
Generating content presentation according to purpose
Sevan Kavaldjian, Jürgen Falb and Hermann Kaindl

Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
{kavaldjian, falb, kaindl}@ict.tuwien.ac.at

Abstract—Programming graphical user interfaces is hard and
expensive, while automatic generation is still quite challenging.
One of the issues involved in automatic generation is the presen-
tation of content from the domain of discourse according to its
purpose in the current context of the human-machine dialogue.
For example, it makes a difference whether the same piece of
information is to be presented in the context of asking a user
something, or simply for the purpose of informing.

We address this issue through generating content presentation
specifically according to the type of communicative act, that
indicates the purpose. In the course of transforming a high-level
discourse model to a structural user interface model, we apply
specific model-transformation rules to content types, depending
on the type of communicative act they are referred from. This
results in automatically generated user interfaces with content
presentations according to purpose.

Index Terms—user interface generation, discourse modeling,
model transformation, content presentation

I. INTRODUCTION

Manual creation of GUIs (graphical user interfaces) is
hard and expensive, so we strive for automated generation.
Instead of generating them from simple abstractions, we let
an interaction designer (and even end users) model discourses
in the sense of dialogues (supported by a tool). From such
a high-level declarative discourse model, we have been able
to automatically generate the overall structure and the “look”
of a GUI, more precisely a WIMP (window, icon, menu,
pointer) interface [1] as well as its behavior [2]. This automatic
generation employs model transformations.

Still, we had to deal with the presentation of content of the
domain of discourse. In particular, the concrete presentation
needs to depend on the purpose of the envisaged interaction,
since the GUI’s usability would clearly not be satisfactory
otherwise, and usability is one of the essential problems of au-
tomatically generated user interfaces. In this paper, we present
our approach to automatic content generation according to
purpose, which also employs model transformations.

The remainder of this paper is organized in the following
manner. First, we sketch our discourse models. Then we
elaborate on the model transformations from such a discourse
model to a structural UI model including content presentation.
Based on such a derived model, we explain automatic screen
generation for the content presentation. Finally, we discuss our
approach and compare it with related work.

II. HIGH-LEVEL DISCOURSE MODELS

The starting point for our automatic GUI generation is a
discourse model. Such a discourse model is largely a declara-

tive model and represents a class of possible dialogues. It has
the following key ingredients:

• communicative acts as derived from speech acts [3]
carrying propositional content,

• adjacency pairs adopted from Conversation Analysis [4],
and

• RST relations inherited from Rhetorical Structure Theory
(RST) [5].

Communicative acts represent basic units of language com-
munication. Thus, any communication can be seen as enacting
of communicative acts, acts such as making statements, giving
commands, asking questions and so on. Communicative acts
indicate the intention of the interaction, e.g., asking a question

or issuing a request. Figure 1 shows such examples in two
small excerpts of a larger discourse model for a simple online
shop. Figure 1a shows two communicative acts (represented by
rounded boxes), a closed question and an answer, for adding
a product to the customer’s shopping cart. For this purpose,
the formal expression within the closed question enables the
customer to select one instance from all instances of the class
Product, and provides the intention of the question, adding

the selected instance to the ShoppingCart represented by the
variable sc. Figure 1b shows a different part of the discourse
model, for informing the customer on all products available in
the store.

Communicative acts typically refer to propositional content.
In this example, it is about selecting a product by the customer
and providing information on all products. In Figure 1 the
propositional content is specified by the text below the type of
each communicative act. In fact, it is the same propositional
content for both communicative acts (all Product1) that gets
uttered.

Propositional content is specified in our approach in a model
of the domain of discourse, which specifies what the dialogues
can “talk” about. Figure 2 shows a very small excerpt of such
a model in a UML class diagram.2 It specifies a single class
named Product with four attributes.

Adjacency pairs are sequences of talk “turns” that are
specific to human (oral) communication, e.g., a question should
have a related answer. Figure 1a shows an example of such
an adjacency pair.

1Product refers to the class with this name in the model of the domain of
discourse.

2At the time of this writing, the specification of UML is available at http:
//www.omg.org.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2115

OnlineShop Customer

Answer

ClosedQuestion

select one from all Product
for addTo ShoppingCart::sc

Closing

Opening

(a) Closed question about a product to select
for adding to the shopping cart.

��������	
 ��� �	� ��

���	�� ���

��������	
�

(b) Informing on all products available in
the store.

Fig. 1. Excerpts of an online shop discourse model.

RST relations specify relationships among text portions
and associated constraints and effects. The relationships in
a text are organized in a tree structure, where the rhetorical
relations are associated with non-leaf nodes, and text portions
with leaf nodes. In our work we make use of RST for
linking adjacency pairs and further structures made up of
RST relations. Our example does not show an RST relation,
however. Both excerpts in Figure 1 originate from different
parts of a larger discourse model and are, therefore, more
indirectly connected with each other. Still, one can imagine to
link the Closed Question-Answer adjacency pair in Figure 1a
via a Background relation with an Informing on the category
the customer can choose from to support her in selecting a
product.

III. MODEL TRANSFORMATION TO STRUCTURAL UI
MODEL

Our model-driven approach transforms discourse models
into structural UI models that are close to the final user
interface but still GUI toolkit-independent. We first present

Fig. 2. Small excerpt of a domain of discourse model.

the transformation process as well as the transformation rules
and heuristics required for content presentation. Subsequently,
we describe our transformation engine and its underlying
technology.

A. Transformation process and rules

Our model-driven transformation approach uses a process
consisting of two interleaved transformation steps:

1) The first step applies rules to discourse model elements
that generate an overall UI structure by use of pattern
matching. These rules generate abstract widgets like
labels for headings and placeholders for data of the
propositional content. They also associate parts of the
propositional content with the generated placeholders.

2) The second step executes content transformation rules
within the context of the rules of the first step. This
embedding allows the selection of abstract widgets for
the resulting structural UI depending on the content type,
the content’s referring communicative act type and the
current context the communicative act is embedded in
as defined by the enclosing rule.

We explain this process in more detail by means of our
running example. For transforming the discourse model ex-
cerpts in Figure 1a and 1b, we need structural transformation
rules for transforming the Question–Answer adjacency pair and
the Informing communicative act (that makes up a degraded
adjacency pair by itself). Second, we need content transforma-
tion rules for transforming content types, like strings, pictures
and numbers depending on the communicative act they are
embedded in. The transformation rules also contain heuristics
to improve the generated structural UI model. For example,
rules can transform content attributes differently based on their
attribute name, e.g. a name attribute can be used as a heading
for the rendered content. The two structural rules below are
applied in the first step to our discourse model excerpts:

Closed question-answer transformation rule: The rule in
Figure 3a transforms each Closed Question-Answer adjacency
pair to a Panel ClosedQuestionNameOnly with a Label Anony-

mous and a List Widget Closed Question List, with each list
entry consisting of an Output Widget Label placeholder for
the content object’s identifier (e.g., name) and a Button Select

to select this list item. The output widget placeholder has a
property that holds an OCL3 expression, which selects parts
of the content object the output widget is a placeholder for. For

3OCL — Object Constraint Language, see http://www.omg.org/cgi-bin/doc?
ptc/2003-10-14 for its specification.

2116

(a) Closed question-answer transformation rule. (b) Informing transformation rule.

(c) String data type transformation rule. (d) Double data type transformation rule.

(e) Picture transformation rule. (f) Attribute name transformation rule.

Fig. 3. Transformation rules for closed question-answer (a) and informing (b), rules for transforming output widgets depending on data types (string (c) and
double (d)), and for transformations based on heuristics (pictures (e) and attribute names (f)).

example, the Output Widget Label selects the name attribute
of the content object, e.g., the product name, which is later
on used for generating the label widgets. The corresponding
OCL expression is “eAllAttributes→select(name=‘name’)”.4

This and the other properties of the Output Widget Label are
not shown in Figure 3a. The Label Anonymous represents a
heading for the overall list and its text is derived from the
name of the matched closed question communicative act. The
generated Grid Layout elements allow the specification of
the desired number of columns for the resulting list and the
placement of the label and the button next to each other as
shown in the final UI in Figure 5.

Informing transformation rule: The rule in Figure 3b
matches an adjacency pair linked to an Informing (upper part
of the figure). The Informing communicative act has to contain
more than one content object (indicated by an all or many

quantifier) for generating a list in the structural UI model.
The rule transforms the matched input to a List Widget which
contains the structure of one list item. The list widget contains
Output Widget placeholders for the transformed content. The
Output Widget Heading selects again the name attribute of the
content object as representative for a list element’s heading.
The OCL expression for filtering out the name attribute is

4“eAllAttributes” is part of EClass in the underlying ECore meta-meta-
model, which is an Essential Meta-Object Facility (EMOF) implementation in
the Eclipse Modeling Framework (EMF).

identical to the one in the Closed question–answer transfor-
mation rule. Each of the other two output widget placeholders
is a placeholder for all the other attributes of the content
object. In the second stage, both are rendered differently, the
Output Widget Name is used to render the attributes’ names and
the Output Widget Informing is used to render the attributes’
values. This distinct rendering can be seen in the final user
interface in Figure 6 below with the attribute names on the
left side and the attribute values on the right side.

Within the context of the rules described above, the follow-
ing four rules are used in the online shop example excerpts
in the second step. They transform content object parts—
mainly attributes—based on their content type and the type
of communicative act that the content object is referred from.

String content type transformation rule: The rule in
Figure 3c matches the String content type. The name of the rule
reflects the matched content type. It generates a label for each
string with the content value as the label’s text. The context
of this rule is specified by two Type Constraints. The first one
specifies that this rule can be applied only to Output Widget

placeholders generated in the first step, and the second one
specifies that this rule can only be executed in the context
of Informing and Closed Question communicative acts. In our
example, this rule generates a label widget in the resulting
structural UI model for each product attribute of type string
that is associated with an output widget placeholder.

2117

Double content type transformation rule: The rule in
Figure 3d is identical to the String content type transformation

rule apart from matching attributes of type double instead of
type string. Thus, it creates a label for each numerical attribute.
The name of the rule again reflects the matched content type.

Picture transformation rule: The rule in Figure 3e
matches also content of type string like the String content

type transformation rule but contains an additional constraint.
This rule is only applied in the context of output widget
placeholders and Informing communicative acts, which is
specified by the two Type Constraints in Figure 3e. In addition,
this rule contains a Value Constraint that checks if the name
of the content attribute contains either the text “picture” or
“image”. If this constraint holds, the “picture” attribute’s value
is interpreted as a filename or URL and a PictureBox is
generated in the resulting structural UI model for this content
attribute. Since this rule is more specific than the string content
type transformation rule, this rule is applied first when both
match.

Attribute name transformation rule: The rule in Figure
3f matches any content attribute and is executed in the context
of output widget placeholders and any kind of communicative
acts. In contrast to the String content type transformation rule,
this rule generates a label using the attribute’s name instead
of its value as label text. The attribute’s name is retrieved in
the rule by assigning the OCL expression “self.name” to the
Label widget contained in the rule.5

When these rules are applied to our running example dis-
course excerpts, we get the generated structural UI model illus-
trated in Figure 4a for the discourse model excerpt in Figure 1a,
and the structural UI model in Figure 4b for the discourse
model excerpt in Figure 1b, respectively. The resulting struc-
ture of the Closed Question-Answer adjacency pair in Figure 4a
corresponds to the structure shown in Figure 3a with the output
widget placeholder replaced by the application of the String

content type transformation rule. The resulting structure of
the Informing in Figure 4b corresponds to the structure of the
Informing rule in Figure 3b with the output widget placehold-
ers replaced by applying all four content transformation rules
to the attributes of an online shop product. The set of con-
tent transformation rules that can be applied is defined by the
context formed by the superior structural transformation rule
and the matched communicative act type (purpose of conveyed
content). The context has to match all type constraints of the
content transformation rules.

The rationale for generating the content presentation dif-
ferently in this way is as follows (the screen shots in Figures
5 and 6 below may illustrate it better than the structural UI
model in Figure 4). We render the content item in the context of
the Closed Question less completely than in the context of the
Informing, to provide a better overview for the customer during
her product selection process. More precisely, in the context of
the closed question only the name of the product is displayed,
together with a select button. In contrast, the same content

5The context for evaluating the OCL expression is the matched EAttribute
object of the Ecore model.

(a) Structural UI model corresponding to the Closed
Question-Answer.

(b) Structural UI model corresponding to the
Informing.

Fig. 4. Structural UI models corresponding to the online shop discourse
model excerpts in Figure 1.

item is presented in the context of Informing by showing all its
available information, even including a picture and the names
of the attribute fields. So, the different context matters, since
the purposes are different: asking vs. informing.

B. Transformation engine

Our model transformation engine is a rule-based engine
that is based on the Ecore6 model. Our metamodels for dis-
course models and structural UI models are instances of the
Ecore model and thus provide common model navigation in
the source and target model and linking between elements of
both models. We use this feature to add traceability links from
widgets in the structural UI model to the original elements
in the discourse model. Thus, the original information is also
available during the final screen generation process.

The transformation engine iterates over all elements of a
discourse model and first checks which rules trigger for the
currently processed element. For a rule to trigger, two condi-
tions must hold:

• the discourse pattern in the rule must match the corre-
sponding part in the discourse model, and

• specified rule constraints must match the device properties
we want to render for (e.g., screen real estate).

In case of content transformation rules which match content
types, constraints can be specified on the rendering context,
e.g., they can be used to constrain the set of types of com-
municative acts the content must appear in. This permits re-
stricting a rule to a specific set of communicative acts. The

6see http://www.eclipse.org/modeling/emf/ for the Eclipse Modeling Frame-
work (EMF) specification.

2118

Fig. 5. Screenshot of the final UI representing the ClosedQuestion.

four content transformation rules all match content of Inform-
ing communicative acts. However, only the string and double

content type transformation rules can also be applied to content
of closed questions.

When multiple rules trigger, a conflict resolution strategy
is used to select one rule for firing. The conflict resolution
strategy selects the most specific rule based on the size of the
pattern to match and the number of constraints. In addition, a
rule priority can be used to select one of many rules that have
the same specialization degree. For our running example, rule
priorities are not necessary because the rules can be uniquely
selected for firing without them.

When a rule fires, its widget tree structure is added to the re-
sulting structural UI model and the widgets’ content is selected
from the discourse model by evaluating OCL expressions on
the currently processed discourse model element. Using this
rule-based transformation engine with the rules described in
the previous section leads to a device-specific but GUI toolkit-
independent structural UI model as shown, for example, in
Figure 4.

IV. SCREEN GENERATION

A structural UI model resulting from our model transforma-
tion process, like the one in Figure 4a or 4b, contains already
the complete structure and layout information of the GUI but
is still GUI toolkit-independent. Screen generation is our final
step that transforms the structural model into GUI toolkit-
specific windows and dialogs and generates code for them.
Currently, we support the Java Swing7 and Eclipse SWT8 GUI
toolkits. This screen generation step solves four tasks:

• It maps the abstract widgets of the structural model to
toolkit-specific widgets,

• it maps the generic structural UI layout to a toolkit-specific
layout,

• it formats the toolkit-specific widgets according to cas-
cading stylesheets (CSS), and

• it generates the event handling and the binding to the
user interface behavior (represented as a generated finite-
state machine that is derived from the discourse model
obeying the procedural semantics of the RST relations as
described in [2]).

Figure 5 displays the screen resulting from the structural
UI model in Figure 4a by applying the screen generation for

7http://java.sun.com/products/jfc/
8http://www.eclipse.org/swt

Fig. 6. Screenshot of the final UI representing the Informing on all products.

Java Swing. Figure 6 shows the screen resulting in analogous
manner from the structural UI model in Figure 4b. In this
example, we achieved a one-to-one mapping between structural
model widgets and Java Swing widgets, only the PictureBox
widget in Figure 4b is mapped to a Java ImageIcon embedded
into a JLabel. In some cases, the mapping process is more
complex, e.g., our structural UI metamodel contains an image
map widget which requires an image, a label widget and the
implementation of multiple active areas within Java Swing.

For transforming the layout information of the structural
UI model, we implemented an algorithm that calculates layout
data required for the toolkit-specific layout managers. E.g., for
the Java Swing GridBagLayout we calculate the weight of each
grid cell, which is important for resizing windows, depending
on the widget types and the layouting rule applied to the RST
relation.

Further, the screen generation process formats the generated
widgets according to style information stored in a cascading
stylesheet (CSS). The appropriate style is selected according
to the selection algorithm defined in the CSS specification
based on the widget name, the style identifier and the wid-
get type defined in the structural UI model. So, this provides
a GUI toolkit-independent mechanism for specifying widget
styles that is transformed by the screen generation into toolkit-

2119

specific method calls to set the toolkit widget’s attributes.
In addition, the screen generation results in toolkit-specific

event handlers that
• collect information from the input widgets,
• modify content objects provided by the application logic

according to the collected information, or
• generate new content objects based on the collected in-

formation,
• and sends them to the application logic in response to a

question or as a new request.
A more detailed description of the screen generation process

can be found in [6].

V. DISCUSSION

Still, an essential problem of automatically generated UIs
is their usability. So, let us briefly discuss if and how our
approach may help in this regard.

Generally, taking the user’s tasks to be supported into ac-
count is supposed to help achieving good usability. In fact,
many of the current approaches to automated UI generation
start from task models. Our approach is built on discourse
models, but we found that they implicitly also represent tasks.
Primarily, our discourse models represent classes of dialogues
with an end user. And in this way, it should help with regard
to usability as well. After all, usage scenarios are well known
in this regard, and our discourse models may also be viewed
as classes of scenarios with additional information on how the
steps are connected.

We are not aware of any approach to automated UI gen-
eration that would take the specific context into account for
presenting content. In this particular paper, we address this
issue and show that and how the specific purpose can be
taken into account for presenting content. E.g., we propose
more specific and appropriate widget selection for the specific
purpose, and our model transformations implement it. So, this
may be another step into the direction of improving usability
of automatically generated UIs.

VI. RELATED WORK

Our approach to GUI generation relates to TERESA by
Mori et al. [7]. Both start from high-level models, but our
discourse models have a focus on dialogues and seem to be
even on a higher level than the task models shown in [7].

The UI Pilot approach by Puerta et al. [8] is semi-automatic
by requiring the designer to specify tasks and a so-called wire-
frame for the user interface. Afterwards, the tool can suggest
widgets for each user interface element. This approach pro-
vides more flexibility to the user interface designer than our
approach, which allows fully automatic content presentation.

Elkoutbi et al. [9] present an approach that generates a user
interface prototype from scenarios. Scenarios are enriched with
UI information and are automatically transformed into UML
statecharts, which are then used for UI prototype generation.
In contrast to this approach, we model classes of dialogues
supporting a set of scenarios. We transform our discourse

models to UML statecharts as well, but we do not have to
enrich them for this purpose.

Pederiva et al. [10] describe a beautification process that
helps a designer to improve a generated user interface via a
constrained user interface editor. This editor allows applying
beautification operations to specific UI elements, resulting
in model-to-model transformation. Since our approach in-
volves content presentation according to purpose, beautifica-
tion should be less important for this part of UI generation.

VII. CONCLUSION

We address the problem of presentation of content from the
domain of discourse according to its purpose in the current
state of the human-machine dialogue. This purpose relates
to the intention indicated by the type of the communicative
act that refers to propositional content to be presented. Our
approach takes this type into account in the course of automatic
content presentation. In this way, it leads to generated user
interfaces with content presentations according to purpose.

ACKNOWLEDGEMENTS

This research has been carried out in the CommRob project
(http://www.commrob.eu) and is partially funded by the EU
(contract number IST-045441 under the 6th framework pro-
gramme).

REFERENCES

[1] S. Kavaldjian, C. Bogdan, J. Falb, and H. Kaindl, “Transforming
discourse models to structural user interface models,” in Models in
Software Engineering, LNCS 5002. Berlin / Heidelberg: Springer,
2008, vol. 5002/2008, pp. 77–88. [Online]. Available: http://dx.doi.org/
10.1007/978-3-540-69073-3 9

[2] R. Popp, J. Falb, E. Arnautovic, H. Kaindl, S. Kavaldjian, D. Ertl,
H. Horacek, and C. Bogdan, “Automatic generation of the behavior of
a user interface from a high-level discourse model,” in Proceedings of
the 42nd Annual Hawaii International Conference on System Sciences
(HICSS-42). Piscataway, NJ, USA: IEEE Computer Society Press, 2009.

[3] J. R. Searle, Speech Acts: An Essay in the Philosophy of Language.
Cambridge, England: Cambridge University Press, 1969.

[4] P. Luff, D. Frohlich, and N. Gilbert, Computers and Conversation.
London, UK: Academic Press, January 1990.

[5] W. C. Mann and S. Thompson, “Rhetorical Structure Theory: Toward a
functional theory of text organization,” Text, vol. 8, no. 3, pp. 243–281,
1988.

[6] S. Kavaldjian, D. Raneburger, J. Falb, H. Kaindl, and D. Ertl, “Semi-
automatic user interface generation considering pointing granularity,” in
Proceedings of the 2009 IEEE International Conference on Systems, Man
and Cybernetics (SMC2009), San Antonio, TX, USA, Oct. 2009.

[7] G. Mori, F. Paterno, and C. Santoro, “Design and development of
multidevice user interfaces through multiple logical descriptions,” IEEE
Transactions on Software Engineering, vol. 30, no. 8, pp. 507–520, 8
2004.

[8] A. Puerta, M. Micheletti, and A. Mak, “The UI Pilot: A model-based tool
to guide early interface design,” in Proceedings of the 10th International
Conference on Intelligent User Interfaces (IUI’05). New York, NY,
USA: ACM Press, 2005, pp. 215–222.

[9] M. Elkoutbi, I. Khriss, and R. K. Keller, “Automated prototyping of user
interfaces based on UML scenarios,” Automated Software Engineering,
vol. 13, no. 1, pp. 5–40, 2006.

[10] I. Pederiva, J. Vanderdonckt, S. España, I. Panach, and O. Pastor, “The
beautification process in model-driven engineering of user interfaces,” in
Proceedings of the 11th IFIP TC 13 International Conference on Human-
Computer Interaction — INTERACT 2007, Part I, LNCS 4662. Rio de
Janeiro, Brazil: Springer Berlin / Heidelberg, Sept. 2007, pp. 411–425.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-74796-3 39

2120

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

