
A QoS Information Dissemination Service for SOA-
based CSCW Applications

Xiao Zheng1,2, Junzhou Luo1, Jiuxin Cao1

1 School of Computer Science and Engineering
Southeast University

Nanjing, China
{xzheng,jluo,jx.cao}@seu.edu.cn

2 School of Computer Science
Anhui University of Technology

Maanshan, China

Abstract—A fundamental problem that confronts SOA-based
CSCW applications is the efficient and timely QoS information
obtainment of component services. However, this issue has
largely been overlooked. This paper presents a P2P based
publish/subscribe service to disseminate new revised QoS
information reliably and efficiently. Specialized rendezvous
points and a replica mechanism are introduced to reduce the risk
of subscriptions loss and consequently improve reliability. A
message buffering and packaged delivery mechanism helps to
reduce notification traffic. A reverse Chord ring, called RP ring,
is designed to quicken subscription delivery and QoS information
publication. Node partitioning technique is suggested to tackle
the load balancing issue. Simulation results show that the service
is reliable, efficient and scalable.

Keywords—Service Oriented Architecture, Computer
Supported Cooperative Work, quality of service, information
dissemniation

I. INTRODUCTION

As the cooperative work becomes more and more large and
complex, flexibility turns into a great challenge for design of
Computer Supported Cooperative Work (CSCW) systems [1].
Service Oriented Architecture (SOA)[2] based applications are
built by combining network-available services, which have the
features of flexibility, reusability and scalability. Consequently,
there has recently been an increase in the use of SOA to build
CSCW systems, which typically includes BizTalk[3],
CoFrame[4], GATiB-CSCW[5] and so on. In SOA based
CSCW systems, basic function blocks and platforms are
packaged and published as services, which communicate with
each other using a loosely coupled interaction mode.

Quality of Service (QoS) information for services is
essential to SOA based applications. Service oriented
computing (SOC) environment is usually a dynamic and
volatile environment where the QoS parameters of services
always change during their lifetime[6]. Due to lack of
automatic QoS publication mechanisms, most service providers
are unwilling or forget to update QoS information of services
after publishing them in Universal Business Registries(UBR).
It means that many of the information contained within UBRs
is not accurate. Consequently, it consumed more resources
when performing Web service binding and took longer to
execute communication with unavailable Web services.
Accordingly, it is necessary to make service consumers know
the new revised QoS information.

Current QoS obtainment mechanisms of services usually
involve query-based or monitoring-based methods [7-10].
Query-based methods actively request QoS information of
service providers, and usually initiate query periodically or
trigger query event under particular conditions. Monitoring-
based mechanisms design an engine to monitor QoS in an
objective and reliable way. The monitoring engine can run on
the provider side, as part of the service middleware, or be
placed outside acting as a central proxy. It intercepts the
messages exchanged between the service consumer and the
provider and outputs an estimate of the delivered QoS.

However, a SOA-based CSCW system is considered as a
typical composite service, where many autonomous services
are cooperative to perform a task. Current QoS obtainment
mechanisms suffer some or all of the following limitations in
such environments. Firstly, the service provider usually needs
distribute QoS information of services to many interested
consumers. This distribution mode is unidirectional one-to-
many style. However the request-response mechanism is a one-
to-one bidirectional communication style that overloads
transport network and not accommodates large-scale QoS
information diffusion. Secondly, a service consumer initiates
request when it need latest QoS information. This style cannot
assure obtaining QoS in time, because the response time is
uncertain in a volatile network. In addition, in query-base
methods service consumers initiate communication, which is
about twice time-consuming than the style of directly
distributing messages to consumers. The last problem is
scalability. When the monitor intercepts all service invocations,
it acts as a central proxy and soon becomes a performance
bottleneck.

In order to solve above problems, this paper proposes
Pat4C(Pat for CSCW applications), a fully distributed, efficient,
fault-tolerant and scalable service for QoS information
dissemination based on the publish/subscribe (pub/sub)
mechanism. Pat4C aims at reliable and efficient QoS
information dissemination for SOA-based CSCW applications.

II. RELATED WORK

Recently, researchers are increasingly turning their
attention to building reliable and adaptable CSCW applications
based on SOA. In this research field, how to obtain up-to-date
knowledge of the current QoS parameters of all the component
services is a challenge. In general, QoS parameters can be
classified into three categories, based on the approaches to

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
3687

obtain them, which are provider-advertised, consumer-rated
and observable parameters[10]. The last two types of QoS
parameters are more suitable to be obtained by monitoring-
based methods, which are not considered in this paper.

Provider-advertised parameters are usually obtained by
query-based methods. Au et al. [7] obtained current parameters
of the workflow by querying all the Web service providers
when the parameters expire. However, this may lead to some
unnecessary queries if the QoS value in fact does not change
after its expiration. Improving on this work, Harney et al. [8,9]
successively propose two mechanisms called the value of
changed information (VOC) and VOC with expiration
times(VOC) respectively. By VOC or VOC , the expected
impact of the revised information on the web process could be
calculated. If the change brought about by the revised
information were worth the cost of obtaining it, query would be
preformed. These approaches are selective query. Thus, the
mechanisms avoid “unnecessary” queries in comparison with
the naive approach of periodically querying all the service
providers. However, due to the issues discussed in Section 1,
such query-based methods are not suitable for large-scale QoS
information dissemination in SOA-based CSCW environments.

Different from above works, we propose a pub/sub system
to obtain updated QoS parameters. Pub/sub is an event-based
system: clients subscribe to the event service, while servers
publish notifications, which will be dispatched to attended
recipients[12,14]. The idea of using pub/sub to selective
disseminate service information has been used in UDDIv3[11].
However, its pub/sub mechanism is a simple one-to-one
distribution style. It could not disseminate large-volume
information to multi-consumers. Content-based distributed
pub/sub system is a powerful alternative for information
dissemination in large-scale distributed networks. Ferry [12] is
a well-known content-based pub/sub system, which extensively
exploits Chord [13] as the underlying overlay structure to build
an efficient and scalable platform to host multiple pub/sub
services with unique schemes.

QoS information dissemination services should have such
features: scalability, delivery efficiency and reliability.
Although Ferry addresses the first two issues, it largely
overlooks reliability issues. In addition to solve all the three
issues, according to the character of SOA-based CSCW
applications, our special service can optimize the performance
in many aspects, such as speeding up message delivery and
reducing notification traffic.

III. ASSUMPTIONS AND TERMINOLOGY

This paper only considers provider-advertised QoS
parameters, involving cost, response time, capacity, availability
etc., which are influenced by provider subjective views[10].
The definitions of these QoS parameters can refer to [6].
Assume that every provider honestly complies with what it
advertised, which means the published QoS information is true
and worth of trust.

According to the universal content-based pub/sub scheme
proposed by [14], a QoS pub/sub scheme could be formally
defined as S={U,q1,q2,…,qn}, where U={ui|i=1..n} and ui
denotes the URI of involved service i and qi denotes a QoS

parameter which can be specified by a tuple(QoS expression,
type, domain). Typical operators offered by QoS expression are
arithmetic and logical operators, such as plus(s1+s2),
multiplication(s1*s2), conjunction(s1 & s2), disjunction(s1 ||
s2).The type could be integer, float, string, etc. The domain can
be specified as a set of (min,max). The min and max define the
range of domain values taken by the given parameter. In order
to distinguish the owner of a QoS parameter, a service’s URI
identifier should be added as a prefix, such as s1.Cost.

The QoS pub/sub scheme is used to produce a QoS
subscription or a QoS notification which can be recognized by
all members of the pub/sub system. For example, p={(s1,s2,s3),
((s1.ResponseTime+ s2.ResponseTime) || s3.ResponseTime,
100,+,)} means this QoS subscription p involves three
services s1,s2 and s3. The subscription predicate is that the total
ResponseTime of s1 and s2 or the ResponseTime of s3 is more
than 100. A QoS notification is the URI of a Web service with
a set of QoS parameters S and it can be represented as e
={ u=u1,q1=c1,q2=c2, , qn=cn}. u1 is always a const string
which denotes the definite URI of a Web service. A predicate ci
has a name, type, min, max and probability and is used to
specify a constant value or range with probability for a
parameter. It can be simplified as (min, max, probability). For
example, [ResponseTime, float, <(0,0.2,40%), (0.2, + ,60%)>]
means QoS parameter ResponseTime is less than 0.2s with
probability 40%, and more than 0.2s with probability 60%.

IV. SYSTEM DESIGN

Pat4C is essentially a rendezvous network[16] built on top
of Chord to support QoS information distribution. Figure 1
illustrates its architecture. It consists of two kinds of
components, client and rendezvous point(RP). For example, ri
(i=1..4) are RP nodes and ci (i=1..5) are clients in figure 1.
Clients can serve as service providers or service consumers
(QoS subscribers). RP is a meeting point for advertisements
and subscriptions, which is known to both providers and
consumers. Different from most of existing pub/sub systems,
Pat4C’s RP node is a specialized node set by system and has an
invariable and fixed ID. The idea is that the system needs
reliable RP nodes and should not make consumers or providers
process heavy job including subscription management and
matching.

Given a QoS pub/sub scheme S={U,q1,q2,…,qn}, the node
ID of an RP node equals to ki=h(qi), where ki is a key derived
from an parameter qi by using the consistent hash function h(),
which is used in Chord to produce node IDs and data keys.
The total number of RP nodes in a system is therefore equal to
the number of parameters in the unique scheme. RP nodes are
interconnected to form a reverse Chord ring, called RP
(Rendezvous Point) ring. There are therefore two rings in the
system. One is a Chord ring consisting of RP nodes and clients,
and another is a RP ring only involving RP nodes. Each node
contains a Chord finger table and a Chord successor list, which
are as same as those used in Chord. RP node need additionally
maintain a RP ring’s finger table and successor list. In Chord,
the successor list and finger table record routing information,
which consulted by the host node to route a message with a key
k to a destination node whose ID is the successor of k.

3688

r2
r3

r4 r1

RPring finger table
RPring successor list
Chord finger table
Chord successor list

Chord finger table
Chord successor list

c3

c1

c2

c4

c5

PSS: s(c4)
SSS: s(c5)

PSS: s(c3)
SSS: s(c4)

Figure 1. Structure of Pat4C. s(x) denotes all subscriptions from client x.

A. Subscription installation and management
When a consumer wishes to subscribe for some QoS

information, it has to publish its interests to a RP node in the
form of subscription s=(sid, p). sid denotes node ID of the
subscriber, p is its QoS subscription. Algorithm 1 outlines the
installation process, called InstallAroundRP. The basic idea
behind InstallAroundRP is that a subscription s is stored in two
RP nodes around s’s sid. Figure 1 illustrates the result of
installation. Subscriptions from c4 will be delivered to r4
through Chord ring, and subsequently be delivered to r3
through RP ring. Therefore, r3 owns subscriptions from c3 and
c4 which belong to two regions: one region precedes r3, another
follows r3. In a RP node, all subscriptions produced by
previous client nodes on the Chord ring are called predecessor
subscriptions which compose a Predecessor Subscription
Set(PSS) , and those from following clients are called successor
subscriptions which compose a Successor Subscription
Set(SSS). Predecessor subscriptions are replicas that are used
to recover subscriptions after their host RP node failures. We
only need to deal with the management of successor
subscriptions. In this mode, a subscription only traverses a
fraction of the Chord ring and doesn’t need to traverse the
whole ring. Similarly, a QoS notification also needs to be
delivered among this fraction only. Compared to randomly
choosing a RP node to install subscriptions or selecting the
previous RP node suggested in[12], our algorithm avoids
sending the redundant messages across the Chord ring space
and making the message traverse a shorter path of the system.

In order to use Chord’s routing approach to delivery QoS
notification, a subscription table is built to map subscriptions to
neighbor nodes including successor nodes and finger nodes. As
illustrated in figure 2, the entry of a subscription table is
composed of neighbor and subscription, where neighbor
denotes a successor node or finger node and subscription
denotes subscriptions in SSS. A subscription s is stored in the
entry of a neighbor whose node ID is equal to or most
immediately precedes s.sid. For example, subscriptions from ci2,
ci3 are stored in the entry of fi1 because their ID is in the range
from fi1 to fi2. Note that successor nodes and finger nodes are
also clients in Pat4C. In order to show their features of routing
tag, they are labeled by sij (j=1,2) and fij (j=1..3) respectively in
figure 2.

Algorithm 2 outlines how to store a subscription. Because
PSS is used for subscription backup, its subscriptions do not
need be considered. A RP node only manages SSS.

fi1

ri+1 ri

ci2

ci1

ci4

neighbor

si1
si2
fi1
fi2
fi3

Subscription

-
s(ci1)

s(ci2),s(ci3)
-

s(fi3)

si1

si2

ci3
fi2

fi3

...
Subscription Table

Figure 2. A subscription table.s(x) denotes all subscriptions from client x.

Figure 3. Algorithms used in Pat4C

B. QoS information publication
Because any RP node may have same subscriptions, QoS

information will be published to all RP nodes. RP ring could
quicken QoS information delivery among all RP nodes. The
publication algorithm outlined in algorithm 3 also utilizes
underlying Chord routing protocol to transfer QoS notification.
Firstly, service providers find the nearest RP node among all
RP nodes and send a new QoS notification message to it.
Secondly, the message is distributed to all RP nodes of the RP
ring through a recursive process. Note that algorithm 3 and 4
outline the process of publication from a whole view. In fact all
RP nodes in the RP ring will perform this publication operation
in parallel.

C. QoS notification buffering and packaged delivery
QoS notification messages only need to traverse a fraction

of the Chord ring space due to the fact that each RP node only
stores those subscriptions from a nonoverlapped, contiguous
region of the Chord ring space. According to algorithm 1, a
subscription is stored in two different nearest-neighbor RP
nodes. Each RP node therefore stores QoS subscriptions
coming from its two sides. Each RP node only need deliver

Algorithm 1 InstallAroundRP(Subscription s)
1: choose a RP node r1 which is the most immediate

successor of s.sid among all RP nodes
2: store s in r1
3: store s in another RP node r2 which is the direct successor

of r1 in the RP ring
Algorithm 2 StoreSubscription(Subscription s)

1: find the neighbor node ni whose ID is equal to or most
immediately precedes s.sid

2: store s into ni’s entry
Algorithm 3 PublishQoSInfo(QoSInformation e)

1: find a nearest RP node r1 and send e to it
2: n = the index of hash space 2n

3: BinaryDeliveryinRPring(e, r1, n) //send e to all RP nodes in
the RP ring
Algorithm 4 BinaryDeliveryinRPring(QoSInformation e, RPnode
r, Round n)

1: select a RP node rm which is the most immediate successor
of r’s ID+ 2n-1 in r’s reverse finger table

2:if rm!= r then
3: send e to rm

4: BinaryDeliveryinRPring (e,r,n-1)
5: BinaryDeliveryinRPring (e,rm,n-1)
6: endif

3689

QoS notification to its subsequent matched subscribers along
clockwise ring in order to get shorter delivery path.

There are plenty of notification messages in pub/sub
systems. It is important to reduce such messages because any
reduction in the number of messages leads to a reduction in the
overhead involved in packaging and delivering each individual
message, and to an improvement in scalability. SOA based
applications are usually implemented by interaction and
collaboration of multiply services that construct a composite
service according to a definite business workflow. If it is only
allowed to subscribe to component services within a composite
service respectively, the subscriber or service consumer will
hardly be satisfied with plenty of invaluable notifications. For
example, figure 4 shows a composite service described by
WSC graph we suggested in [16]. s1,s2 and s3 compose a
parallel execution path, which means s1 and s2 must be
executed in parallel with s3. The consumer of the composite
service only considers the end-to-end QoS from ss to sd. No
matter how the QoS of s1 or s2 changes, it is good that the
whole QoS is smaller than a threshold. It is possible that the
QoS of s1 increases while that of s2 decreases, and the total QoS
of s1 and s2 does not change. Only considering the subscription
of a single component service is senseless for a composite
service. The QoS of a composite service is decided by
component service in it. References [6,17] introduce how to
calculate the QoS value of a composite service according to
that of the component services.

s1

s3

s2 sd
ss *

Figure 4. Example of a composite service

Due to a composite service consisting of several component
services whose QoS notifications reach RP nodes at different
time, a buffer should be set at each RP node to temporarily
store these incoming notifications. When all involved
component services in a certain subscription can be got in a
buffer, the end-to-end QoS will be calculated to compare with
the subscription. If the matching succeeds, all the related QoS
information will be packaged to a single notification. Because
all the subscriptions of composite service are stored in a same
RP node, end-to-end QoS can be calculated locally.

The method of end-to-end QoS subscription reduces the
notification traffic in two aspects. An experiment described in
Section 5 shows the quantity of the reduction. Firstly, upon
QoS information of component services stored in the buffer is
matched with an end-to-end QoS subscription, the RP node will
create a notification and deliver it to interested subscribers.
Thus this mechanism reduces traffic generated by messages of
component services. Secondly, this method also can reduce
small and frequent notifications. After using this method,
multiple QoS information of component services can be
packaged within a single notification message. This way, the
headers that would have been transmitted with every individual
message are reduced to a single header on a grouped message.
In addition, an end-to-end QoS criterion is calculated at the RP
node, which helps to reduce subscribers’ overhead and improve
their efficiency.

In Ferry, events are disseminated along an EmdTreer [12]
from the RP node r to the subscribers. EmdTreer is an
embedded tree rooted at node r which is formed by the DHT
overlay links. Pat4C also utilizes EmdTreer to disseminate QoS
notification. For the sake of space limitation, we will not
discuss them in detail.

D. Fault-tolerance
Node failure is a common phenomenon in a volatile

network environment. Throughout the entire design, fault-
tolerance plays an important role in a reliable QoS
dissemination system. Our service takes advantage of the fault-
tolerance and recovery mechanisms provided by the Chord
routing layer. This enables it to survive multiple link and RP
node failures and adapt its routing state so that it can still
deliver QoS notifications to subscribers.

Client nodes include service providers and service
customers. Service customers subscribe to QoS information.
Their failures do not influence the whole pub/sub system. But
service providers’ failures mean that they stop providing
corresponding services. This situation must be notified to
interested consumers, however, which could not be actively
advertised by the failure node. Pat4C sends a failure
notification to all RP nodes after Chord ring having been
repaired.

r1

c3

c1
c2

c4
r3

r2

c0c0;c1,c2

c3;c4
c1,c2;c3

c1,c2

c3

(a) (b)

r1

c3

c1
c2

r3

c0c0;c1,c2

c3;c4

r1

c3

c1
c2

c4
r3

c0c0;c1,c2

c3;c4

(c) (d)

r1

c3

c1
c2

r3

c0c0;c1,c2,c3

c1,c2,c3;c4

c4

Figure 5. Recovery after RP node r2 fails

A RP node is a key point of the pub/sub system. If a RP
node fails, all subscriptions stored at it will be lost, which will
lead to corresponding subscribers not receiving new QoS
notifications any more. Pat4C uses two methods to avoid RP
node failure and recover subscriptions once a RP node indeed
fails. Firstly, all RP nodes in Pat4C are specified and high
reliable servers can serve as these nodes, which can be done in
a real CSCW system. Secondly, algorithm 1 replicates
subscriptions to another neighbor RP node. This guarantees not
losing subscription to a large extent. Once a RP node fails,
Pat4C will immediately recover the RP ring and replicate
subscriptions between the new linked RP nodes. Figure 5
illustrates such process. (a) r2 fails and subscriptions from c1,c2
and c3 are also lost. (b) Pat4C recovers RP ring and Chord ring
through underlying Chord algorithm. (c) r1 delivers

3690

subscriptions of c1 and c2 along Chord ring, and r3 send
subscriptions of c3 to r1 by one hop. (d) Subscriptions are
recovered. The nodes IDs preceding a semicolon in figure 5
indicate predecessor subscriptions, and ones following the
semicolon indicate successor subscriptions.

E. RP node partitioning
In Pat4C, the number of RP nodes is equal to the number

of parameters in the QoS pub/sub scheme. This limitation also
significantly reduces the scalability of the whole system. If the
number of parameters is small, a large number of subscriptions
and QoS information may overload the RP nodes. Moreover, it
is possible that some RP nodes have plenty of subscriptions
and others have few.

Subscription partitioning [18] is an effective load balancing
technical that divides scheme’s attribute range into several sub-
ranges. Pat4C adopts this technique to tackle the load balancing
issue. For example, consider that a QoS pub/sub scheme S has
a parameter Cost and its value range is [0,100]. Without
partitioning, there is only one RP node. If we partition Cost into
several nonoverlapped contiguous ranges, [0,30],(30,60) and
(60,100), we may create three RP nodes by hashing the
parameter name Cost with a range. Thus, this method can
produce more RP nodes and distribute load over them. Note
that, once a RP node is overloaded, a partitioning action will be
taken.

V. SIMULATION RESULTS

This section evaluates our system by simulation. Our
simulation is based on p2psim which is a widely-used multi-
threaded, discrete event simulator to evaluate and investigate
P2P based systems. The QoS pub/sub scheme S used in our
experiments is defined as

S={[URI,string],[Cost,float,< 0,+ >], [ServiceIsAlive,
boolean], [ResponseTime, float,< 0, + >], [Capacity, integer,
<1, 100>], [Availability, float,<0, 100>]}.

The simulations were initialized with a Chord ring
consisting of five RP nodes because of only five parameters in
S. Subsequently a reverse RP ring was also created. A new
client node joins the system at a randomly chosen time until the
total number of nodes reaches a bound. When the system
reached a stable state, we scheduled subscription installation
events into the system to store the subscriptions. After QoS
subscription installation, the QoS information publication was
modeled as exponential distribution with an average
interarrival time of 60 seconds. The QoS notification was
generated randomly from S and we used 5,000 QoS
information in simulations.

 Four metrics are listed below to evaluate the performance
and cost of Pat4C. Hops are the average number of overlay
hops taken by a pub/sub system to deliver a message to all of
its subscribers. Delivery overhead is the ratio of the number of
intermediate nodes involved during the delivery of messages to
the number of interested subscribers. Load imbalance ratio is
the ratio of maximum load to the minimum load among all RP
nodes. The lower the load imbalance ratio, the better the

performance of load balancing. Notification traffic is the
average number of notification messages.

Firstly, we examined the performance of Pat4C. Figure 6
and 7 show hops and overhead with different network sizes and
various percentages of nodes as subscribers respectively. As
the network size increases from 1,000 to 10,000, the hops and
overhead incurred by QoS notification delivery increase
modestly. This shows that Pat4C can scale to a large number of
nodes. Figure 6 also shows that the percentages of nodes as
subscribers hardly impact hops. With the percentages of nodes
as subscribers for the same QoS notification increasing, the
overhead decreases significantly. This is because messages
transfer among more subscribers upon more intermediate nodes
becoming subscribers. Hence, Pat4C is very suitable for
delivering messages to a large number of subscribers.

Table 1 shows that subscription distribution changes from
imbalance to balance after RP node partitioning. Initially, there
are 5 RP nodes, and the load imbalance ratio is 2.5. After
subscription partitioning the load balance ratio decreases
rapidly and reaches 1.2 upon 5 new RP nodes being created.
This is because new RP nodes averagely bear some load from
the RP node of higher load.

Following experiments were conducted to examine our
optimization for reduction of notification traffic. The composite
service described in figure 4 serves as a model to generate
subscriptions for component services and composite services
respectively. The generated end-to-end subscription and the
subscriptions for s1, s2 and s3 have the same goal. QoS
information of s1, s2 and s3 are generated at random, the number
of which is from 100 to 1000. Figure 8 shows the comparison
in the number of matched and generated notification messages,
which will be delivered to the subscriber.

Pat4C and Ferry have different design purposes. Pat4C is
specially used for QoS notification dissemination, while Ferry
is a universal platform for multiple pub/sub services. However,
because they all use Chord as underlying links, we can
compare them in terms of message delivery performance.
Pat4C adopts an event delivery algorithm similar to Ferry’s, so
we compare Pat4C and Ferry in terms of subscription
installation. Figure 9 shows the hops of Pat4C and Ferry in
different network sizes. Compared with Ferry, Pat4C can
dramatically reduce hops. This is because the RP ring helps
quicken messages delivery. Ferry’s PredRP algorithm must
install subscriptions at subscriber’s preceding RP node which
will lead to messages traversing along the whole Chord ring
space, while Pat4C’s InstallAroundRP algorithm not only
quickly delivers subscriptions to the preceding RP node
through reverse one hop of RP ring, but also creates a replica at
subscriber’s successor RP node.

TABLE I. SUBSCRIPTION DISTRIBUTION WITH RP NODE PARTITIONING

Number of RP nodes 5 6 7 8 9 10

Load imbalance ratio 2.5 2.3 1.9 1.5 1.3 1.2

3691

Figure 6. Comparison of hops with different
network sizes and various percentages of nodes

as subscribers.

Figure 7. Comparison of overhead with
different network sizes and various percentages

of nodes as subscribers.

Figure 8. Comparison of notification traffic
with/without end-to-end QoS subscription.

0 2 4 6 8 10
2

3

4

ho
ps

number of nodes (x103)

 Ferry
 Pat4C

Figure 9. Comparison between Pat4C and Ferry in subscription installation.

VI. CONCLUSIONS

Pat4C is a P2P based pub/sub service for QoS information
dissemination of Web services. It not only maintains the
scalability of the underlying Chord network, but also improves
reliability and timelines guarantee especially for QoS
information obtainment. Compared to query-based and
monitoring-based mechanisms, Pat4C has the advantages of
low cost, timely distribution and scalability, which is suitable
to large-volume QoS information distribution. Moreover,
Pat4C, built into SOA based CSCW applications, could be
used to provide updated QoS information of services for
maintaining the flexibility of the whole applications.

Though our work has achieved initial success, some issues
need to be explored in near future. For example, if two
adjacent RP nodes fail, the collective subscriptions stored in
them will be lost and never be recovered. The possibility of
such situation happening will be evaluated and a more reliable
method will be built into Pat4C in near future.

ACKNOWLEDGMENT

This work is supported by National Natural Science
Foundation of China under Grants No. 60773103, China
Specialized Research Fund for the Doctoral Program of Higher
Education under Grant No. 200802860031, Jiangsu Provincial
Natural Science Foundation of China under Grants No.
BK2007708 and BK2008030, Jiangsu Provincial Key
Laboratory of Network and Information Security under Grants
No. BM2003201 and Key Laboratory of Computer Network
and Information Integration (Southeast University), Ministry
of Education under Grants No. 93K-9.

REFERENCES

[1] P. H. Carstensen, K. Schmidt,” Computer Supported Cooperative Work:
New Challenges to Systems Design,” Kenji Itoh (ed.). Handbook of
Human Factors, Tokyo, 1999.

[2] M. N. Huhns, M. P. Singh,”Service-Oriented Computing:Key Concepts
and Principles,” IEEE Internet Computing, 2005, 9(1): 75-81.

[3] Learn BizTalk Sever. http://msdn.microsoft.com/zh-
cn/biztalk/aa937649(en-us).aspx

[4] J. Jiang, S. Zhang, Y. Li, M. Shi, “CoFrame: A Framework for CSCW
Applications Based on Grid and Web Services,” IEEE Int’l Conf. on
Web Services (ICWS’05).2005.

[5] K. Stark, J. Schulte, T. Hampe,”GATiB-CSCW, Medical Research
Supported by a Service-Oriented Collaborative System,” CAiSE 2008,
LNCS 5074, pp. 148–162, 2008.

[6] S. Ran, “A Model for Web Services Discovery with QoS”, ACM
SIGecom Exchanges, 2004,4(1),1-10.

[7] T.-C. Au, U. Kuter, D. S. Nau, “Web Service Composition with Volatile
Information”, International Semantic Web Conference, 2005, pp. 52–66.

[8] J. Harney and P. Doshi, “Adaptive Web Processes Using Value of
Changed Information”, Proc. Int’l Conf. on Service-Oriented
Computing,2006, pp. 179–190.

[9] J. Harney and P. Doshi, “Speeding up Adaptation of Web Service
Compositions Using Expiration Times”, Int’l World Wide Web Conf.,
2007, pp.1023-1032.

[10] L. Zeng, H. Lei, and H. Chang, “Monitoring the QoS for Web
Services”, Proc. Int’l Conference on Service-Oriented Computing,
LNCS 4749, 2007, pp. 132–144.

[11] L. Clement, A. Hately, C.V. Riegen, T. Rogers, “Universal Description
Discovery & Integration (UDDI) 3.0.2. 2004”, http://uddi.org/
pubs/uddi_v3.htm

[12] Y. Zhu and Y. Hu,”Ferry: A P2P-Based Architecture for Content-Based
Publish/Subscribe Services”, IEEE Trans. On Parallel and Distributed
Systems, 2007, 18(5),672-685.

[13] I. Stoica, R. Morris, et al.,“Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications”, Proc. ACM SIGCOMM, Augest
2001, pp. 149-160.

[14] F. Fabret, H.A. Jacobsen, et al., “Filtering Algorithms and
Implementation for Very Fast Publish/Subscribe Systems”, Proc. ACM
SIGMOD, 2001, pp. 115-126.

[15] I. Stoica, et al., “Internet Indirection Infrastructure”, Proc. ACM
SIGCOMM, Pittsburgh, PA, 2002, pp. 73-86.

[16] X. Zheng, J. Luo, et al., “Ant Colony System Based Algorithm for QoS-
Aware Web Service Selection”, Int’l Conf. on Grid Service Engineering
and Management (GSEM 2007), September 2007, LNI 117, pp.39-50.

[17] D. A. Menascé, “Composing Web Services: A QoS View”, IEEE
Internet computing, 2004,8(9), pp.88-90.

[18] Y.-M. Wang, L. Qiu, D. Achlioptas, et al., “Subscription Partitioning
and Routing in Content-Based Publish/Subscribe Systems,” Proc. 16th
Int’l Symp. Distributed Computing (DISC ’02), Oct. 2002.

0 1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

ho
ps

number of nodes (x103)

 20%
 40%
 60%
 80%

0 1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

ov
er

he
ad

number of nodes (x103)

 20%
 40%
 60%
 80%

0 2 4 6 8 10
0

50

100

150

200

250

300

N
ot

ifi
ca

tio
n

Tr
af

fic

number of QoS information messages (x102)

 Without end-to-end QoS subscription
 With end-to-end QoS subscription

3692

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

