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École Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland

firstname.name@epfl.ch

Abstract—Augmented Reality enhances the user perception
by overlaying real world information with computer-generated
information. In this paper, we study the user experience in
Augmented Reality for the deployment of real-time adaptation.
In the context of thin-client mobile Augmented Reality, the
rate is often constrained due to limitations in the transmission
link. End-to-end delay, frame rate, image size and head motion
speed have been identified as important variables impacting
the user experience. We propose a model to link the effect of
these variables with the Quality of Experience metrics. Using
this model, we present an adaptation scheme that adapts, in
real time, the frame rate and the image size to maximize the

Quality of Experience according to the context while satisfying
the given rate constraint. Simulation shows the efficiency of the
proposed scheme which achieves a better Quality of Experience
than without adaptation. The adaptation still performs better
than a solution with a fixed frame rate set to its maximum value.

Index Terms—Augmented Reality, Quality of Experience,
adaptation scheme, model, mobile thin-client, rate constraint.

I. INTRODUCTION

Augmented Reality (AR) is mainly applied to the sense of

sight by displaying 3D virtual objects onto the real vision [1].

In a near future, AR would eventually be applied to many

common tasks, such as museum visit, home maintenance,

domotics and marketing. In order to give the illusion that

virtual objects are parts of the reality, tracking, processing

and display are needed. The tracking system measures user

position and orientation to define the viewpoint. The virtual

scene is generated and an image is rendered for the particular

viewpoint. This image is then displayed to the user, for

example on an optical see-through Head Mounted Display

(HMD). The user vision is thus enriched with an aligned virtual

scene.

Most of today’s AR applications aim at providing a given

user experience. The setup parameters such as frame rate,

image resolution or transmission delay may not be modified

over time even if a feasible compromise would improve the

user experience. In this paper, we propose to adapt, in real

time, the variables that can be controlled. The user experience

is therefore improved by adjusting some variables according

to the context.

In mobile AR the virtual scene can be generated and

rendered at the server side and then sent as a video stream

to the mobile client for display [2]. If the images are trans-

mitted to the display using a wireless communication link, the

transmission rate might be constrained [3]. The rate constraint

for wireless transmission is taken as illustrative example along

the paper, but other constraints such as processing limitation

or mobile client energy can be managed in a similar manner.

With rate constraint, the image size (resolution or compression)

and the frequency (frame rate) at which the images are

generated must be controlled in real time. For a better user

experience, the adaptation consists of feedback mechanisms

where measurements, such as head motion speed, are used to

determine the values to apply to the AR system. Intuitively,

frame rate should be high for fast head motion, while high

resolution seems more important for slow motion.

The proposed adaptation scheme requires a model to ad-

equately control these encoding parameters. The model gives

the relation between frame rate, image size, delay, head motion

speed and the user experience. The effect of some of these

variables on user experience has been studied [4]–[6] but was

not used for adaptation. In AR, adaptation is mainly used by

mechanisms for real-time video transmission [7], [8].

In this paper, we first identify the variables that have an

impact on user experience and present an objective model

suitable for adaptation. This model links the above variables to

the Quality of Experience (QoE) metrics for user experience.

Based on the model, an adaptation scheme which maximizes

the QoE by adjusting the input variables regarding constraint

and other variables measurements is presented. Finally, the

model is identified for a specific setup and the adaptation

scheme is illustrated in simulation.

II. MODEL

In Augmented Reality (AR) like in other Man-Machine

Interaction applications, user experience plays a key role. To

maximize the user experience, the variables impacting the

subjective user experience should be known and understood.

The variables have been classified in three main groups,

namely the design variables, the encoding parameters and

the contextual variables. The design variables correspond to

mechanical and ergonomic aspects. The screen dimension, the

weight of the system, the communication infrastructure choice

or the static tracking error are included in this group. They are

determined at the design stage and are generally fixed. The

encoding parameters are related to the realism of virtual scene
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generation, or its representation as image. It could correspond

to the number of polygons of a virtual objects, the color depth,

the image resolution or the number of images rendered per

second. Contextual variables have also an important impact

on user experience. In a stress situation, for example when

a security alarm occurs, the user will not appreciate the AR

application the same way as during his usual work. AR is also

appreciated differently depending on previous knowledge or

expertise level. Other contextual variables such as user health,

visual acuity, the task difficulty or the moving speed also

impact user appreciations. Some of these variables can be

quantified and their impact on user experience too.

Another important variable impacting the user experience is

the end-to-end delay. The end-to-end delay corresponds to the

time difference between the instant when the virtual objects

should be displayed and the instant when the AR image is

displayed. If this delay is zero, virtual and real worlds are

perfectly aligned; if it is not, virtual objects might seem to

swim around and lag behind their supposed position in the real

world. The higher the delay, the lower the coherence between

virtual and real worlds is. The delay can be classified either as

a design variable if it is fixed over time, or as a contextual

variable if it is subject to variation. In this paper, since

information is transmitted over a wireless link, delay varies and

is therefore taken as contextual variable. Since they are static,

design variables that do not change over time are not taken into

account in this study for real-time adaptation. Only encoding

parameters and contextual variables are considered since their

evolution modifies instantaneously the user experience.

A. Model variables for mobile Augmented Reality

In the case of data transmission from a server to a mobile

client through a wireless link, user experience is affected by

the video quality and by the dynamic registration error [9]

(static registration error is assumed to be negligible). The video

quality depends on the encoding parameters, namely the image

size and the frame rate. The dynamic registration error depends

mainly on the end-to-end delay. The head motion speed can be

taken as another contextual variable that has a coupled impact

with frame rate and delay on the user experience. Therefore,

we consider the image size, the frame rate, the end-to-end

delay and the rotational head motion speed as variables for

characterizing the user experience.

End-to-end delay and image size effects are illustrated in

Fig. 1, where a virtual object is placed on a table. The real table

is emulated to represent the see-through user view. Figure 1b

shows the dynamic registration error due to the end-to-end

delay for a given relative speed between real and virtual

worlds. Figure 1c shows the same virtual scene rendered in

different image resolution and scaled to the display resolution.

A lower resolution gives a smaller image size but also a poorer

user experience. The frame rate determines the frequency of

new rendered images. In the case of head movement with

no end-to-end delay, the virtual object is perfectly aligned

with the real world only when the new image has just been

displayed. While waiting for the next image to be displayed,

the misalignment between real and virtual worlds grows. This

additional delay is barely noticeable at high frame rate but is

annoying at lower frame rate.

The adaptation scheme proposed in Sec. III requires a model

to represent the impact of the selected variables on the user

experience. Experience evaluation can be either subjective or

objective [10]. Subjective evaluation is a reliable but time

consuming quality measurement method. Subjective testing is

generally done by asking users to vote for the experiences

perceived with different operating conditions. However, sub-

jective evaluation cannot provide real-time quality monitoring.

Objective evaluation is not as accurate as subjective evaluation,

but can be used in real time without intruding the end user.

For video quality assessment, the Peak Signal to Noise Ratio

measure has been widely used. However it does not correlate

well subjective results. Other objective measures are more

suitable to replace subjective measures [11] for video quality

assessment, but there is not such a measure for AR.

We define the Quality of Experience as the objective metrics

of the user experience for a specific application. This metrics

is based on a model which links the impact of the selected

variables on the Quality of Experience (QoE). The model is

identified with subjective user experience evaluation.

B. Mathematical representation

The adaptation scheme requires a model represented in

an adequate mathematical form. An hypersuface is chosen to

link the selected variables to the QoE. An hypersurface is an

higher-dimensional generalization of the surface concept. It

consists of a n-dimensional topological manifold represented

in a n+1 Euclidian space, where n corresponds to the number

of variables. With 4 variables, this is a 4D hypersurface in a

5D space, which is not graphically displayable in the usual

3D space. B-splines have been arbitrarily chosen to define the

model in a smooth way and with a low error sensitivity.

C. Model identification

The model is fully defined when the hypersurface function

coefficients are known. These coefficients are identified using

subjective testing with a finite set of variables combinations

covering the range of all possible variables values. Subjective

testing is performed on a group of test users. The model

hypersurface aims at fitting the measured user experience

answers. The coefficients are chosen to minimize the square

distance on the QoE axis between measurements and the

hypersurface.

Subjective testing is performed according to International

Telecommunication Union recommendation [12], [13]. A user

is equipped with an AR application and is faced with different

variables combination trials. The trials last about 10 seconds

and are interleaved with pauses, during which the user is asked

to give a grade between 0 and 1 for his appreciation. The end-

to-end delay, the frame rate and the resolutions are manually

set at different values. For the head motion, the user is asked

to turn naturally his head between two target points within

a specified period of time to get a quasi-triangular head yaw
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(a) The virtual object is placed on the real world
table. The table is emulated here with grey box and
is rendered without delay and with maximal frame
rate and image resolution.

(b) Illustration of the dynamic registration error
with a 100 ms end-to-end delay for a 20 degrees
per second relative speed.

(c) The virtual scene is rendered at a 179x134
resolution and scaled to the 800x600 resolution for
display. The real world table is still rendered at the
800x600 display resolution.

Fig. 1: Illustration of the effect of end-to-end delay and image size on the user experience.

motion [14]. An audio digital metronome is used to give this

period of time to the user. As the speed is not constant during

the yaw motion, the virtual object are in the field of view only

during the period of time where the head motion speed can be

measured as almost constant.
The model coefficients are derived from the measurements.

The hypersurface order is chosen for the best compromise

between model complexity and measurement fitting precision.

Although an high order model would probably gives a lower

error, it requires significantly more coefficients. B-splines of

order 3 (quadratic) have been selected as the balanced choice

between the number of coefficients and the fitting error. The

curve fitting process is done using least-square approximation

of the data for a quadratic B-spline with multiple knots at the

variables range bounds.
The model identification procedure specific to the consid-

ered context is described in Sect. IV. The adaptation scheme

presented in Sect. III assumes that the model is known and

valid to capture the user experience at the appropriate level of

details.

III. ADAPTATION

In the considered case of thin-client mobile Augmented

Reality (AR), wireless transmission constraints are the most

important since their variation impacts greatly the Quality of

Experience (QoE). For example, the communication link might

be partially of fully saturated resulting in a lower available

bandwidth. If these limitations are ignored, unpredictable be-

havior may appear. For example if the available bandwidth

is exceeded, transmitted data can be lost or strongly delayed.

We propose to quantify these limitations and take them as

constraints to follow, in order to avoid unpredictable behavior

and to maximize the QoE.
The rate constraint corresponds to the maximal amount of

data over time that flows wirelessly between a server and the

mobile client. For example, a typical 802.11g wireless network

has a theoretical 54 Mb/s bandwidth (half in practice), and the

rate of a raw 800x600 pixels resolution image with 24 bits

color depth without compression at 25 images per second is

288 Mb/s. If this video is sent as it is, the network will not

be able to handle this flow of data. Packets will be lost and/or

delayed and as a result, images will not be usable by the client

application. In other words, the rate constraints should not be

exceeded and the sending rate must be adapted in real time

to the network capabilities for adequate usage of the available

bandwidth.

Encoding parameters, namely the frame rate and the image

size, can be controlled and have a direct impact on the

output rate: they are called the input variables of the encoder.

These input variables must be adapted to follow the provided

rate constraint reference, which is represented as a product

between the frame rate and the image size. The end-to-end

delay and the head motion speed are only estimated. In the

presented adaptation scheme, the image size is proportional to

its resolution. A more advanced scheme that considers both

temporal and spatial compression is hinted in the conclusion.

The proposed QoE model is used to determine the optimal

inputs variables combination; by optimal we mean the maximal

instantaneous QoE. Figure 2 shows the adaptation scheme that

adapts the input variables ue(k) (frame rate and image size)

in real time. These input variables modify the behavior of the

whole AR system, the encoder being the actuator. The QoE

MODEL has been determined offline based on subjective user

experience (UX) testing and is not updated in real time. The

general context varies over time according to its surrounding

and the current operating conditions. It is represented as

a perturbation on the AR system. Although the notion of

context encompass many aspects, a picture of its current state

is estimated. These estimations are the contextual variables

vest
c (k) of the QoE model presented above, namely the end-

to-end delay and the head motion speed. These contextual

variables are estimated based on specific measurements mc(k)
such as current head position and orientation. The reference

rate rr(k) is derived from the available bandwidth and assumed

to be known [15].

SMC 2009

906



context

context 
estimation

model 
estimation

adaptation
for QoE

AR
systemen

co
de

r
rr(k) ue(k)

UX

mc(k)

vc
est(k)

MODEL

Fig. 2: Adaptation scheme that adapts, in real time, the input

variables ue(k) (frame rate and image size) of the AR system

to maximize the QoE. The model is estimated offline, while

the contextual variables vest
c (k) are estimated in real time.

The adaptation for QoE uses the QoE model as well as

the estimated contextual variables and the rate reference to

determine the optimal input variables (encoding parameters)

in real time. The reference rate is represented as a surface

in the same space as the QoE model. The intersection of the

two surfaces gives a curve that represents all possible input

variables combinations following the reference rate. The max-

imum of this QoE curve represents the optimal combination

for frame rate and image size.

IV. PRELIMINARY RESULTS

The concept of adaptation for Quality of Experience (QoE)

is validated using the following procedure. We identify the

model for a user wearing an Head Mounted Display (HMD).

The virtual scene is static and its position is fixed in the real

world. This model has been built without taking the end-to-end

delay into account. This model is not directly generalizable to

all Augmented Reality (AR) applications.
In the considered experimentation scenario, the AR scene

consists of a virtual inverted pendulum located on a table. The

user can freely move his head and looks at the pendulum

displayed in his optical see-through HMD. The monocular

HMD (Liteye 750) displays full SVGA (800x600) images using

OLED technology. Its field of view of 22 degrees gives the

user a good sensation of immersion. An hybrid inertial-optical

tracker (Intersense IS-1200 VisTracker) is fixed on the HMD.

A constellation of markers is placed on the ceiling over the

test area. The position and orientation are computed based on

the images acquired by the camera and the inertial platform

measurements. The orientation is represented as quaternion.

Based on the measured user’s viewpoint, the virtual scene is

generated on a computer. The image is then displayed in the

HMD connected to the computer.
Four inter-frame periods have been chosen in the feasible

range: 33 ms (30 Hz), 50 ms (20 Hz), 83 ms (12 Hz) and

133 ms (7.5 Hz). Three image resolution has been selected:

400x300, 219x164 and 126x95 (correspond to an image size of

a tens of the base 400x300 resolution). The resulting image are

scaled at to the 800x600 display resolution. Three head motion

speeds have been selected: quasi-static, 0.2 rad/s and 0.4 rad/s.

The angular head motion speed was computed based on the

discrete measured orientations using the following formula:

ω(k) =
2

Δ(k)

∥
∥Im

(
q(k) ◦ q̄(k − 1)

)∥∥

where Δ(k) is the time between the conjugate of the past

measured quaternion q̄(k−1) and the current quaternion q(k).
The variables values have been scaled between 0 and 1, the

highest frame rate, the highest resolution and the lowest speed

corresponding to 1. The 36 variables combinations (4 frame

rates, times 3 resolutions, times 3 speeds) are presented to the

user in a random order.

The user seats on a fixed chair at 140 cm from the table

where the virtual objects was set. Two markers were physically

placed on the table on both end of the 70 cm pendulum rail

structure to refer the exact location of the pendulum. The user

looks at the real table augmented with the generated pendulum.

The head motion was imposed by asking the user to turn his

head between two predefined points on the table. This motion

corresponds to a 40 degrees yaw angle. After each trial, the

user was asked to give a grade for a scale between 0 and 1,

where 1 means the best user experience. The quadratic 3D-

hypersurface B-spline has been computed by a least-squares

spline approximation algorithm, with knots of multiplicity of

three at 0 and 1 in each dimension. The 27 coefficients of the

resulting B-spline are not presented here. Figure 3 illustrates

the surfaces for the three tested head motion speeds. It can be

seen that the maximal QoE is achieved for the highest frame

rate and the highest resolution for quasi-static motion. This

confirms the intuition presented in Sect. I. The QoE decreases

as the frame rate decreases or as the resolution decreases,

independently of the head motion speed. On the other hand,

increasing the head motion speed results in lowering QoE.

This is due to the dynamic registration error which becomes

annoying as the head motion speed increases.

The evaluated QoE model is then used by the adaptation

scheme to determine in real time the optimal input variables

(frame rate and image resolution) for achieving the best possi-

ble QoE. Figure 4 illustrates the intersection between the model

for the current context estimation (measured head motion

speed) and a given rate constraint. The rate constraint (rr) is

scaled between 0 and 1, where 1 corresponds to the maximal

achievable rate with both the highest frame rate and the highest

image size. This intersection gives a curve linking the input

variables to the QoE. This curve is also approximated with a

B-spline using computed intersection points. Its maximum has

been computed with an algorithm for minimizing a function.

The optimal input variables can be directly read on the XY

axis of the figure.

The adaptation to find the optimal input variables in func-

tion of the context and the constraint is performed in real time.
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Fig. 3: The QoE model depends on three variables (delay

is omitted) and is represented as B-spline. The quadratic

3D-hypersurface B-spline is displayed as surfaces in the 3D

space for three different head motion speeds: quasi-static,

0.2 rad/s and 0.4 rad/s (displayed from top to bottom). The

points correspond to the subjective testing measurements. The

adaptation will select the surface corresponding to the current

head motion speed (vest
c (k)).

Fig. 4: Intersection between the QoE model given for the

current low head motion speed (0.9) and the rate reference

constraint (rr(k) = 0.3). The maximal QoE is obtained for the

next input variables to apply ux
e(k) = 0.71 and uy

e(k) = 0.55.

Figure 5 illustrates the simulated adaptation for varying head

motion speeds and varying rate references. Figure 5a shows

the motions and the rate constraint profiles. The head is static

from time t=0 to 5 s, then its speed increases to 0.5 from time

t=5 to 10 s and remains until t=25 s. The rate is constrained

to 0.3 from t=0 to t=15 s and then decreases to 0.1 during the

period from time t=15 to 20 s and it remains to 0.1 until t=25 s.

Figure 5b shows the evolution of the QoE metrics over time

for different conditions. The QoE values are only computed

to analyze the efficiency of the adaptation scheme, but are

not used in real time for adaptation. The difference between

QoE for the fixed input variables (the frame rates are set to

0.6 (dashed green) and 1 (dotted red); the image sizes are

set according to the rate constraint) and the optimal input

variables computed in real time. This shows that the adaptation

scheme results in higher QoE than with fixed input variables.

The adaptation still better performs than with a fixed frame rate

set to its maximum value of 1. Figure 5c show the evolution of

the optimal input variables. For quasi-static head motion, the

maximal QoE is obtained with an high resolution and a low

frame rate. This QoE is much higher than with frame rate fixed

to its maximal value at 1. As the head motion speed increases

(t=8 s), the image resolution decreases while the frame rate

increases resulting in much higher QoE than with the frame

rate fixed to 0.6. This is due to the fact that the QoE model

has captured that the user prefers to have a good dynamical

representation of movements than a detailed image. The user is

less sensitive to the image resolution during head motion. The

higher the head motion speed is, the higher the ratio between

frame rate and resolution becomes. When the rate constraint

decreases (t=15 s), both the frame rate and the resolution

decrease but the QoE is still higher that both measurements

without adaptation. The proposed real-time adaptation scheme

permits to achieve the maximal QoE for any measured head

motion speed compared to different fixed variables conditions.

Studies show similar results for short video scene displayed

on a computer screen [16], [17], but without considering the

head motion which greatly improves the QoE.

V. CONCLUSION

This paper presents an adaptation scheme that aims at

maximizing the user experience in the context of mobile

Augmented Reality (AR). The user experience is characterized

with the help of the Quality of Experience (QoE) model. This

model links the identified variables, namely the frame rate,

the image size, the end-to-end delay and the head motion

speed, to the QoE metrics. The model is represented as a

4D-hypersurface B-spline. The coefficients of the B-spline

are identified using subjective testing with users performing

specific given AR tasks. In the context of thin-client mobile

AR, the data transmission through the wireless link is con-

strained by the available bandwidth. The proposed adaptation

scheme maximizes the user QoE in real time by adapting the

encoding parameters (frame rate and image size) to follow

the rate constraint, this according to the QoE model, the end-

to-end delay and the head motion speed measurements. The

intersection between the model and the rate constraint gives

the set of encoding parameters that follows the constraint. For

a given constraint, the maximal QoE is achieved when the

encoding parameters are optimal. The optimal input variables

values are determined using an optimization algorithm on the

curve intersection between the model and the constraint.

SMC 2009

908



0
0 5 10 15 20 25

0.2

0.4

0.6

0.8

1

sp
ee

d
v

e
s
t

c
,

co
n
st

ra
in

t
r
r

time (s)

(a) Profile for head motion speed (solid blue) and rate constraint
reference (dashed green) used in the simulation. Head is quasi-static
at the beginning and then its motion speed is increased. The rate
constraint is then decreased.
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(b) Comparison between QoE with adaptation (solid blue) and QoE
without adaptation with fixed frame rate at 0.6 (dashed green) and
with maximal frame rate at 1 (dotted red). Adaptation results in
higher QoE than with a fixed frame rate and the corresponding image
size.
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(c) Optimal encoding parameters resulting from the adaptation. The
frame rate (solid blue) is lower than the resolution (dashed green)
for low head motion speed, but is higher for faster movements.

Fig. 5: The adaptation scheme for QoE is illustrated through

a 25 s simulation.

The QoE model is identified using subjective testing. This

model mainly shows that the user prefers an higher frame

rate when the head motion speed increases, even though the

resolution must be reduced to follow the rate constraint. Based

on this model, the adaptation scheme computes the encoding

parameters according to head motion speed. The adaptation

results in higher QoE than with fixed encoding parameters.

The adaptation still better performs than with a fixed frame

rate set to its maximum value.

The proposed model needs to be extended to consider the

end-to-end delay. If known, this delay could be compensated

by generating the AR scene ahead of time. Using the proposed

modeling and adaptation methodologies, a broader range of

users and scenarios should be considered to improve the QoE

model. In the presented adaptation scheme the rate constraint

is satisfied by varying the frame rate and the image resolution

(and thus its size). Both spatial and temporal compression

should be considered to reduce the image size. In this case,

the QoE model values will be different and an adequate rate

control [2] should be deployed to follow the reference rate

independently from the image content.
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