
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Where l
ijv  is an element of outgoing weight l

iV ; and l
is  is the 

sensitivity, which is an average of those sensitivity values that 
are obtained by iteratively computing the sensitivity with only 
one input element varied once for all input elements. In this 
way we could restrict the sensitivity with input varying on a 
small scale because of the bipolar feature of the input elements.  

Obviously, the smaller the value of l
ir  is, the less variable 

the inputs of the succeeding Adalines are. Hence, the relevance 
measure is more accurate than the sensitivity in reflecting the 
effect of an Adaline on its succeeding Adalines. With the 
relevance measure it is available for locating the least relevant 
Adaline in a hidden layer. 

The removal of an Adaline will more or less cause a change 
in the performance of the Madaline. In order to avoid the loss 
as much as possible in the established performance, it is 
necessary to consider some compensations for the loss. One 
way is to adjust the biases of the Adalines in the immediately 
succeeding layer. If the average output of the given Adaline is 

l
iy , which can be approximately calculated with training 

samples, then for each Adaline, j 1(1 )lj n +≤ ≤ , in the next 
layer, 1+l , its bias could be adjusted by  

l
ij

l
i

l
j

l
j vybb *11 += ++ .             (6) 

Another way is to retrain the pruned Madaline, which will be 
discussed in the next section. For more detailed description of 
the pruning techniques, please refer to [6]. 

IV. THE TRAINING ALGORITHM

In this section, we assemble the technical essentials 
discussed in the last section to program an algorithm for 
training Madalines. The algorithm merges the architecture 
pruning into the improved training algorithm. For a given 
application, the input dimension and the number of Adalines of 
output layer could be determined with the application domain 
knowledge. According to the Stone-Weierstrass theorem [7], if 
the number of hidden Adalines is large enough, only one 

hidden layer is needed for a Madaline. So the algorithm only 
needs to consider automatically searching for proper number of 
hidden Adalines without the need of considering the number of 
hidden layers. Under a given training data set and required 
training accuracy as well as a casually given architecture, the 
algorithm will finally yields a Madaline with the smallest 
possible architecture and suitable weights. Below is the training 
algorithm: 

1)  Organize a Madaline with the preliminarily given 
architecture and randomly assign the initial weights 
and biases; 

2)  Use the given training data set and the algorithm of 
Section III’s part B to train the Madaline; 

3)  If the Madaline in training can meet the required 
training accuracy, then go to step 6 to prune it; 

4)  If there is saved Madaline, then restore the last saved 
Madaline and go to step 8 to stop;  

5)  Increase the number of hidden Adalines with random 
weights and go to step 2; 

6)  Save the trained Madaline, such as its architecture, 
weights and biases, compute all hidden Adalines’ 
sensitivity and relevance values, and remove the 
Adaline with the least relevance value;  

7)  Adjust the bias of each Adaline in the next layer of the 
pruned Madaline, and go to step 2 to retrain the pruned 
Madaline. 

8)  Output finally obtained architecture, weights and 
biases,  and stop. 

V. EXPERIMENTAL VERIFICATIONS

This section presents some experiments that were carried 
out to verify the effectiveness of the algorithm given in the last 
section. In our experiments, four representative problems were 
chosen. One is the XOR problem; another is the 
implementation of a logical function; the third is a 
classification problem from UCI repository [8]; and the fourth 
is an emulation problem. Four tables, each of which 
corresponding to one of the four problems, are given to show 
the training performance of the algorithm with architecture 
adjusting in comparison with that of the algorithm without 
architecture adjusting. 

In the experiments, we selected the initial weight and bias 
randomly, set the training accuracy to be 100 percent to meet 
the given training data, and forced the training epochs not to be 
more than 1000. In the following tables, we define the success 
rate as the proportion of the convergent Madalines to all the 
Madalines involved, and the generalization performance is the 
correctness rate of a convergent Madaline on the testing data 
set. For each Madaline in training, we trained it 20 times with 
the same initial architecture but different random weights and 
biases. The presented results are the averages of the 20 runs’ 
results. 

As a matter of convenience, in the tables of this section, we 
abbreviate the algorithm without architecture adjustment to 
Algorithm I, the algorithm with architecture adjustment to 
Algorithm II, the generalization performance of a trained 
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Madaline to Gen, and the initially given and finally trained 
architecture to Initial Arc and Final Arc.

Experiment A: 

In this part, the experimental results for solving the XOR 
problem are presented in Table I. In the experiment, 20 
Madalines with an initial architecture of 2-3-1 are trained by 
both Algorithm I and Algorithm II. Table I shows that 
Algorithm II can achieve 100% success rate (30% succeeded in 
the architecture of 2-2-1 and 70% in 2-3-1) while Algorithm I 
can only achieve 90% success rate. Further more, Algorithm II 
can yield smaller size of Madalines with architecture of 2-2-1, 
but Algorithm I can’t. 

TABLE I. EXPERIMENTAL RESULTS FOR THE XOR PROBLEM

Initial Arc 
Algorithm I Algorithm II 

Success  rate Final Arc  Success  rate 

2-3-1 90% 
2-2-1 30% 

2-3-1 70% 
Experiment B: 

This experiment involves implementing a Madaline to 
realize the following logical function: )()( edcbaF ∨∨∧∨= .
Since each logical variable in the expression has bipolar value 
of +1 or –1, there are altogether 52  different input samples. In 
the experiment, 24 samples were randomly selected as training 
samples and the left 8 are reserved as testing samples. The 
training starts with initial architecture of 5-2-1 and 5-3-1. The 
results of success rate and generalization performance are 
showed in Table II. From the table, we can see that when the 
initial architecture is 5-3-1, both the two algorithms can 
succeed for all the Madalines organized, but the generalization 
performance of Madalines trained by Algorithm II is most of 
the time better than that of Algorithm I, and 65% Madalines’ 
architecture can be pruned to 5-2-1. When the initial 
architecture is 5-2-1, the success rate of Algorithm I declines to 
65%, but the Algorithm II can still achieve 100% success rate 
(90% succeeded in 5-2-1 and 10% succeeded in 5-3-1). 

TABLE II. EXPERIMENTAL RESULTS FOR THE LOGICAL FUNCTION 
FROBLEM

Initial 
Arc 

Algorithm I Algorithm II 
Success 

rate Gen Final 
Arc  

Success 
rate Gen 

5-2-1 65% 81.73% 
5-2-1 90% 84.72% 

5-3-1 10% 100% 

5-3-1 100% 83.75% 
5-2-1 65% 89.42% 

5-3-1 35% 85.71% 

Experiment C: 

In this experiment, we adopted the benchmark data of the 
Monk’s problem from UCI repository [8]. According to the 
problem’s attribute information, except the Id attribute that is 
unique for each sample, the Monk’s problem has seven 
attributes including an output attribute indicating two classes 
and six input attributes. Among the input attributes, four of 
them have three or four possible values, and two of them have 

two possible values. Since Madalines’ input elements are 
bipolar, we need to use two input elements to represent each 
attribute with three or four values and one input element to 
represent each two-valued attribute. So, the experimental 
networks for the Monk’s problem have a 10-dimensional input 
and 1-dimensional output. We organized Madalines with initial 
architecture of 10-4-1 and 10-2-1. The results of the success 
rate and the generalization performance of trained Madalines 
are showed in Table III. From the table, we can see that when 
the initial architecture is 10-4-1, all the Madalines can be 
trained by the two algorithms successfully, but Algorithm II 
can prune all the Madalines’ architecture to 10-3-1 and the 
generalization performance of the Madalines trained by it is 
better than that by the Algorithm I. When the initial 
architecture is 10-2-1, no Madaline can be successfully trained 
by Algorithm I, but all Madalines can still be trained in 
architecture 10-3-1 by Algorithm II. 

TABLE III. EXPERIMENTAL RESULTS FOR THE MONK1 PROBLEM

Initial 
Arc 

Algorithm I Algorithm II 

Success 
rate Gen Final 

Arc  
Success 

rate Gen 

10-2-1 0 - 10-3-1 100% 92.29% 

10-4-1 100% 91.15% 10-3-1 100% 92.97% 

Experiment D: 

In order to further verify the effectiveness of the algorithm 
with architecture adjusting, we performed some experiments on 
emulation problem. In the experiments, we set a reference 
Madaline of 12-3-1 with randomly assigned weights as a 
teacher, and then obtained the training dataset and testing 
dataset by randomly selecting possible input patterns, 512 
patterns for training and 256 patterns for testing, and their 
corresponding ideal outputs from the reference Madaline. We 
organized Madalines with initial architecture of 12-4-1 and 12-
3-1. Table IV shows the experimental results. From the table, 
we can see that when the initial architecture is 12-4-1, the 
success rate of Algorithm I is 85%, but all the Madalines can 
be successfully trained by Algorithm II, and 80% of them even 
have a smaller architecture of 12-3-1, so their generalization 
performance is also be improved. When the initial architecture 
is 12-3-1, the success rate of Algorithm I declines to 55%, but 
Algorithm II can still achieve 100% success rate (95% succeed 
in 12-3-1, and 5% succeed in 12-4-1). 

TABLE IV. EXPERIMENTAL RESULTS FOR THE EMULATION PROBLEM

Initial 
Arc 

Algorithm I Algorithm II 

Success 
rate Gen Final 

Arc  
Success 

rate Gen 

12-3-1 55% 94.07% 
12-3-1 95% 94.20% 

12-4-1 5% 95.31% 

12-4-1 85% 93.26% 

12-3-1 80% 94.34% 

12-4-1 15% 94.27% 

12-5-1 5% 96.48% 
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VI. CONCLUSION

In this paper, a new training algorithm of Madalines is 
proposed, which is built on the basis of a sensitivity measure of 
Adalines and Madaline architecture pruning techniques. By 
introducing architecture adjusting into the training process, the 
algorithm can guarantee to train a Madaline to realize the 
mapping implied in given training data set and meanwhile have 
as small as possible architecture. 

The experimental results indicate that our algorithm can 
make the following improvements over the previous 
Madaline’s training algorithms:  

• It can greatly improve the training success rate of 
Madalines, which is very low for other training 
algorithms of Madalines; 

• It can automatically find a suitable architecture for the 
Madaline during the training process; 

•  It can improve the generalization performance of the 
trained Madaline. 

There are still some parts in the algorithm that need to be 
further studied. One is how to determine a proper weight 
variation to compute the sensitivity value. In the algorithm we 
used winter’s rule [2] to obtain the weight variation, which can 
make the output reverse in one iteration step so as to reduce the 
cost of computation. But it does not mean that thus obtained 
weight variation is reasonably small. Consequently, when we 
update the weight during training, we are not sure it is the least 
variation of weight to meet the Minimal Disturbance Principle, 
which is an important fact for the performance improvement of 
the training algorithm. Another is that the sensitivity of 
Adalines can only be employed to determine a sequence of 
trials on the reversions of some Adalines’ outputs, but some of 
the trials may be rejected if their reversions can not reduce the 
output errors of the Madaline in training. Conceptually, the 

sensitivity of a Madaline to weight variation directly reflects 
the effect of the weight adaptation on the network’s output, and 
it may be more helpful than the sensitivity of an Adaline to 
locate the weight for adaptation, and thus avoid unnecessary 
trials. 

In our future research, we will try to find other adaption 
methods for quickly getting the optimal weight variation. In 
addition, we will explore how to employ the sensitivity 
measure of Madalines to improve the performance of the 
Madaline training algorithms. 
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