
978-1-4244-2794-9/09/$25.00 ©2009 IEEE             SMC 2009 

Motion Planning for Human-Robot Interaction Based 
on Stereo Vision and SIFT  

 

Hong Liu 
Key Laboratory of Machine Perception and Intelligence, 

Key Laboratory of Integrated Microsystem,  
 Shenzhen Graduate School, Peking University, China 

E-mail: hongliu@pku.edu.cn 

Jie Zhou 
Key Laboratory of Integrated Microsystem, 

Key Laboratory of Machine Perception and Intelligence, 
Shenzhen Graduate School, Peking University, China 

E-mail: zhouj06278@szcie.pku.edu.cn
 
 

Abstract—It is very important for a robot to obverse its 
environment in real-time and walk without collision in a crowd. 
This paper presents a motion planning method, based on visual 
feedback, for safe Human-Robot Interaction (HRI) in dynamic 
environments. Firstly, in order to improve accuracy of features 
marching, Scale Invariant Feature Transform (SIFT) is merged 
into binocular stereo vision, which is used to detect motion of 
people. Secondly, by improving Lazy PRM, a robot can find the 
shortest safe path and move to predetermined destination along 
the path. Experimental results show that position of people can 
be detected in real-time in environments with several people 
walking inside, and the accuracy can reach 96%. Therefore, a 
robot can arrive at the goal configuration node without collision 
with people much faster than Lazy PRM.  
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I.  INTRODUCTION  
Motion planning, an essential part in a system of intelligent 

autonomous mobile robots, enables robots to plan a path based 
on the roadmap and move to a predetermined destination 
through the path without guidance of human operator. It has 
become a very increasing interest field to guide a mobile robot 
to move to its destination by vision navigation. 

In recent years, great progress has been achieved in the 
research of motion planning and many methods have been put 
forward. The classic PRM preceded in two phases: A learning 
phase and a query phase [1], turned out to be easy to be 
implemented and applicable to many different types of motion 
planning problems [2]. However its bottleneck is that difficult 
regions can’t be covered by random sampling [3]. Recently 
some improved approaches have been proposed and perform 
well in various problems. OBPRM [4] can largely increase the 
connectivity of roadmap. However its implementation does 
require complex computation.  Gaussian Sampler [3], which 
only samples node around obstacles, can reduce the number of 
configuration node in Cfree to improve the efficient of PRM. 
However not all nodes near obstacle are as useful as nodes in 
the narrow passage to the connectivity of roadmap. Visibility 
based PRM [5] can quickly builds map with a small numbers of 
node. Whereas, it fail to find a path in an environment where 
narrow passage existed. Bridge Test Strategy [6] can efficiently 
solve the problem of narrow passage for PRM planning, but it 
needs to combine with other methods such as uniform sampler. 

Lazy PRM [7] assumes that all nodes and edges in roadmap are 
valid, and collision checks of nodes and edges are executed 
when a path has been found. Therefore, it can reduce the 
number of collision check, and minimize the running time of 
the planner accordingly. This method can be efficiently used in 
dynamic environments. However, the positions of obstacles 
change quickly, and it is useless to check collision before a 
path is found. So it is unwise to give up an invalid path whose 
front part is collision-free. 

The approaches mentioned above present their advantages 
in different environments. However, most of those researches 
are implemented in simulated environments. They don’t need 
to consider how to detect the static or dynamic obstacles. In 
practical applications, before motion planning, a robot has to 
know the roadmap of its environment, indicating the position of 
obstacles. In [8], the authors designed a system of object 
tracking for mobile robots by using monocular vision.  
Nevertheless, monocular vision can’t be widely applied to the 
projects of distance measuring because of its limitations in 
small range of observation and few information of distance.  
Another system based on omni-directional vision to detect 
human motion for mobile robots was presented in [9]. Though 
omni-directional vision has the advantage of wide range of 
view, it has a difficulty in distance measuring. Stereo vision is 
widely used for its precision and the abundant information. J. 
Miura and Y. Shirai [10] formulated a vision-motion planning 
for mobile robots under uncertainty of visual observations. 
However, their solution still requires too much computation 
when it is used in a real-time application. 

This paper aims to present a HRI system for mobile robots 
walking in dynamic indoor environments with several people 
walking inside, but without any other static obstacles such as 
desks and chairs. In such a situation, we only need to consider 
how to detect the motion of people in real-time and to guide the 
robot to move from its start configuration to end configuration 
without colliding with the moving people. In our method, 
binocular stereo vision is utilized for its advantages of precision 
and the abundant information it contains, to detect the position 
of people. And SIFT [11, 12], a very robust features detecting 
and matching method, is merged into stereo vision to increase 
the accuracy of feature marching. Finally, an improved Lazy 
PRM is used to plan a safe path for a mobile robot. That makes 
the robot can arrive at its destination more quickly. 
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The rest of this paper is organized as follows. Method of 
features matching and distance detecting with stereo vision is 
described in detail in section II. The general framework of 
motion planning is introduced in section III. Section IV shows 
the experimental results of tests in indoor environments and the 
analysis is presented as well. Finally, this paper is concluded in 
section V. 

II. VISUAL FEEDBACK 
It is very important for a mobile robot to be capable of 

obtaining information of environments in real-time to know 
where the safe position is. The main task of this part is to 
extract the coordinates of moving people by binocular stereo 
vision. Then motion planning can be performed with this 
information. In this part, a method of feature extracting and 
matching, SIFT is merged into binocular stereo vision to 
improve the accuracy of feature matching. 

The system space conversion is shown in Fig.1. Real 
workspace is converted to simulated workspace by stereo 
vision processing. And then the simulated workspace is 
converted into configuration workspace by mapping. Motion 
planning is based on configuration workspace, and results of 
motion planning are shown in a simulated workspace.  

 
Figure 1.  System space conversion 

 
Figure 2.  A pair of stereo image of experiment. (a) Image extracted from left 

video. (b) Image extracted from right video. 

Firstly, gray images are obtained from images captured 
from the left and the right videos, which are shown in Fig.2. 
And then the outline of moving people can be extracted by 
temporal differencing [13]. The pixel difference function Dk 
can be defined as formula (1), and a motion image Gk can be 
extracted by a threshold using formula (2), 
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Here k is the number of current frame and T is a threshold 
which is set according to different environments. 

Fig.3 shows the area of moving people that have been 
detected from Fig.2 by temporal differencing and 
morphological processing. Then the areas of single people can 
be cut out for matching between left image and right image. 

 
Figure 3.   Area of moving people detected. (a) Left. (b) Right. 

 
Figure 4.  Keypoints selection and matching. (a) keypoints of the left person 
in two images and feature matching. (b) keypoints of the right person in two 

images and feature matching 

SIFT [11, 12] is an algorithm for extracting local features 
from images and match two images. It is widely applied to 
objects recognition because of its robustness, rapidity and 
accuracy. The processing of SIFT is illustrated in Fig.4. The 
keypoints are shown as vectors, represented in pink arrows in 
above pictures, indicating scales, orientation, and location. 
Pairs of matching keypoints are connected by short lines in the 
pictures. Areas without people in them are not required to be 
processed, because those areas are irrelative to motion of 
people. That can largely reduce the number of keypoints, thus 
accelerate the processing of feature matching. That is very 
important in a real-time application. By now, the matching 
keypoints on moving people in the left image and the right 
image have been obtained. Then we can compute the position 
of people in real environments by binocular stereo vision. 

 
(a)                                                               (b) 

 

   
(a)                                                          (b) 
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Visual coordinate system [14] is shown in Fig.5. In order to 
measure the distance between robot and people, it is necessary 
to set the workspace coordinate system (x, y, z), whose original 
point is the position of robot, X-Y plane denotes the ground, 
and axis z is vertical to the ground. The visual coordinate 
system is set above the workspace coordinate system with 
original point O' on the axis z of workspace coordinate system.  

 

Figure 5.  The visual coordinate system 

Two cameras are put on both sides of axis z. We set the 
photo center to be CL and CR. A point P' can have an imaged 
point (OLx, OLy) in the left eye coordinate system and another 
point (ORx, ORy) in the right eye coordinate system respectively. 

Therefore coordinate can be transformed from left eye and 
right eye coordinate systems to visual coordinate system by 
following formulas, 
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Here, ( xL' , yL' , zL' ) and ( xR' , yR' , zR' ) are the coordinates of 
the original point of the left and right eye coordinate systems 
separately. The axis lines of left eye and right eye are set to AL 
and AR, and their functions can be defined as (5) and (6), 
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Here, x' , y' and z' are the position variables of visual coordinate 
system. 

Therefore, once any point P on the target object is obtained, 
its coordinates in left image and right image are set to be 

(OLxp ,OLyP) and (ORxP, ORxP), the position of this point in visual 
coordinate system can be computed by following formulas.  
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Then, the coordinate of point P in workspace coordinate 
system can be computed by formula shown as follow, 
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Here  is the angle of elevation of camera, and hc is the 
distance between the original points of workspace coordinate 
system and visual coordinate system. 

III. MOTION PLANNING 
In dynamic environments, it is unwise to check collision in 

learning phase. Because that the obstacles keep moving all the 
time. Though these nodes are free, they may be not free a few 
moments later. Therefore, it is better to check collision after a 
path is found. The original Lazy PRM [7] is designed for static 
environment. In the roadmap building phase, all nodes and 
edges are assumed to be collision-free. Then, the shortest path 
is searched for in the roadmap without considering collision. 
After that, it is checked for collision. If collision occurs, the 
corresponding nodes and edges are removed from the roadmap, 
and then another shortest path will be searched for. This 
algorithm can largely reduce the number of collision-checks, 
which is the most time consuming step. However, it can’t adapt 
to dynamic environment sufficiently. Therefore, an improved 
Lazy PRM is introduced in this paper. 

Firstly, it is not necessary to remove nodes and edges where 
collisions occur. As they may be free with the moving of 
obstacles at next time. Secondly, it is unwise to give up the 
path on which collisions occur. Sometimes collision only 
happens at the end of the path. After all, this path is the shortest 
one currently. Robot can keep walking along this path until a 
collision node is near by, and then searching for another 
shortest path between the current node and the goal node. At 
this time, robot is already near the goal a lot. In a better 
situation, the collision nodes and edges become free again 
when robot is close to them. Then robot can continue using this 
shortest path to reach destination. 

The aim of our method is to make a robot arrive at its 
destination as fast as possible. After finding a shortest path in 
the roadmap, validity of nodes on this path is checked. Robot 
can go ahead along the path if some nodes are free in the front 
part of the path. Fig.6 shows the shortest path found from the 
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current position of robot and goal node without collision-
checks. 

 
Figure 6.  The green curve is the shortest path found in a roadmap. The two 

red nodes are the current position of robot and the goal node 

The algorithm of motion planning is shown in algorithm 1. 
After building a roadmap with K-near connection, the shortest 
path can be found by the function of SearchPath. And then 
each node on the path is checked for collision or not by 
CollisionCheck. Then the robot can go to the safe nodes until it 
happens to meet a node not valid. 

Algorithm 1: Motion Planning 
Data: G = (V, E) is a roadmap, V and E are sets of node and 

edge respectively. P is the shortest path. q is a node. 
1: begin 
2:      V Sample(); 
3:      G ConstructRoadMap(V); 
4:      while qcurrent is not qgoal do 
5:            P SearchPath(G); 
6:            SearchTimes ++; 
7:            for each node q on the path do 
8:                  if CollisionCheck(q) is true then 
9:                         mark q to be unfree; 
10:                       break; 
11:               else 
12:                       qcurrent = q; 
13:          end for 
14:          if SearchTimes is 10 then 
15:                resume all unfree nodes; 
16:     end while 
17: end 

IV. EXPERIMENTS AND DISCUSSIONS 
In order to evaluate our method, some experiments have 

been implemented in indoor environments with several people 
moving inside. Experiments were run on PC with a 2.0G Hz 
AMD processor and 512 MB RAM. Program has been 
implemented in C++ in Microsoft visual studio 2005 running 
under Windows XP. 

A. Visual Feedback Tasks 
Videos of people moving in indoor environment were 

obtained by binocular stereo vision system. The two cameras 
were set to be parallel with a distance of 18cm. The width and 
the length of room are both about 5 meters. 

A simulated workspace was constructed according to the 
motion of people detected by binocular stereo vision. Human 
motion in video can be simulated in real-time by the green 
cylinders in simulated workspace entirely. In two indoor 
environments, 5 groups of videos with different number of 
people were tested. Each video contained more than 400 frames. 
The accuracy achieved 96%. Fig.7 displays some results of 
visual feedback in an environment with 2 people. When some 
one is occluded by another one, it is fail to detect position of 
people behind. The errors position detecting from videos are 
lower than 1 meter. But it won’t influence the accuracy of 
collision-checks in motion planning, because the error only 
takes place in the position of people who is far from the robot. 
That can be accepted in a dynamic environment. Besides, we 
have set a safe distance of 1 meter. So that a robot will not 
collide with people even though existing 1 meter error. 

 

Figure 7.   Motions of people in video are simulated. Left pictures are some 
frames extracted from left video, and right pictures are the simulation of 

motions of people from the left one respectively 

In the case that two objects have the same color and 
brightness, there is no problem if there is no occlusion, because 
information of color and brightness isn’t used in temporal 
differencing method. But the color of object can be used to 
identify covered objects when they become apart again. When 
occlusion happens, the foreground pictures are merged into one 
big block, the previous position of the person is kept to be 
current position since position of the person behind is lost. In 
the worst situation, two people keep walking together with one 
hiding behind another all the time. Thus the current position of 
the person will be wrong because it is still the previous position, 
while the person has gone far away.  

 

 Start 

Goal 
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TABLE I.  COMPARISON WITH ORIGINAL LAZY PRM 

Number of nodes on path Time(s) 
Original Ours Original Ours 

Num of 
sample 
nodes 

Num of 
people 

Max Min Ave Max Min Ave Max Min Ave Max Min Ave 
2 27 24 25.8 32 23 26.4 18.50 13.91 15.59 19.03 12.33 12.80 
3 34 26 27.8 34 24 26.9 30.35 16.56 20.67 23.20 12.32 16.28 
4 34 26 29.4 36 27 33.9 44.84 26.00 29.51 32.41 18.43 24.27 

1000 

5 36 26 30.3 50 33 41.4 50.44 22.01 34.57 32.92 22.19 26.96 
2 40 28 34.1 41 27 34.3 38.92 19.30 28.33 36.5 18.56 22.33 
3 49 34 38.7 54 34 41.0 48.19 27.65 35.66 43.22 21.68 28.03 
4 53 31 39.1 61 35 42.2 53.13 36.31 41.82 46.39 23.06 32.23 2000 

5 59 38 43.9 58 35 42.1 55.28 40.34 46.34 47.53 21.50 33.55 
2 49 36 42.0 48 37 41.1 35.94 23.50 29.60 38.06 18.50 24.86 
3 50 39 44.0 54 37 44.8 59.04 29.50 39.26 43.44 23.19 31.61 
4 55 39 46.8 61 42 46.6 55.28 37.62 51.55 53.35 22.97 34.35 3000 

5 64 36 47.7 68 43 50.9 72.72 38.10 55.14 59.50 23.78 36.43 
 

B. Motion Planning Tasks 
Motion planning was tested in different number of sampled 

nodes, 1000, 2000 and 3000.We tested both our method and 
original Lazy PRM for 10 times in different environments 
with different number of people from 2 to 5. The comparisons 
are shown in table I. As is shown in the table, in an 
environment with a few numbers of people, there are not 
many differences in number of nodes on path between 
original Lazy PRM and our method. Sometimes, our method 
even has more number of nodes on path than the original Lazy 
PRM. However, our method performs great advantages in 
time robot arrived at its destination as shown in the last 
column of table I. Especially in environments with more 
people, our method is much faster than the original Lazy PRM. 

Original Lazy PRM takes a lot of time to find a totally safe 
path that may be much longer than the shortest one. Moreover, 
the path may become unsafe a few moments later. Then it is 
necessary to search for a new path again. Our method can take 
full advantage of the shortest path that has been found, until it 
comes across an unsafe node. Then another shortest path will 
be searched for from the current node to the goal node. 
Therefore, the robot can arrive at destination more quickly. 

V. CONCLUSIONS 
This paper presents a new motion planning method for a 

robot working in real dynamic environments. Binocular stereo 
vision is utilized to detect people’s motion in video. A method 
of feature extracting and matching, SIFT is merged to increase 
the accuracy of detecting of distance between people and robot. 
Besides, Lazy PRM is improved by changing its steps of 
collision-checks and searching strategy. Collision-checks are 
finished when robot begins walking along the shortest path 
which has been found. Robots can walk along the path which 
is safe at front part until it meets obstacles. Experimental 
results have demonstrated the effectivity of our approach. 
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