
An Adaptive Genetic Algorithm for solving the
Single Machine Scheduling Problem with Earliness

and Tardiness Penalties
Fabio Fernandes Ribeiro, Sergio Ricardo de Souza

DPPG, CEFET/MG
Belo Horizonte, Brazil

fabiobh@gmail.com, sergio@dppg.cefetmg.br

Marcone Jamilson Freitas Souza
Federal University of Ouro Preto

Ouro Preto, Brazil
marcone@iceb.ufop.br

Abstract—This paper deals with the Single Machine Schedul-
ing Problem with Earliness and Tardiness Penalties, considering
distinct time windows and sequence-dependent setup time. Due
to the complexity of this problem, an adaptive genetic algorithm
is proposed for solving it. Many search operators are used to
explore the solution space where the choice probability for each
operator depends on the success in a previous search. The initial
population is generated by applying GRASP to five dispatch rules.
For each individual generated, a polynomial time algorithm is
used to determine the initial optimal processing date for each job.
During the evaluation process, the best individuals produced by
each crossover operator, in each generation undergo refinement
in order to improve quality of individuals. Computational results
show the effectiveness of the proposed algorithm.

Index Terms—Single machine scheduling, Genetic algorithm,
metaheuristics.

I. INTRODUCTION

Today, scheduling is one of the most studied problem
types [1]. There are two main aspects: the first concerns
their practical importance, with various applications in several
industries, such as chemical, metallurgic and textile indus-
tries. The second aspect deals with the difficulty of solving
most of the problems of this class. This paper deals with
the Single Machine Scheduling Problem with Earliness and
Tardiness Penalties (SMSPETP) with distinct time windows
and sequence-dependent setup time. To our knowledge, this
problem has not yet been the object of much attention from
the scientific community, as can be seen in a recent survey [1].

The lateness penalty criteria and earliness production shares
the goal of the Just-in-Time philosophy, in which they produce
only when it is called for. There are time windows for each job,
according to [2], to deal with uncertain situation or tolerance
for due date. We suppose that these time interval operations
can be solved without costs. On the other hand, in the majority
of industrial processes, machines can be prepared to do new
jobs, including the to clean up, set up, obtain tools, adjust tools,
position and inspect materials that will be used in the process.
The preparation time needed for this is known as setup time.
Many production scheduling studies disregard this time or
include it in the operation processing time. This act simplifies
the analysis but affects the quality of the solution when setup
time varies relevantly in function of machine job sequence.

This work considers setup time to be dependent on production
scheduling. Since it was showed in [3] that a simplified version
of this problem is NP-Hard, using metaheuristics to solve this
problem is justified.

Simplified versions of this problem have been studied by
various authors. [4] uses Tabu Search and Genetic Algorithms
for solving the problem with common delivery date. This
algorithm uses optimal solution properties to explore the
solution space. [5] solves this problem considering common
delivery dates and setup time included in a job processing
time and independent of production sequence. The author uses
Recovering Beam Search (RBS), an improved version of the
Beam Search (BS) method, a branch-and-bound algorithm at
which only the most promising w nodes of each search tree
level are selected for a future ramification, while the rest of
nodes are cut forever. In order to avoid eliminating the wrong
decision about which nodes are followed, RBS Algorithm uses
a recovered tool that searches for better partial solutions which
control those selected previously. [6] used genetic algorithm
to solve the problem with different delivery dates. In this last
work, a specific algorithm, with polynomial complexity, was
developed to determine the optimal process conclusion date
for each job in a sequence produced by Genetic Algorithm.
This algorithm is necessary because finishing a job early can
be attractive even paying a penalty, if the penalty is less than
the penalty generated by the lateness. [2] studied this problem
considering separate time windows, in place of due dates. The
algorithm of [6] was adapted to determine optimal dates for
each job to include this new characteristic.

To solve this scheduling problem with the characteristics
presented, an Adaptive Genetic Algorithm is proposed here
in which the initial population was generated by a construc-
tion method based on GRASP [7] and five dispatch rules.
During the evaluation process, the population passes through
conventional mutation and crossover process. However, the
crossover uses criteria based on solution quality generated
by each crossover operator to choose which operator will be
used. In addition, in a determined number of generations, the
probability an operator being chosen is update according to
the solution quality for each operator. A local search is then

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
710

applied in the best produced offspring, for each operator, to
refine them. The survival population is composed of 95%
offspring chosen by the elitism procedure. The other 5% are
randomly chosen and pass through the mutation process, in
which two jobs will be switched to warranty population diver-
sity. Path Relinking is applied periodically by connecting the
best individual found so far with the best offspring generated
in the last 5 generations. Population improvement occurs until
the stop criterion is reached.

This work will be carried out using the following structure:
section 2 details the studied problem; section 3 presents the
adaptive algorithm for solving SMSETP; section 4 shows and
discuss the results. Finally, section 5 ends the work and shows
future opportunities to improve the proposed algorithm.

II. PROBLEM DESCRIPTION

The sequencing problem studied in this work is single
machine scheduling with earliness and tardiness penalties with
distinct time windows and sequence-dependent setup time. It
has the following characteristics:

• one machine must process a set of n jobs;
• each job has a processing time Pi, a initial date Ei and

the final date Ti desired to the end of processing;
• the machine executes one job per time and if the job pro-

cessing is started, the job must be finished and processing
interruptions are not allowed;

• All the jobs are available to processing in the time 0;
• When the job j is sequenced immediately after a job i,

if they are part of different products family, a setup time
Sij is necessary to set up the machine. Setup time equal 0
(Sij = 0) means products of the same family. This means
initial setup time considers setup time to the first job in
the sequence to be 0;

• Idle time between execution of two consecutive jobs is
allowed;

• Jobs must be finalized inside the time interval [Ei, Ti],
called time window. In case of job finalization before the
Ei, so there is a cost for early arrival. In Case the job are
finalized after Ti, a cost will be generated for tardiness.
Jobs finalized within the time window have no cost;

• The costs for earliness and tardiness of production de-
pends on the job, each job i has a earliness cost αi and
a tardiness cost βi;

• The objective is to minimize the summation of the earli-
ness and tardiness penalties.

A. The mixed integer programming model

The mixed integer programming model (MIP) below, based
on [8], formulates the scheduling problem described in the
previous section. This formulation uses the following notation:

• si: the starting time of job i;
• Ci: the completion time of job i;
• yij : binary variable that assumes value 1 if job j is

processed immediately after job i and 0, otherwise;
• ei: the earliness of job i, that is, ei = max{0, Ei − Ci};
• ti: the tardiness of job i, that is, ti = max{0, Ci − Ti};

• M : a sufficiently large number;
• 0: a fictitious job, which precedes and follows all other

jobs;

It also assumes that P0 = 0, S0i = Si0 = 0 ∀i ∈
{1, 2, · · · , n}

min Z =

n∑

i=1

(αiei + βiti) (1)

s.t: sj − si − yij(M + Sij) ≥ Pi − M ∀ i, j = 0, . . . , n; (2)

i �= j
n∑

j=0, j �=i

yij = 1 ∀ i = 0, . . . , n (3)

n∑

i=0, i�=j

yij = 1 ∀ j = 0, . . . , n (4)

si + Pi + ei ≥ Ei ∀ i = 1, . . . , n (5)

si + Pi − ti ≤ Ti ∀ i = 1, . . . , n (6)

si ≥ 0 ∀ i = 0, . . . , n (7)

ei ≥ 0 ∀ i = 1, . . . , n (8)

ti ≥ 0 ∀ i = 1, . . . , n (9)

yij ∈ {0, 1} ∀ i, j = 0, . . . , n (10)

i �= j

The objective function (1) expresses the total earliness and
tardiness cost. The constraints (2) establish that job j can be
processed when job i is finished and the machine is prepared
to processes it. Constraints (3), (4) and (11) guarantee that
the variable yij assumes value 1 if and only if job j is
processed immediately after job i. Constraints (5) and (6)
define, respectively, tardiness and earliness values according
of time window. Constraints (7) to (11) define the type of
variables.

B. Heuristic framework

In this section, the Adaptive Genetic Algorithm (AGA)
framework will be describe.

C. Individual representation

An individual (solution) to this problem is represented by a
vector v of n genes (jobs), with position i of each gene showing
the production sequence of job vi. For example, in sequence
v = {7, 1, 5, 6, 4, 3, 2}, job 7 is the first to be processed and
job 2, the last.

D. Evaluation of individuals

All individuals are evaluated by the same objective function,
given by MIP model expression (1), in which the individual
who obtained the shortest value to the objective function are
considerer the best adapted.

E. Initial population construction

The initial population of the adaptive genetic algorithm
proposed is generated by GRASP construction phase [7],
having as guide function five dispatch rules: EDD (Earliest Due

711

Date), TDD (Tardiness due date), SPT (Shortest processing
time), WSPT (Weight shortest processing time) and LPT
(Longest processing time). For each construction (GRASP +
Dispatch rule) 200 individuals are generated. Then individuals
are ordered, from the best to the worst, according to the
evaluated function. The Initial population is made up of the
best 100 individuals generated.

1) Dispatch rules: In the EDD dispatch rule, jobs are
ordered by the initial date Ei. Jobs with earlier due date will
be processed before those one with later due date. By the TDD
dispatch rule, jobs are ordered based on the final date Ti. Jobs
with later due date will be processed before those with earlier
due dates. The SPT dispatch rule builds job sequence based
on processing duration. A job with a shorter processing time
will be processing before one with a longer processing time.
In the rule WSPT the same SPT logic is used but a weight is
assigned to each job by service priority which is considered to
order the jobs. Finally the LPT rule puts the jobs in order also
based on processing time, but in this rule the jobs with longer
processing times will be processed before those with shorter
processing times.

2) GRASP construction procedure: In this construction
procedure, an offspring is formed by genes that have been
inserted one by one. The offspring was constructed according
to partially greedy selection criteria. To estimate each gene’s
insertion benefit, dispatch rules EDD, TDD, SPT, WSPT and
LPT were used. Each variant gives a different construction.

In the sequence, the selection criteria based on the EDD
rule, in which jobs are listed by earliest due date. At each
iteration of the procedure, the next candidate’s genes to
be included in the individual were put in a candidate list,
according to the EDD rule. The best candidates are put in
a Restricted Candidate List (RCL), with size controlled by
parameter γ ∈ [0, 1].

The procedure includes in RCL all of genes (jobs) i which
dates Ei is less than or equals to Emin +γ× (Emax −Emin).
Then one gene of this list is randomly chosen and added to the
offspring under construction. The procedure ends when all of
genes have been allocated, when the offspring is completely
constructed. Empirically, 10,000 individuals were generated for
each one of the following values: 0.02, 0.04, 0.06, 0.08, 0.10,
0.12, 0.14, 0.16, 0.18, 0.20. The results shown on Table I are
generated by an instance involving 20 jobs and five dispatch
rules, chosen randomly at each iteration.

The “Best Result” column on table I shows the best value
found for each γ parameter. The column “Average” shows
the average value for the 1,000 individuals generated and the
column “GAP” shows the rate variations between the average
and the best result. Based on this data γ parameter set at 0.20.

In the Figure 1, the GRASP construction phase is shown.
In this figure, gmin represents the best value for the dispatch
rule adopted and gmax, the worst one.

F. The Adaptive Genetic Algorithm applied to SMSETP

Figure 2 shows the pseudo-code of the proposed Adaptive
Genetic Algorithm (AGA). The algorithm phases are described

TABLE I
RESULTS FOR γ PARAMETER

γ Best result Average gap (%)

0.02 154,150 163,582 6.12
0.04 154,150 163,645 6.16
0.06 131,063 173,691 32.52
0.08 120,521 173,101 43.63
0.10 120,149 181,906 51.40
0.12 120,521 187,383 55.48
0.14 115,283 183,307 59.01
0.16 118,838 183,310 54.17
0.18 118,991 196,007 64.72
0.20 114,256 191,689 67.77

procedure Construction(g(.), γ, v);
1 v ← ∅;
2 Initialize a set C of candidate genes;
3 while (C �= ∅) do
4 gmin = min{g(t) | t ∈ C};
5 gmax = max{g(t) | t ∈ C};
6 RCL = {t ∈ C | g(t) ≤ gmin + γ · (gmax − gmin)};
7 Select, randomly, a gene t ∈ RCL;
8 v ← v ∪ {t};
9 Update C;
10 end-while;
11 Return v;
end Construction;

Fig. 1. Procedure to build an individual

bellow.
1) Individual selection method: After evaluating the pop-

ulation, individuals are selected by the binary tournament
method in which the main goal is to allow the best adapted
individuals to be selected.

2) Crossover: After evaluating the population, individuals
are selected for reproduction by the selection method described
above. The crossover process uses the following operators: (i)
One Point Crossover (OX), (ii) Similar Job Order Crossover
(SJOX), (iii) Relative Job Order Crossover (RRX), (iv) Based
Order Uniform Crossover (BOUX) and (v) Partially Mapped
Crossover (PMX). This choice was justified because these
operators are the operators that most commonly solve problems
like this by genetic algorithm [6]. The One Point Crossover
operators (OX) select a cut point randomly. Jobs on the right
side of relative 1 and 2’s cut points are copied to offspring 1
and 2, respectively. Offspring 1 and 2 are produced following
the job sequence of relatives 2 and 1, respectively. In the
Similar Job Order Crossover (SJOX), the two parents are
examined job by job. Should the same job appear in the same
position in both relatives, it is copied to the both offspring. In
the sequence, a cut point is randomly chosen and the missing
jobs in the offspring 1 and 2 are copied to the relatives 1 and 2
respectively and then the jobs by the left side of cut point are
completed following the job sequence of relatives 2 and 1 to
the offspring 1 and 2 respectively. Proposed by [9] specifically
to the job Schedule problem, the Relative Job Order Crossover
(RRX) preserves the relative job order and even preserves some
jobs in the absolute positions in the sequence. It divides the

712

Algorithm AGA(maxger, nind, probcross, probmut);
1 t ← 0;
2 Generate Initial Population P (t);
3 Evaluate P (t);
4 while (t ≤ maxger) do
5 t ← t + 1;
6 Generate P (t) by P (t − 1);
7 while (i ≤ numind) do
8 i ← 1;
9 cross ← Randomly number from 1 to 100;
10 if (cross ≤ probcrossover) then
11 Select individual;
12 Crossover;
13 end-if;
14 Evaluate P (t);
15 end-while;
16 Define survivors;
17 if (t mod 5 = 0) then
18 Update choose probability of operators (p(Oi));
19 Execute Local Search;
20 Apply Path Relinking;
21 end-if;
22 end-while;
end AGA;

Fig. 2. Pseudo-code of the proposed Adaptive Genetic Algorithm

jobs in two sets and mixes them by order of both relatives,
without random decisions. In to this scheme, exactly eight
offspring are generated, two being relative clones. In the RRX
operator implemented in this work the two clones will be
ignored. As the fixed population size is adopted, the selection
of some offspring will be necessary to add them to the
population. In this work, two of six offspring with the shortest
objective function value will be used. The crossover process
has two phases: In the first phase the relatives will be divided
into two parts according to randomly selected cut point. The
first part of each relative is copied to the offspring. The second
phase is adding the missing genes to the offspring. These genes
are copied according to the sequence of relative genes that
have not given genes to an offspring yet. For example, if an
offspring receives genes from relative 1 in this first phase, it
will be completed with genes of relative 2. The Based Order
Uniform Crossover (BOUX) was developed with in order to
avoid construction of non-feasible solutions. According [6],
the BOUX is considered one of crossover operator that has
the best adherence to the schedule problems. The crossover
procedure started with a string construction that has the same
relative size, and save the values 0 or 1, randomly chose.
Next the crossover is carried out gene by gene, respecting the
following rules: Should the bit equal 0, offspring 1 receives a
gene that is in the same position in relative 1 and offspring
2 receives relative 2’s gene. If the bit equals 1, offspring 1
receives the gene from the same position in relative 2 and
offspring 2 receives the gene from relative 1. Before the gene

is inserted in the sequence, the procedure checks if the gene
is already part of the offspring and if it is, the gene inserted
is from the same position of another relative. If the problem
persists, the job sequence of the relative indicated by the bit
is used. The Partially Mapped Crossover (PMX) executes the
relative fragment map of this offspring. The missing genes are
copied following the job sequence of another relative. In this
work two cut points are randomly chosen. Cut point 1 is always
shorter than cut point 2. The choice of these points allowed
the extraction of each relative fragment so that offspring 1
gives relative 2 the fragment and offspring 2 gives relative 1
the fragment. To keep the offspring viable, missing genes are
filled following job order of the relative that doesn’t contribute
with a fragment, if the gene to be inserted is already in the
offspring.

Crossover choice probability of an operator changes ac-
cording to the quality of individuals produced by operators in
past generations. More specifically, let Oi, with i = 1, · · · , 5,
the five crossover operators. Initially, each crossover operator
Oi has the same probability of being chosen, which means,
p(Oi) = 1/5. Let f(s∗) be the best individual found and
Ai the average individual value found for each operator Oi

since the last update. If the operator has not been chosen in
last five generations, make Ai = 1. Let qi = f(s∗) = Ai

and p(Oi) = qi/
∑5

j=1 qj where i = 1, · · · , 5. Observe that
the better the individual are, the higher the qi value and
consequently, the better the probability p(Oi) has of choosing
operator Oi. Therefore, during the evolution of the algorithm,
the best operator has a better chance of being chosen. This
procedure is inspired by Reactive GRASP algorithm, proposed
by [10].

3) Local search: As stated previously, every five genera-
tions a local search is applied for the best individual generated
by each crossover operator. The local search used is Random
Descending, which uses two kinds of movement to explore
a search space: the switch of two jobs of the sequence and
job relocation to another production sequence. The method
works as follows: For an individual, two jobs are randomly
selected and the positions are exchanged. If the new movement
is better, according to the evaluation function, it is accepted and
becomes the current solution; otherwise, another movement
is randomly chosen. If during MRDmax any solution better
than the current is generated, relocation movement is used. If
there is improvement, the method goes back to using exchange
movements; otherwise, local search ends when MRDmax iter-
ations pass without improvement.

4) Path Relinking: Path Relinking is a procedure that in-
tegrates intensification and diversification strategies during the
search process [11]. It generates new individuals by exploring
paths that connect high quality individuals. Given a pair of
individuals, a search starts with one of them, called the base
individual,moves on to another called guide individual, step by
step adding guide individual attributes to the base individual. In
this problem, during the evolution process, a group of the best
five individuals generated by each crossover operator are build.
So, after each five generations, Path Relinking is triggered

713

using the best individual generated by AGA as base solution
and the best individual generated by each crossover operator
as guide individual. This procedure is called Truncated Back-
ward Path Relinking, and when 75% of guide individual has
been added to the base solution, the procedure is stopped. It
considers production sequence job position as an attribute. For
each job candidate inserted, a local search method is applied
as previously described, and moving candidate jobs is not
allowed.

G. Individual survival

Individual survival is certain by the elitism technique. 95%
of the best adapted individuals will survive and the others 5%
is made up of individuals chosen randomly from the current
population and submitted to mutation in which the production
sequence of two jobs are exchanged.

H. Stop criteria

The maximum number of generations is used as a stopping
criteria of the adaptive genetic algorithm.

III. COMPUTATIONAL TESTS

The proposed algorithm was developed in C++ language,
using Borland C++ Builder 5.0 compiler. The parameters used
have been obtained experimentally and are presented on table
II.

TABLE II
ADAPTIVE GENETIC ALGORITHM PARAMETERS

Parameters Values

Parameter γ of GRASP construction phase 0.20
Maximum iterations of local search (MRDmax) 7 × n
Maximum generations of AGA (maxger) 100
Crossover probability 80%
Mutation rate 5%

The instances used was generated by random pseudo-
method based on works from [2], [12] and [13], with jobs
numbers equal to 8, 9, 10, 11, 12, 15, 20, 25, 30, 35, 40, 50
and 75. In these instances, processing time Pi of jobs was
uniformly and discretely distributed between 1 and 100. Time
window centers were uniformly and discretely distributed in
interval [(1−TF −RDD/2)/MS, (1−TF +RDD/2)/MS],
where MS is the total processing time of all jobs, TF the delay
factor and RDD the relative variation of the window date.
Values considered for TF were 0.1, 0.2, 0.3 and 0.4 while
for RDD, the values were 0.8, 1.0, and 1.2. The window date
size was uniformly and discretely distributed in interval [1,
MS/n]. Late production cost (βi) was uniformly and discretely
distributed in the interval [20, 100]. As the majority of real
cases, production lateness is less desirable than earliness, the
costs for production earliness (αi) generated k times of the
cost of the same job, k being a random real number in the
interval [0, 1]. Setup time (Sij) was generated uniformly and
discretely in the interval [0, 50]. In this data setup time was
symmetrical, that is, Sij = Sji.

Since TF has 4 different values and RDD 3 different values,
there are 12 instances for each job number, giving 144 total

instances. All experiments were carried out on a Pentium Core
2 Duo 2.1 GHz computer with 4 GB RAM and running the
Windows Vista operating system.

Each instance was solved 30 times by the proposed algo-
rithm, with the exception of the instance involving 75 jobs,
which was solved 20 times. For instances involving 75 jobs,
MRDmax = 2×n are used. Table III shows the results obtained
by the proposed method and reproduce results obtained by
[8]. The first column shows the number of jobs involved.
The second and third columns present how much the average
individuals of both algorithms (AGA and [8], respectively)
varied from the best individual known for each instance. The
last two columns presents how much the best individuals
generated by both algorithm differed from the best individual
known for each instance. GAP is calculated by the expression
GAP = (RMed − MR)/MR, in which RMed is average result
obtained by applying of each algorithm and MR is the best
known individual of each instance.

TABLE III
ADAPTIVE GENETIC ALGORITHM RESULTS

GAP of average solution GAP of the best solution
Jobs AGA Gomes Jr. AGA Gomes Jr.

8 0.00 0.03 0.00 0.00
9 0.15 0.06 0.00 0.00

10 0.24 0.02 0.00 0.00
11 0.03 0.12 0.00 0.00
12 0.07 0.21 0.00 0.00
15 0.76 1.47 0.00 0.00
20 0.73 1.65 0.00 0.00
25 1.02 2.32 0.00 0.00
30 1.60 3.34 0.00 0.20
40 2.15 4.38 -0.25 0.18
50 3.72 6.13 -0.60 0.28
75 4.59 10.89 -1.48 0.56

As can be seen, in instances involving 11 jobs or more,
the average solutions of AGA was always be less than [8].
This fact shows the robustness of the proposed algorithm, since
it produces final solutions with less variability. On the other
hand, AGA also is able to generate the best known solutions. In
fact, AGA generated all the best known solutions to instances
involving up to 30 jobs, while [8] was not always capable of
this, presenting a GAP of 0.20%. Finally, for 40, 50 and 75-job
instances, AGA was able to produce individuals better than the
best individuals known in literature.

IV. CONCLUSION

This paper dealt with the single machine scheduling prob-
lem with earliness and tardiness penalties, considering distinct
due windows and sequence-dependent setup time. To solve
this problem an adaptive genetic algorithm was proposed,
where the initial population was generated by a GRASP
procedure, using EDD (Earliest Due Date), TDD (Tardiness
Due Date), SPT (Shortest Processing Time), WSPT (Weight
Shortest Processing Time) e LPT (Longest Processing Time) as
guide function dispatch rules. During the evaluation process,
population undergo selection, crossover and mutation process.

714

In crossover, five operators, OX (One Point Crossover), SJOX
(Similar Job Order Crossover), BOUX (Based Order Uniform
Crossover), PMX (Partially Mapped Crossover) e RRX (Rel-
ative Job Order Crossover), are used, with the best solutions
produced by each operator are submitted to local search and
path relinking. The path relinking procedure connect the best
solution produced to each best solutions produced by each
operator.

Finally, instances are used to test the algorithm proposed,
comparing with other algorithm from the literature. In in-
stances involving up to 30 jobs, the proposed algorithm has
high quality solutions with lower GAP, always reaching the
best known value. In instances involving more than 40 jobs,
the algorithm developed presents solutions better than the best
solutions found in the literature, as well as having less variation
of final solutions, showing robustness.

ACKNOWLEDGMENT

The authors would like to thank CEFET/MG, CAPES and
FAPERJ for the support to development of this work.

REFERENCES

[1] A. Allahverdi, C. Ng, T. C. E. Cheng, and M. Y. Kovalyov, “A survey
of scheduling problems with setup times or costs,” European Journal of
Operational Research, vol. 187, pp. 985–1032, 2008.

[2] G. Wan and B. P. C. Yen, “Tabu search for single machine scheduling
with distinct due windows and weighted earliness/tardiness penalties,”
European Journal of Operational Research, vol. 142, pp. 271–281, 2002.

[3] J. Du and J. Y. T. Leung, “Minimizing total tardiness on one machine
is np-hard,” Mathematics of Operations Research, vol. 15, pp. 483–495,
1990.

[4] C. M. Hino, D. P. Ronconi, and A. B. Mendes, “Minimizing earliness
and tardiness penalties in a single-machine problem with a common due
date,” European Journal of Operational Research, vol. 160, pp. 190–201,
2005.

[5] K. C. Ying, “Minimizing earliness-tardiness penalties for common due
date single-machine scheduling problems by a recovering beam search
algorithm,” Computers and Industrial Engineering, vol. 55, no. 2, pp.
494–502, 2008.

[6] C. Y. Lee and J. Y. Choi, “A genetic algorithm for job sequencing prob-
lems with distinct due dates and general early-tardy penalty weights,”
Computers and Operations Research, vol. 22, pp. 857–869, 1995.

[7] T. A. Feo and M. G. C. Resende, “Greedy randomized adaptive search
procedures,” Journal of Global Optimization, vol. 6, pp. 109–133, 1995.

[8] A. C. Gomes Jr., C. R. V. Carvalho, P. L. A. Munhoz, and M. J. F. Souza,
“A hybrid heuristic method for solving the single machine scheduling
problem with earliness and tardiness penalties (in portuguese),” in
Proceedings of the XXXIX Brazilian Symposium of Operational Research
(XXXIX SBPO), Fortaleza, Brazil, 2007, pp. 1649–1660.

[9] P. A. Rubin and G. L. Ragatz, “Scheduling in a sequence dependent setup
environment with genetic search,” Computers and Operations Research,
vol. 22, pp. 85–89, 1995.

[10] M. Prais and C. C. Ribeiro, “Reactive grasp: An application to a matrix
decomposition problem in tdma traffic assignment,” INFORMS - Journal
on Computing, vol. 12, pp. 164–176, 2000.

[11] F. Glover, “Tabu search and adaptive memory programming - advances,
applications and challenges,” in Computing Tools for Modeling, Opti-
mization and Simulation: Interfaces in Computer Science and Operations
Research, R. S. Barr, R. V. Helgason, and J. L. Kennington, Eds. Kluwer
Academic Publishers, 1996, pp. 1–75.

[12] C. F. Liaw, “A branch-and-bound algorithm for the single machine
earliness and tardiness scheduling problem,” Computers and Operations
Research, vol. 26, pp. 679–693, 1999.

[13] R. Mazzini and V. A. Armentano, “A heuristic for single machine
scheduling with early and tardy costs,” European Journal of Operational
Research, vol. 128, pp. 129–146, 2001.

715

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

