
Semi-automatic user interface generation considering
pointing granularity

Sevan Kavaldjian, David Raneburger, Jürgen Falb, Hermann Kaindl and Dominik Ertl
Institute of Computer Technology
Vienna University of Technology

Vienna, Austria
{kavaldjian, raneburger, falb, kaindl, ertl}@ict.tuwien.ac.at

Abstract—Development of GUIs (graphical user interfaces) for
multiple devices is still a time-consuming and error-prone task.
Each class of physical devices—and in addition each application-
tailored set of physical devices—has different properties and thus
needs a specifically tailored GUI. Current model-driven GUI
generation approaches take only few properties into account, like
screen resolution.

Additional device properties, especially pointing granularity,
allow generating GUIs suited for certain classes of devices like
touch screens. This paper is based on a model-driven UI develop-
ment approach for multiple devices based on a discourse model
that provides an interaction design. Our approach generates
UIs using an extended device specification and applying model-
transformation rules taking them into account. In particular,
we show how to semi-automatically generate finger-based touch
screen UIs and compare them with usual UIs for use with a mouse
that have also been generated semi-automatically.

Index Terms—Model-driven user interface generation, device
specification

I. INTRODUCTION

Manual creation of GUIs (graphical user interfaces) is hard
and expensive, so we strive for semi-automatic generation.
The formal specification of a physical device is insufficient
for the automatic generation of GUIs, however, if there are
application-specific device properties like pointing granularity
and virtual input devices. For example, a touch screen panel
can be used for fine-grained up to coarse-grained interaction. In
addition, it can be combined with a mouse and a real or a vir-
tual keyboard. For an automated generation of user interfaces,
the possible properties and their values have to be refined.
This results in an application-tailored device specification with
application-specific properties.

We are able to semi-automatically generate GUIs in a way
that takes pointing granularity into consideration. More pre-
cisely, we generate WIMP (window, icon, menu, pointer) UIs.
Our model-transformation rules can be divided into different
rule sets according to specific device properties. One rule set
is suitable for fine granularity, another rule set for coarse
granularity. Both rule sets have a common core, however.
These different rules can result in different layout, widget size
and even widget type selection. The generator program chooses
the respective rule set according to the specified properties.
Example applications for the rules that take coarse granularity
into account are finger-based touch screen applications and
applications for motor-impaired users.

The remainder of this paper is organized in the following
manner. First, we review the state of the art in terms of related
work. Then we sketch our discourse models taken as input
for the semi-automatic generation of GUIs. After that, we
discuss devices and their relevant properties. Based on all that,
we present our semi-automatic generation and how it takes
pointing granularity into account.

II. STATE OF THE ART

An advanced approach to generating multi-device UIs
starts with hierarchical task modeling using ConcurTaskTrees
(CTT) [1], where different temporal relations among tasks
can be specified (e.g., enabling, disabling, concurrency, order
independence, and suspend-resume). Out of such task models,
a user interface can be created through several steps of model
transformations. CTT also allows the derivation of presentation
units consisting of a set of tasks and their transitions. A model-
based multimodal user interface generation process for differ-
ent devices is presented in [2], [3]. One logical description
of an interface can be transformed into interfaces for different
devices. A prototypical implementation of a GUI for a desktop
application and a corresponding GUI used on a mobile phone
are demonstrated.

When a GUI is generated for different devices, a mechanism
can be applied that transforms a potentially large interface
(highest degree of parallelism) into a more compact (serialized)
form. An easy approach is just to add scroll bars to a GUI
developed for a PC application which shall be used, e.g., on
a PDA with reduced screen size. This potentially results in an
annoyed user, as scrolling is often required when using the
interface.

To circumvent this drawback, a technique presented in
[4] has been developed which automatically transforms Web
pages into hierarchically structured subpages. This approach
considers the size of the screen, the size of page blocks, the
number of blocks in each transformed page, the depth of the
hierarchy that the subpages form and the semantic coherence
between the blocks. “Size” is actually interpreted here in terms
of number of pixels, i.e., screen resolution. Another approach
to taking screen size into account for generating multi-target
user interfaces can be found in [5], but it actually interprets size
as screen resolution as well. It resizes based on given numbers

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
2121

of pixels on the screen. Note, that such approaches are difficult
to apply for touch screens with variable screen resolution, since
the metric size of input widgets matters there.

Design guidelines for touch screens are described in [6],
e.g., that the object separation should be at least 1/8′′. As
another example, when the consequences of selection are
destructive, i.e., a “remove” or “delete” functionality, confir-
mation helps to avoid inadvertent selection.

The minimum size for targets on a touch screen is men-
tioned in [7]. This study suggests a size of 9.6mm with 5%
erroneous trials for discrete screen objects. Previous studies
such as [8] investigated touch key design for target selection
on a mobile phone, more precisely the size of objects and
their location on the screen. However, this study focused on
mobile phones, which have more constraints on the screen size
than, e.g., touch screens for kiosk applications. A main result
of this study was that larger touch key sizes lead to higher
performance and more subjective satisfaction. The size of the
targets on a touch screen is also part of an empirical study in
[9]. It points out that large targets should be used whenever
possible, having benefits like reduced contact time and fewer
errors. However, a drawback of large targets are potentially
less manipulable objects on the screen.

III. DISCOURSE MODEL

The input for our semi-automatic user interface generation
approach is a discourse model, see [10]–[13]. Such a discourse
model serves as an interaction design on a high level of
abstraction and based on concepts of human language theories.
A small excerpt of a larger discourse model for interacting
with a robot shopping cart is shown in Figure 1. We use
this discourse model as a running example throughout the
remainder of this paper. The part shown in Figure 1 models
presenting the current state of the customer’s shopping list that
she has entered before and the possibility of removing items
from the shopping list.

The main ingredients of our discourse models are commu-
nicative acts. A communicative act is represented as a rounded
rectangle and models an utterance of one of the communication
partners. In our example, the robot cart may ask a closed ques-

tion or inform the customer, while the customer can provide an
answer to the question. The association of a communicative act
with a communication party is done by color. In our example,
the green (or dark gray) communicative acts are uttered by the
robot cart and the yellow (or light gray) ones are uttered by
the customer.

Additionally, some communicative acts, like Question and
Answer form a so-called adjacency pair—it is represented by
a diamond in our discourse models—to define the turn-taking
and thus the order of the utterances. The two communicative
acts forming an adjacency pair must always belong to different
communication parties. Some communicative acts, like Inform-

ing, do not require an explicit response and, therefore, form
a degenerated adjacency pair consisting of only an opening
communicative act (see the Informing in Figure 1).

Fig. 1. Discourse model excerpt.

A communicative act also conveys information to
achieve its purpose—e.g., asking a particular question. The
communicative act’s content is specified by a query-like
expression language that refers to elements in the domain of
discourse. For instance, the expression “select one from
all ShoppingList::shoppingList.items for
removeFromShoppingList Shopping::item” tells
that the customer may select one item from the items of her
shoppingList to remove it from the list; shoppingList
is a variable of type ShoppingList, which is a reference
to the ShoppingList class in the domain of discourse model.

Turn-taking sequences can be related in a discourse model
with each other to build a tree structure. These relations may
represent some subject-matter relationships as well as temporal
relationships. In our example, the question–answer pair and
the informing are related by a Background relation. This Back-

ground relation states that the Informing in the satellite branch
contains background information to the “nuclear” utterances to
support the customer in answering the closed question. This
relation does not imply a temporal order per se. For instance,
both pieces of information can be presented in parallel as done
in the graphical user interface shown in Figure 5 below. On the
other hand, if the cart uses speech for asking the customer, a
natural order would be to ask the question first, then to provide
the background information, and finally to wait for the answer
of the customer. Thus, our discourse models specify classes of
dialogues, with different possible orders of communicative act
utterances.

IV. DEVICES AND THEIR PROPERTIES

In order to parameterize our semi-automatic user interface
generation approach for diverse devices, we need some formal
specification of devices and their properties. Specifying physi-
cal devices, like desktop PCs and PDAs, and their physical
properties, e.g., screen size, resolution and supported GUI
toolkits, allows us to generate graphical user interfaces with
an appropriate screen layout, for example. A physical device
specification is often insufficient for semi-automatic user in-

2122

terface generation, however, since it does not specify how an
application makes use of the physical device. For instance, if
a touch screen is available, an application can use the device
in different ways by imposing different interaction styles—
pen-based interaction or finger-based interaction. These dif-
ferent ways of use shall be reflected in the user interface
generation too, since finger-based interaction requires larger
input widgets than pen-based interaction. Consequently, we
introduce application-tailored device specifications in addition
to physical device specifications.

Figure 2 illustrates both kinds of device specifications
and their relation. The application-tailored device is derived
from the physical device as a specialization and inherits the
physical device properties from it. For instance, such properties
are screen resolution and DPI, which together specify the
metric screen size as well. The additional properties of the
application-tailored device specify how the physical device
is used by the application. For example, a physical device
“touch screen” that can be either used with a pen or with
fingers requires the additional property “pointing granularity”
to be included in the application-tailored device specification.
This property can have the value “coarse” for finger-based
interaction, whereas for pen-based applications the “pointing
granularity” will have the value “fine”.

An application can further combine physical and virtual
devices in a special way. For instance, a touch screen solution
usually does not include a physical keyboard. Nevertheless, an
application could require the presence of a virtual keyboard,
which in turn imposes constraints (especially spatial layouting
constraints) on the automatic user interface generation. There-
fore, our specification of application-tailored devices includes
also properties defining the inclusion of virtual devices. Their
use for automated generation of user interfaces, however, is
beyond the scope of this paper.

V. SEMI-AUTOMATIC UI GENERATION

Having such application-tailored device specifications avail-
able, user interface transformation rules and code generation
can be restricted to a set or range of device property values.
Our model-transformation rules are divided into different rule
sets accordingly. Applying rules from these different rule sets
can result in different layout, widget size and even widget
type selection. The automated UI generation chooses the
respective rule set according to the specified device properties.
For example, rules for a coarse pointing granularity—due to
finger-based use of the device—can lead to larger widgets or
avoidance of complex widgets like drop-down boxes.

A. Overview

Our GUI generation process is divided into two steps.
First a structural user interface model is generated, using
the discourse model and a device specification as input. This
structural user interface model specifies the widget hierarchy
of the user interface. The structural user interface model is still
independent of the GUI toolkit (in our case Java Swing) used
to display the screens, but it depends already on the target

Device
Specification

Physical Device
Resolution: 1280x1024
DPI: 72
Colors: 24bit

Device Properties

Application-
tailored
Device

Pointing granularity:
coarse
Virtual keyboard: yes

Device Properties

Fig. 2. Physical and application-tailored device specifications.

device, e.g., a touch screen. Default values for metric widget
sizes are chosen according to the specified metric screen size
of the device. Device properties like screen resolution, etc.,
are taken into account either directly during the structural UI
model generation or by the code generator. In the second step,
a code generator translates the structural UI model into GUI
toolkit specific source code.

The Discourse To Structural UI Transformer gets the
discourse and the domain-of-discourse models as input and
transforms them into a structural UI model. This transfor-
mation takes device properties into account. The Discourse
To Structural UI Transformer performs a model-to-model
transformation based on rules. Such a transformation rule can
state, for example, that each “Informing” communicative act
found in the discourse model has to be transformed to a panel
containing a label widget for each domain-of-discourse object
referred to by the communicative act’s propositional content.

The UI Code Generator gets the generated structural UI
model as input and maps it to widgets available on the
target platform’s GUI toolkit. To complement the information
not provided by the structural UI model, additional device
properties and style information can be included deliberately.

The separation of the rendering process in two steps has
the major advantage that the generated structural UI model is
still platform independent and can be translated into several
different GUI-toolkit languages in a second step. Another
advantage is the possibility of influencing the screen design
through modifying the generated structural UI model, before
triggering the actual code generation. This leads to a more
satisfying final user interface.

2123

B. Discourse Model to UI Structure Transformation

Our model-driven approach transforms discourse models
into structural UI models that are close to the final user
interface but still GUI toolkit-independent (see, e.g., Figure 3).
We first explain the transformation approach as well as the
differences between transformation rules for coarse-grained
pointing and transformation rules for fine-grained pointing.
Subsequently, we present the structural UI model resulting
from the transformations for coarse-grained pointing granu-
larity.

A self-developed transformation engine executes the trans-
formation of a given discourse model. Transformation lan-
guages and engines like ATL1 (ATLAS Transformation Lan-
guage) or MOLA2 (MOdel transformation LAnguage) also
support the same transformation process, but these approaches
lack conflict resolution strategies, requiring rules to be care-
fully designed in a way that only one rule matches a model
element at any time. This is inappropriate for GUI rendering,
since one wants to provide some general rendering rules and
some more specific ones matching the same element with the
specific ones taking precedence over the general ones.

Our model-driven transformation approach uses a process
consisting of two interleaved transformation steps:

1) The first step applies rules according to the defined
application-tailored device specification, that generate an
overall UI structure based on patterns matched in the
discourse model. These rules generate abstract widgets
like labels for headings and placeholders for data of the
propositional content. They also select the parts of the
propositional content to be rendered and associate them
with the placeholders.

2) The second step executes specific content transformation
rules within the context of the rules of the first step. This
allows the selection of abstract widgets depending on the
content type, the content’s referring communicative act
type and the current context the communicative act is
embedded in as defined by the enclosing rule.

We explain this process in more detail by means of our
running example and in [14]. For transforming the discourse
model excerpt in Figure 1, we need structural transformation
rules for transforming the Closed Question-Answer adjacency
pair and the Informing communicative act as well as the Back-

ground relation. Second, we need content transformation rules
for transforming content types, like string, picture and number
dependent on the communicative act they are embedded in.
The transformation rules also contain heuristics to improve
the generated structural UI model. For example, rules can
transform content attributes differently based on their attribute
name, e.g., a name attribute can be used as the heading for
the rendered content. The structural rules below illustrate the
difference between rules applied to the same communicative
act for different device specifications.

1http://www.eclipse.org/m2m/atl/
2http://mola.mii.lu.lv/

Fig. 3. Structural UI model excerpt automatically generated for touch screen.

Closed question transformation rule for coarse gran-
ularity: This rule transforms each Closed Question-Answer

adjacency pair to a panel with a label and a list with each
list entry consisting of an output widget placeholder for the
content object’s identifier (e.g., name). The label represents
the heading for the overall list and the label’s text is derived
from the name of the closed question communicative act. A
property is set in the list widget element of the structural UI
model that enables the generation of Scroll Buttons for the list.
The result of this rule is the rendered “Shopping List” in the
left part of Figure 4. Due to the coarse pointing granularity,
the clickable area for each list entry is extended to the size of
the whole list entry.3

Closed question transformation rule for fine granularity:
This rule transforms each Closed Question-Answer adjacency
pair to a panel with a label and a list with each list entry
consisting of an output widget placeholder for the content ob-
ject’s identifier (e.g., name) and a button. The label represents
the heading for the overall list and the label’s text is derived
from the name of the closed question communicative act. The
result of applying this rule can be seen in the upper part of
Figure 5. Due to the fine pointing granularity, the clickable
area for each list entry is restricted to the size of the remove
button. Additionally, a scrollbar is added to the right of the
remove buttons.

Informing transformation rule: This rule matches an
adjacency pair with an Informing communicative act (upper
right part of Figure 1). The rule transforms the matched
input to a Panel containing an Output Widget placeholder.
The output widget placeholder has a property that holds an
OCL4 expression which selects all attributes of the referred
content. As can be seen at the bottom left part of Figure 4
and the bottom of Figure 5, the Informing is rendered equally

3The size of this figure as given here is on purpose nearly the real size on
the physical device. The minimum target size on the device is as suggested
in the literature referenced above.

4OCL – Object Constraint Language, see http://www.omg.org/cgi-bin/doc?
ptc/2003-10-14 for its specification

2124

Fig. 4. Final touch screen user interface.

2125

Fig. 5. Excerpt of final desktop user interface.

in both cases, independently of the pointing granularity. This
implies that output widgets are not influenced by the pointing
granularity. Therefore, this rule belongs to the set of common
core rules.

When these rules are applied to our discourse model excerpt
in Figure 1, we get the generated structural UI model for touch
screens illustrated in Figure 3. The resulting structure of the
Closed Question-Answer adjacency pair in Figure 3—the panel
ClosedQuestionShoppingList and its children—corresponds to
the structure described in the “Closed question transformation
rule for coarse granularity” and is illustrated in the final UI
as the Shopping List in Figure 4. The resulting structure of
the Informing in Figure 3—the panel InformingShoppingList

and its children—corresponds to the structure described in the
“Informing transformation rule”. It is shown in the final UI by
two labels below the Shopping List in Figure 4. The label with
the text “Press List item to REMOVE Product” results from the
“Closed question transformation rule for coarse granularity”.
It is contained in the structural UI model in Figure 3 as the
label “HelpText”. The output widget placeholders are replaced
by the appropriate second level rules.

The structural UI model generated for fine granularity is
similar to the one for touch screens with coarse granularity. It
additionally has a Remove button contained in the list widget
element of the closed question panel. The resulting buttons in
the final UI are shown on the right in Figure 5.

C. Screen Generation

The second step of the generation process is the actual
screen generation. This process creates the target toolkit im-
plementation of the final UI, that represents all windows and
frames needed to communicate with a user.

The code generator’s task is the translation of a structural
user interface model to source code in a specified programming
language. Since graphical user interfaces usually consist of a
limited number of widget types combined in various ways, the

resulting code can be seen as a combination of corresponding
code fragments.

The most appropriate generation approach, regarding the
input of the process, is the combination of meta-model and
template-based generation. As large parts of our discourse
modeling and user interface generation platform are based on
the Eclipse Modeling Framework5 and, therefore on Java, we
chose Java Emitter Templates (JET) as the template language.
We implemented the code generator as a template engine, using
Java Swing6 as target toolkit.

The templates give the system designer a fair amount of
flexibility as they support the separation between functionality
and content. Static data already available at generation time
can be retrieved directly from the structural UI model. On the
contrary, list widgets, for example, are filled with dynamic data
available only during runtime of the system. This allows the
modification of data without needing to generate the system
anew.

The structural UI takes layouting into account, but hardly
contains anything concerning the look of the application. All
this data can be encapsulated in a style sheet, whose elements
are then associated with the structural UI model elements.
Moreover, the look aspect is something that does not influence
the logic of a system at all and can, therefore, be treated
separately.

Cascading Style Sheets (CSS) encapsulate all information
concerning the look of an object, making it easy to adapt
a system to a new look by simply exchanging the style
sheet. Since CSS have been designed for HTML pages, we
had to map CSS attributes to Java Swing attributes within
the generator templates. Apart from this mapping, the code
generator provides default values for attributes like font type
and size, as well as for border thickness and color. These
default values are needed in case the system designer does
not specify all attributes needed by the generator. If a style
sheet is provided, all specified attributes are applied to the
corresponding widget, overriding the default values.

The code generator further supports the fall-back mecha-
nism known from HTML. In a first step, the generator tries
to extract all the values from the CSS style that is associated
with the structural UI model widget’s identifier. If no widget-
specific style is found, the code generator tries to extract the
values from the style class associated with the widget. In case
no style class is defined for the widget in the structural UI
model, the code generator checks for a corresponding CSS
element style. If all attempts fail, the value is set to the default
value that is predefined in the code generator.

The code generator extends the basic functionality offered
by CSS. An extension that influences the look of an application
is the representation of enumeration values through icons (e.g.,
tick marks in Figures 4 and 5). Furthermore, decorative images
or sounds can be specified for different widgets.

We further provide several CSS templates that define the
sizes of several widget types. In this way the style sheets

5http://www.eclipse.org/modeling/emf/
6http://java.sun.com/products/jfc/

2126

capture not only characteristics regarding the look, but also
the feel of an application, e.g., in case of a touch screen UI.
The code generator selects the appropriate style sheet template
according to the application-tailored device specification and
extracts the needed information at generation time, specifying
the button size or the size of each list widget entry in Figure
4. The style sheets also define default values regarding the
size and font of every widget type. In this way, the minimum
size of buttons or other interactive widgets like the shopping
and destination list in Figure 4 are set. As these settings are
specified for a widget type, they are valid for all widgets in
the structural UI model unless they are overridden. Therefore,
they can be seen as default values for the application-tailored
device. They can be refined either directly, by editing values in
the style sheet, or by attaching a style reference to the structural
UI widget. In effect, the default values set by the template
are substituted by the values defined in the corresponding
style class. This allows the system designer to customize the
standard values for selected widgets or widget classes.

The possibilities of style sheets however, do not cover all
aspects concerning the feel of a user interface on different
application-tailored devices as they do not allow modifying the
widget hierarchy of the structural UI. This aspect is covered by
the mapping rules applied during the first generation step. An
example are the additionally generated scroll-buttons for each
list in Figure 4. Their generation results from the application
of different transformation rules than the ones applied for
generating the desktop UI illustrated in Figure 5.

The style sheets are applied only during the second step
of the generation, i.e., the structural UI model to Java Swing
translation. Any change to characteristics that are captured by
the style sheet, requires only the repetition of the second step
instead of the whole generation process.

VI. CONCLUSION

In this paper, we extend the usual device properties taken
into account for automated GUI generation. We include in-
formation on having a real or a virtual keyboard, as well as
pointing granularity for a touch screen. In fact, these are device
properties beyond those for physical devices. We call the
extended specifications, therefore, application-tailored device
specifications.

Our focus in this paper is on semi-automatic UI generation
that takes pointing granularity into account. Fine pointing
granularity leads to smaller input widgets on the screen,
whereas coarse pointing granularity results in larger input
widgets. Since we had to generate UIs for a finger-based touch
screen, we developed specific model-transformation rules for
course pointing granularity.

In order to show the flexibility of the generation approach,
we also present model-transformation rules for fine pointing
granularity. We used them for semi-automatically generating
a usual GUI for use with a mouse as well. So, we have been
able to generate both GUIs semi-automatically from the same
high-level discourse specification, and we compare them in this
paper.

This flexibility in semi-automatic GUI generation is unique
at our best knowledge. In particular, it is based on application-
tailored device specifications.

ACKNOWLEDGEMENTS

This research has been carried out in the CommRob project
(http://www.commrob.eu) and is partially funded by the EU
(contract number IST-045441 under the 6th framework pro-
gramme).

REFERENCES

[1] G. Mori, F. Paterno, and C. Santoro, “Design and development of
multidevice user interfaces through multiple logical descriptions,” IEEE
Transactions on Software Engineering, vol. 30, no. 8, pp. 507–520, 8
2004.

[2] F. Paternò and C. Santoro, “One model, many interfaces,” in Proceedings
of the 4th International Conference on Computer-Aided Design of User
Interfaces (CADUI 2002), 2002, pp. 143–154.

[3] F. Paternò and F. Giammarino, “Authoring interfaces with combined
use of graphics and voice for both stationary and mobile devices,” in
Proceedings of the Working Conference on Advanced Visual Interfaces
(AVI 2006). New York, NY, USA: ACM, 2006, pp. 329–335.

[4] X. Xiao, Q. Luo, D. Hong, H. Fu, X. Xie, and W.-Y. Ma, “Browsing on
small displays by transforming web pages into hierarchically structured
subpages,” ACM Transactions on the Web, vol. 3, no. 1, pp. 1–36, 2009.

[5] B. Collignon, J. Vanderdonckt, and G. Calvary, “Model-driven engineer-
ing of multi-target plastic user interfaces,” in Proceedings of the Fourth
International Conference on Autonomic and Autonomous Systems (ICAS
2008). Washington, DC, USA: IEEE Computer Society, 2008, pp. 7–14.

[6] W. O. Galitz, The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques. New York,
NY, USA: John Wiley & Sons, Inc., 2002.

[7] P. Parhi, A. K. Karlson, and B. B. Bederson, “Target size study for
one-handed thumb use on small touchscreen devices,” in Proceedings of
the 8th International Conference on Human-Computer Interaction with
Mobile Devices and Services (MobileHCI 2006). New York, NY, USA:
ACM, 2006, pp. 203–210.

[8] Y. S. Park, S. H. Han, J. Park, and Y. Cho, “Touch key design for target
selection on a mobile phone,” in Proceedings of the 10th International
Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI 2008). New York, NY, USA: ACM, 2008, pp.
423–426.

[9] G. T. Bender, “Touch Screen Performance as a Function of the Duration
of Auditory Feedback and Target Size,” Ph.D. dissertation, Wichita State
University, 1999.

[10] J. Falb, H. Kaindl, H. Horacek, C. Bogdan, R. Popp, and E. Arnautovic,
“A discourse model for interaction design based on theories of human
communication,” in CHI ’06 Extended Abstracts on Human Factors in
Computing Systems. New York, NY, USA: ACM Press, 2006, pp. 754–
759.

[11] C. Bogdan, J. Falb, H. Kaindl, S. Kavaldjian, R. Popp, H. Horacek,
E. Arnautovic, and A. Szep, “Generating an abstract user interface from
a discourse model inspired by human communication,” in Proceedings
of the 41st Annual Hawaii International Conference on System Sciences
(HICSS-41). Piscataway, NJ, USA: IEEE Computer Society Press,
January 2008.

[12] C. Bogdan, H. Kaindl, J. Falb, and R. Popp, “Modeling of interaction
design by end users through discourse modeling,” in Proceedings of the
2008 ACM International Conference on Intelligent User Interfaces (IUI
2008), Maspalomas, Gran Canaria, Spain, 2008.

[13] R. Popp, J. Falb, E. Arnautovic, H. Kaindl, S. Kavaldjian, D. Ertl,
H. Horacek, and C. Bogdan, “Automatic generation of the behavior of
a user interface from a high-level discourse model,” in Proceedings of
the 42nd Annual Hawaii International Conference on System Sciences
(HICSS-42). Piscataway, NJ, USA: IEEE Computer Society Press, 2009.

[14] S. Kavaldjian, J. Falb, and H. Kaindl, “Generating content presentation
according to purpose,” in Proceedings of the 2009 IEEE International
Conference on Systems, Man and Cybernetics (SMC2009), San Antonio,
TX, USA, Oct. 2009.

2127

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

