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Abstract—Irrigation canals transport water from water
sources (such as large rivers and lakes) to water users (such
as farmers). Irrigation canals are typically very large in nature,
covering vast geographical areas, and involving a significant
number of control actuators, such as pumps, gates, and locks.
The control of such canals is aimed at guaranteeing the adequate
delivery of water with minimal water spillage and with minimal
control structure usage. To take into account forecasts on,
e.g., water consumption and weather, model predictive control
(MPC) can be used to determine which actions to take. For
large-scale systems, in which different parts of the canal are
owned by different parties, distributed MPC control could then
be employed. Although iterative distributed MPC approaches
proposed earlier in the literature may yield overall optimal
performance, the amount of iterations required before achieving
this performance may be large, and thus require a significant
amount of time. In this paper, the structure of systems consisting
of serially interconnected subsystems is exploited to obtain an
efficient non-iterative, cascaded MPC scheme. Simulation studies
on a 7-reach irrigation canal illustrate the performance of this
non-iterative scheme in comparison with an iterative scheme.

Index Terms—Model predictive control; cascaded optimiza-
tion; irrigation canals.

I. INTRODUCTION

Irrigation canals, like many other water systems, are large-
scale systems that can be considered to consist of several
smaller interconnected subsystems, in this case canal reaches.
The dynamics of these canal reaches depend on one another,
since water flowing out of one reach enters another reach.
Hence, to optimize the performance of the system as a whole,
the dynamics of each individual reach have to be taken
into account. For large-scale systems, implementing a single
controller that takes into account the dynamics of all reaches,
can be infeasible due to large communication requirements or
due to different parts of the canal being owned by different
owners. In that case, instead of solving the control problem
from a single centralized location, the control problem has
to be solved in a distributed way. The actions determined
by individual local controllers, each controlling its own canal
reach, have to be coordinated. Achieving in such a distributed

way performance that is comparable to centralized control is
a major challenge.

In most large-scale systems, physical constraints play an
important role. In order to take physical constraints into
account, so-called model predictive controllers (MPC) [1] can
be used. Previous work, such as [2]–[4], has considered MPC
control of large-scale water systems using distributed MPC,
based on the decomposition of an overall optimization problem
and coordination between individual problem solvers to obtain
an optimal solution. These schemes can be categorized as
single-level, iterative schemes. Single-level here refers to the
characteristic that all controllers are assumed to have the same
rights, in the sense that one controller cannot force upon
another controller its actions. Iterative here refers to the charac-
teristic that individual controllers perform several iterations of
computation and communication before deciding which actions
to take. Through these iterations, the controllers obtain the
necessary information about how neighboring subsystems will
react to their actions. For this scheme, under certain conditions
(such as linearity of the subsystem models and convexity of the
control objective functions), and given sufficient computation
time, the performance that is achieved in a distributed way is
even equal to the performance of a centralized controller. The
main drawback of such iterative schemes is that the number
of iterations required can be significant. This can result in
decision making time that is larger than the control sample
length.

To reduce the number of computations involved, here,
we exploit the structure of systems consisting of serially
interconnected subsystems to efficiently solve their distributed
control problem using a cascaded, non-iterative distributed
control scheme. In this scheme, the controllers are arranged
in a virtual cascade or hierarchy, in which one controller can
force upon other controllers its decision. In addition, in this
scheme no iterations of computation and communication take
place before the controllers decide on their actions. It is hereby
assumed that the controllers at the top of the cascade do
not force upon lower controllers actions that will block the
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Fig. 1. Illustration of cascaded problems P1, . . . , Pn, representing the
optimization problems of controllers 1, . . . , n, which determine actions
u1, . . . ,un.

lower controllers, in the sense that lower controllers should be
able to still have feasible actions, after the decisions of the
higher layers have been determined. The advantages of this
scheme are clear: the computational time requirements are low,
since no iterations are performed. However, the accompanying
reduction in communication may result in a degradation of the
performance, since a controller does not know how the other
controllers will react to its actions.

In general, the actions of a particular controller can depend
on an arbitrary number of neighboring controllers, both in a
higher level and in a lower level. In this paper, however, we
consider at most two neighboring subsystems, as illustrated in
Figure 1. For the application to irrigation canal control, this is
a natural choice, and moreover, this simplifies the explanation
of the presented approach. It is noted, though, that extension
to more than two neighbors is straightforward.

This paper is organized as follows. In Section II the dynam-
ics of general interconnected linear subsystems are modeled,
and we present a non-iterative cascaded distributed MPC
solution technique for controlling these subsystems. In Section
III the dynamics and control of irrigation canals are formulated
in terms of the presented framework. Section IV describes
the results of simulation studies on a 7-reach irrigation canal
aimed at assessing the performance of the proposed approach.
Hereby, a comparison is made with the performance of an
iterative scheme. Conclusions and directions for future research
are given in Section V.

II. MODELING AND CONTROL

Below we first formulate the model for subsystems as part
of a larger network, the interconnections between subsystems,
and the objectives for control of these subsystems. We then
present an efficient non-iterative cascaded MPC scheme for
controlling the subsystems.

A. Subsystem models

Consider a network divided into n subnetworks. Let the
dynamics of subnetwork i ∈ {1, . . . , n} be given by a
deterministic linear discrete-time time-invariant model (pos-
sibly obtained after symbolic or numerical linearization of a

nonlinear model in combination with discretization):

xi(k + 1) = Aixi(k) + B1,iui(k) + B2,idi(k) + B3,ivi(k)
(1)

yi(k) = Cixi(k) + D1,iui(k) + D2,idi(k) + D3,ivi(k),
(2)

where at control step k, for subnetwork i, xi(k) ∈ R
nxi

are the local states, ui(k) ∈ R
nui are the local inputs,

di(k) ∈ R
ndi are the local known or measureable exogenous

inputs, yi(k) ∈ R
nyi are the local outputs, vi(k) ∈ R

nvi

are the remaining variables that influence the local dynamical
states and outputs, and Ai ∈ R

nxi
×nxi , B1,i ∈ R

nxi
×nui ,

B2,i ∈ R
nxi

×ndi , B3,i ∈ R
nxi

×nvi , Ci ∈ R
nyi

×nxi , D1,i ∈
R

nyi
×nui , D2,i ∈ R

nyi
×ndi , D3,i ∈ R

nyi
×nvi determine how

the various variables influence the local states and outputs
of subnetwork i. Variables vi(k) of subnetwork i represent
the influence of other subnetworks on subnetwork i. These
variables should therefore be equal to some of the variables of
models representing dynamics of neighboring subnetworks.

Let i − 1 and i + 1 denote the indices of the neighbors of
subsystem i. Define the so-called interconnecting input vari-
ables win,i−1,i(k) ∈ R

nwin,i−1,i as the variables of subnetwork
i that are influenced by subnetwork i − 1, and let

win,i−1,i(k) = vi(k). (3)

Let the so-called interconnecting output variables
wout,i+1,i(k) ∈ R

nwout,i+1,i denote the variables of subnetwork
i that influence neighboring subnetwork i + 1, and let

wout,i+1,i(k) = Ki

[
xT

i (k) uT
i (k) yT

i (k)
]T

, (4)

where Ki is an interconnecting output selection matrix that
contains zeros everywhere, except for a single 1 per row
corresponding to a local variable that corresponds to an in-
terconnecting output variable.

To obtain the dynamics for the whole network, the intercon-
necting inputs to the model of subnetwork i with respect to the
model of subnetwork i−1 must be equal to the interconnecting
outputs from the model of subnetwork i − 1 with respect to
subnetwork i, since the variables of both subnetworks model
the same quantity. For subnetwork i this thus gives rise to the
following interconnecting constraints:

win,i−1,i(k) = wout,i,i−1(k) (5)

wout,i+1,i(k) = win,i,i+1(k). (6)

B. Subsystem control architecture

Subnetwork i ∈ {1, . . . , n} is controlled by a controller i
that uses an MPC strategy to determine which actions to take.
At discrete control cycle k, controller i finds the actions that
over a prediction horizon of N steps give the best predicted
performance, taking into account the current state of its subnet-
work, the dynamics of its subnetwork, operational constraints,
and objectives. The controller implements the actions for the
coming time step and at the next time step performs a new
optimization. It is hereby assumed that controller i:
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• has a prediction model of the form (1)–(2) of the dynam-
ics of subnetwork i;

• can measure or estimate the state xi(k) of its subnetwork;
• can estimate exogenous inputs di(k+l) of its subnetwork

over a the horizon of length Np, for l = 0, . . . , Np − 1;
• can communicate with its neighboring controllers.
Moreover, the controllers are cooperative in the sense that

the individual controllers strive for the best overall network
performance. It is hereby assumed that the objectives of the
controllers can be represented by convex functions Jlocal,i, for
i ∈ {1, . . . , n}. Such functions are commonly encountered,
e.g., when considering set-point tracking or minimization of
actuating effort [1].

C. Cascaded MPC for subnetwork control

1) Motivation: Since the dynamics of subsystems depend
on one another, the controllers of the individual subsystems
have to take into account one another’s actions. If controller
i wants to determine actions ui(k) that are optimal from
an overall point of view, it somehow has to know how
the neighboring subsystems will behave over the prediction
horizon. Controller i, however, generally does not know this;
it does not know the values of the interconnecting variables
win,i−1,i(k) over the prediction horizon, since these values are
determined by controller i−1 via wout,i,i−1. Hence, one way or
another controller i has to make assumptions on the behavior
and capabilities of controller i − 1.

There are several ways to deal with the unknown values of
the interconnecting variables. Two of them are the following:

1) Controllers can determine the values in an iterative man-
ner in the sense that one controller i informs a controller
i + 1 about what it wants, and given what controller i
wants controller i+1 informs controller i what controller
i+1 wants. This process is then performed over several
iterations until a stopping condition is satisfied. In such a
scheme the controllers have to determine values for their
interconnecting variables, such that the interconnecting
constraints (5)–(6) are satisfied.

2) One controller i can force another controller i+1 exactly
which interconnecting outputs wout,i+1,i(k) controller i
will provide to controller i + 1. It is hereby assumed
by controller i that controller i + 1 can deal with the
interconnecting output wout,i+1,i(k) provided by con-
troller i as specified. Generally, this is not the case.
However, this is the case, e.g., when there are no hard
constraints in the control problem of controller i + 1, or
when hard constraints that are present can be replaced
by soft constraints in the objective function of such a
controller.

In previous work [2]–[4], iterative scheme have been pro-
posed using the first way to deal with the interconnecting
variables. Here, we consider the second way of dealing with
the interconnecting variables.

2) Algorithm: Let controllers {1, . . . , n} be ordered in a
virtual hierarchy with lmax levels. The controller i at the
highest level does not have interconnecting inputs win,i−1,i(k).

The controller i at the lowest level does not have intercon-
necting outputs wout,i+1,i(k). The ordering is now made in
such a way that controller i at a particular level can solve its
control problem for a given fixed win,i−1,i(k) as determined
by the higher level controller. Hence, the virtual hierarchy is
a cascade, as illustrated in Figure 1. Such a hierarchy can be
naturally constructed for networks with uni-directional flows.
In Section III we illustrate this for irrigation canals.

The approach proposed here for solving the MPC problems
of the individual controllers at control step k is as follows:

1) Controller i at the highest level lmax of the hierarchy
solves its problems. This results in local actions ui(k)
and interconnecting outputs wout,i+1,i(k) for controller
i at level lmax. Thus controller communicates the values
found for its interconnecting outputs to its neighboring
controller at level lmax − 1.

2) Then, controller i at level lmax−1 solves its optimization
problem subject to the values of the interconnecting
outputs win,i−1,i(k) forced upon controller i by the
higher level controller. This results in local actions uj(k)
and interconnecting outputs wout,i+1,i(k). Controller i
at level lmax − 1 communicates the values for the
interconnecting outputs wout,i+1,i(k) to its neighboring
controller at level lmax − 2.

3) The previous step of computation and communication
continues until the controller at level 1 has received
the information from its higher-level neighbor. The con-
troller at level 1 solves its problem to obtain the values
for its local inputs.

4) Once the controller at level 1 has solved its local
optimization problem, the actions that all controllers
have decided upon for the coming control cycle are
implemented simultaneously.

This scheme is simple and only requires limited compu-
tation and communication. However, since the information
exchange only flows in one direction, the controller at a
higher level does not take into account the consequences of
its control actions on the performance of the controller at
a lower layer. Therefore, the optimal solution of a higher-
level controller could result in infeasibility for a lower-level
controller. Whether this will actually occur, depends on the
particular series of problems to be solved and constraints to
be considered.

In the remainder of this paper we discuss the application
of the proposed approach for control of an irrigation canal.
In this application, in fact, the optimal solution of a higher-
level controller cannot result in infeasibility for a lower-level
controller.

III. CONTROL OF AN IRRIGATION CANAL

Several works have been presented on control of irrigation
canals [5], including approaches based on centralized MPC,
such as [6]–[8]. In [4] we have proposed an iterative distributed
MPC scheme for control of such a canal. Here we use the
cascaded MPC scheme of Section II-C.
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Fig. 2. Illustration of canal reach i and associated variables.

A. Subnetwork dynamics

To model the dynamics of an irrigation canal with one
origin and one destination, without splits and merges, similarly
as in [9], we employ the discrete-time linear integral-delay
model. Although this is a simplified representation of the real
dynamics of irrigation canals, this model has shown to ade-
quately capture relevant dynamics, and it reduces computations
required for simulation of the dynamics significantly [10].

Let time be discretized into control cycles k and let the
length of one control cycle be Tc (s). Each canal reach is
considered to have an inflow from an upstream canal reach,
as illustrated in Figure 2. Let this inflow into reach i be given
by qin,i(k) ≥ 0 (m3/s). Canal reach i has an outflow to a
downstream canal reach. Let qout,i(k) ≥ 0 (m3/s) denote this
outflow. In addition to this inflow and outflow due to upstream
and downstream canal reaches, there can be additional local
inflow (e.g., due to rainfall) and outflow (e.g., due to out-
flow caused by farmers). Let such inflow be represented by
qext,in,i(k) ≥ 0 (m3/s) and such outflow by qext,out,i(k) ≥ 0
(m3/s). Accurate predictions of the inflow qext,in,i(k) and the
outflow qext,out,i(k) are assumed to be available in advance.

Depending on the changes in the inflows and outflows over
time, the levels of the water in the reaches will change. Instead
of considering the levels of the water at each location in
the reaches, we only consider the levels of the water at the
downstream end of each reach, since that is where the water
offtakes take place and where the water levels have to be kept
close to the given set-points. In addition to the amount of
inflow and outflow, also the surface of the reach influences
how much the level of the water will change. Let hi(k) ≥ 0
(m) denote the level of the water in canal reach i, and let the
surface of reach i be ci ≥ 0 (m2). It takes some time for a
change in the inflow of reach i to result in a change of the
water level at the downstream end of the reach. Let this delay
be kd,i control cycles for reach i.

Using the variables defined above, the model describing
how the level of the water in the canal reach changes from
one control cycle k to the next control cycle k+1 is given by:

hi(k + 1) = hi(k) +
Tc

ci

qin,i(k − kd,i) −
Tc

ci

qout,i(k)

+
Tc

ci

qext,in,i(k) −
Tc

ci

qext,out,i(k). (7)

Canal reaches are connected to one another. When two canal
reaches are connected to each other, the inflow of one canal
reach is equal to the outflow of the other. Hence, for neigh-
boring reaches i and i + 1 this interconnection is expressed
by

qout,i(k) = qin,i+1(k). (8)

The dynamics of canal reach i are conveniently written down
in the state-space form (1)–(2) by defining

xi(k) =

⎡
⎢⎢⎢⎣

hi(k)
qin,i(k − kd,i)

...
qin,i(k − 1)

⎤
⎥⎥⎥⎦ di(k) =

[
qext,in,i(k)
qext,out,i(k)

]

ui(k) = qin,i(k) vi(k) = qout,i(k) yi(k) = xi(k)

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Tc
ci

0 . . . . . . 0

0 0 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . 1
0 . . . . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B1,i =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ B2,i =

⎡
⎢⎢⎢⎣

Tc
ci

−Tc
ci

0 0
...

...
0 0

⎤
⎥⎥⎥⎦ B3,i =

⎡
⎢⎢⎢⎣
−Tc

ci

0
...
0

⎤
⎥⎥⎥⎦

Ci =
[
1 0 · · · 0

]
D1,i = 0 D2,i =

[
0 0

]
D3,i = 0.

B. Controllers

1) Available information: There are n controllers, and
controller i is responsible for canal reach i. Controller i can
measure the water level in its canal reach, can adjust the
set-point for the flow controller at its upstream gate, and
can communicate with the controllers of the canal reaches
immediately upstream and downstream of the canal reach. In
addition, controller i can obtain the expected water offtakes
and rainfall with respect to its canal reach.

2) Control objectives: The set-points determined by the
controllers and provided to the local flow controllers of the
undershot gates should be chosen in such a way that

1) the deviations of water levels hi from provided set-points
href,i ≥ 0, for all i ∈ {1, . . . , n} are minimized;

2) the changes in the set-points ui (m) provided to the
local flow controllers are minimized to reduce equipment
wear.

Hence, the performance criterion Jlocal,i at control step k can
be written as

Jlocal,i(k) =

Np−1∑
l=0

ph,i (hi(k + 1 + l) − href,i)
2

+

Np−1∑
l=0

pu,i (ui(k + l) − ui(k − 1 + l))
2
,
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TABLE I
VALUES OF THE PARAMETERS OF THE MODEL, TAKEN FROM [9].

i 1 2 3 4 5 6 7
kd,i (steps) 1 3 1 1 9 3 5

ci (m2) 397 653 503 1530 1614 2000 1241

where for controller i, ph,i ≥ 0 is the cost for the water level
deviation and pu,i ≥ 0 is the cost for a change in the set-point
provided to the local flow controller.

3) Dependencies: The actions that are optimal for each of
the controllers depend on one another, since if one controller
decides to increase its inflow, the water level in the upstream
reach will decrease and therefore influences the decision mak-
ing process of the upstream controller. The interconnecting
input of controller i is defined as win,i+1,i(k) = qout,i(k), and
Ki is defined such that wout,i−1,i(k) = qin,i(k). Note that the
controller of the most downstream canal reach does not have
a neighboring downstream controller, and therefore also does
not have interconnecting inputs. The controller of the most
upstream canal reach does not have a neighboring upstream
controller, and therefore does not have interconnecting outputs.

4) Virtual hierarchy of controllers: The controllers are
ordered based on the topology of the irrigation canal. In
irrigation canals, from the point of view of one canal reach,
the control action is taken at the upstream end, and the
disturbance appears at the downstream end, as illustrated in
Figure 2. Hence, the controllers are ordered bottom up: starting
at the downstream end, ending at the upstream end. With
this ordering, the scheme presented in Section II-C can be
implemented. It is important to note that, since no operational
inequality constraints are present in the optimization problems
of the individual controllers, these optimization problems can
always be solved, and a higher level controller cannot block a
lower level controller.

IV. SIMULATIONS

In this section we perform simulation experiments to assess
the performance of the proposed scheme. We also compare
this non-iterative scheme with a previously proposed iterative
scheme. We have implemented the model of a benchmark
irrigation canal consisting of 7 serially-connected canal reaches
in Matlab v7.3. The parameters used for the model of the irri-
gation canal are shown in Table I. For solving the optimization
problems at each control sample ILOG CPLEX v10.0.

A. Scenario

Consider a typical situation over 70 steps in which the
farmers at offtakes 3 and 6 decide unexpectedly to increase
their water consumption as in Figure 3. The time Tc between
two consecutive control cycles is 240 s. The controllers use
Np = 31, to take into account the total delay present in
the irrigation canal [9]. The cost coefficients are chosen as
ph,i = 100 units and pu,i = 10 units, for i ∈ {1, . . . , n}.

B. Results

Figure 4 shows the resulting trajectories determined by the
cascaded scheme over the full simulation of 70 steps. We
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Fig. 3. Profiles of unexpected changes in water offtakes for reaches 3 and 6.
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Fig. 4. Trajectories over the full simulation with the non-iterative scheme.

observe that when the first disturbance appears (an increase
in the amount of water taken out in reach 6), the controllers of
reaches 1 until 6 react by increasing the water amount of water
taken into the reach. Canal reach 7 takes no action, as is to be
expected: The controller of canal reach 7 is at the highest level
of the cascade and therefore does not know that a disturbance
appeared at canal reach 6. The controller of reach 7 therefore
has no incentive to perform any action.

Figure 5 shows the trajectories obtained with the iterative
scheme proposed in [4]. The controllers perform iterations
of computation and communication until an overall optimal
solution has been found, or a maximum number of iterations
(here set to 40, to ensure that every 240 s a new decision
has been made), has been reached. We observe that here the
iterative scheme obtains better performance by taking into
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Fig. 5. Trajectories over the full simulation with the iterative scheme.
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Fig. 6. Closed-loop performance of the non-iterative and the iterative
approach over the full simulation as a function of the number of iterations.

account that sometimes it is beneficial from an overall point of
view for a downstream controller to act such that an upstream
controller has less problems. The non-iterative scheme does not
do this, since a higher-level controller i forces a lower-level
controller j to accept what higher-level controller i decides,
given only the local subsystem model and information from
the higher level of the controller i. In the non-iterative scheme,
coordination by the controllers is achieved implicitly (with a
delay) via the dynamics of the canal reaches.

If fewer iterations are allowed, then the non-iterative scheme
can yield better performance, as seen in Figure 6. This figure
illustrates the closed-loop performance over the simulation
(i.e., the sum of the objective function values of all controllers,

based on the chosen actions and resulting state trajectories) as
a function of the allowed number of iterations for the iterative
scheme. If less than 30 iterations are allowed, then the non-
iterative scheme performs better than the iterative.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have discussed the use of a non-iterative
cascaded model predictive control approach for controlling
irrigation canals. Controllers are organized in a cascade, in
which higher-level controllers perform their computations be-
fore lower-level controllers. The presented scheme is fast,
since at each control cycle a controller only performs one
optimization and communication step. The drawback is that
a higher-level controller does not know what disturbances a
lower-level controller faces. Simulations on a 7-reach irrigation
canal illustrate this in comparison with an iterative scheme.

Future research addresses including inequality constraints
and analyzing its consequences on performance. Also, improv-
ing decision making performance by giving local controllers
more knowledge about subsystem dynamics and objectives of
other parts of the system will be investigated.
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