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Abstract—A multiresolution state-space discretization method
is developed for the episodic unsupervised learning method of
Q-Learning. In addition, a genetic algorithm is used periodically
during learning to approximate the action-value function. Policy
iteration is added as a stopping criterion for the algorithm.
For large scale problems Q-Learning often suffers from the
Curse of Dimensionality due to large numbers of possible state-
action pairs. This paper develops a method whereby a state-
space is adaptively discretized by progressively finer grids around
the areas of interest within the state or learning space. Policy
iteration is added to prevent unnecessary episodes at each level
of discretization once the learning has converged. Utility of the
method is demonstrated with application to the problem of
a morphing airfoil with two morphing parameters (two state
variables). By setting the multiresolution method to define the
area of interest by the goal the agent seeks, it is shown that
this method can learn a specific goal within ±0.002, while
reducing the total number episodes needed to converge by 85%
from the allotted total possible episodes. It is also shown that
a good approximation of the action-value function is produced
with 80% agreement between the tabulated and approximated
policy, though empirically the approximated policy appears to be
superior.

Index Terms—Q-learning, Multiresolution, Genetic Algorithm,
Function Approximation, Policy Iteration.

I. INTRODUCTION

For the computational reinforcement learning problem, dis-
cretizing the state and action spaces and subsequently perform-
ing function approximation on the learned data is a common
way to cast a continuous state and action space problem as a re-
inforcement learning problem. A simple learning problem can
be easily discretized into a relatively small number of states.
The learned value or action-value function is generally a good
representation of the agent’s knowledge of the environment.
A problem becomes more complex as the number of state
variables needed to represent the environment increases. The
number of states in the action-value function depends on how
a problem is discretized. There is a trade off, however. If the
agent can only store knowledge in a small number of states,
important details of the environment may be lost. If the agent
can store knowledge in a very large number of states, details
of the environment are captured quite well. The caveat is that
the rate of convergence drops drastically as the number of
states increases. Examples of state-space discretization include

Reference [1], which describes a space robot problem in which
the orientation and the action set of the spacecraft has been
discretized to facilitate learning, and Reference [2], which
describes quad-Q-learning in which a state-space is discretized
and then sampled in a “divide and conquer” technique.

Function approximation of the action-value function serves
to replace the potentially large discrete lookup table with a set
of continuous basis functions and weights. Generally, function
approximation is performed on the final function with methods
such as GLOMAP[3], Sequential Function Approximation
(SFA)[4], [5], least-squares, etc. Other methods have been
developed recently that actually learn using a least-squares
approximation. Lagoudakis and Parr adapted these methods
for Q-learning in the form of Least-Squares Temporal Differ-
ence Q-learning (LSTD-Q or LSQ) and extended to include
policy iteration in the form of Least-Squares Policy Iteration
(LSPI).[6] In these methods the action-value function or the
value function is approximated with a set of basis functions
chosen a priori, and essentially the weights are ‘learned’.

This paper proposes a multiresolution state-space discretiza-
tion method that incorporates the convergence benefits of a
coarse discretization of the state-space as well as the learning
of the finer details, such as goal location, of a fine state-space
discretization. The method mimics the natural tendency of
people and animals to learn the broader goal before focusing in
on more specific goals. This method is applied to the morphing
airfoil architecture developed in References [7], [8], and [9].
Reinforcement learning is used to learn the commands that
produce the optimal shape based on airfoil lift coefficient. The
levels of discretization of the state-space must be tuned such
that good convergence and attention to detail is achieved. The
contribution of this paper is to develop a new discretization
method that allows the learning to converge quickly while still
maintaining a high level of detail around areas of interest in
the environment.

In addition, this paper proposes a new method of using a ge-
netic algorithm to aid in function approximation of the action-
value function during learning. By periodically computing the
function approximation and monitoring the convergence of the
policy represented by the approximated action-value function,
not only can an approximation that preserves the policy be
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found, so too can the number of learning episodes needed for
convergence be kept to a minimum.

This paper is organized as follows. Section II describes
the mechanics of reinforcement learning and how it is im-
plemented in Q-learning in particular. Reinforcement learning
learns the optimality relations between the aerodynamic re-
quirements and the shape. The airfoil can then be subjected
to a series of aerodynamics requirements and use the relations
learned to choose a good shape for the current set of require-
ments. The method used to discretize a continuous learning
domain is developed. Section III and Section IV describe
the discretization method and the multiresolution state-space
discretization method, respectively. Section V overviews the
genetic algorithm used for function approximation, and Section
VI describes how policy iteration is conducted in the algorithm.
Section VII briefly describes the airfoil model used by the
reinforcement learning agent. This section also describes how
the airfoil model and the reinforcement learning agent are tied
together to form a morphing airfoil. Section VII then takes
the fully developed multiresolution state-space discretization
method with the new additions of the genetic algorithm
and policy iteration, applies it to the morphing airfoil, and
interprets a numerical example generated from it. Finally,
conclusions are drawn from the numerical example in Section
VIII.

II. RIENFORCEMENT LEARNING

Reinforcement learning (RL) is a method of learning from
interaction between an agent and its environment to achieve
a goal. The learner and decision-maker is called the agent.
The thing it interacts with, comprising everything outside the
agent, is called the environment. The agent interacts with its
environment at each instance of a sequence of discrete time
steps, t = 0, 1, 2, 3.... At each time step t, the agent receives
some representation of the environment’s state, st ∈ S, where
S is a set of possible states, and on that basis it selects an
action, at ∈ A(st), where A(st) is a set of actions available
in state s(t). One time step later, partially as a consequence
of its action, the agent receives a numerical reward, rt+1 =
R, and finds itself in a new state, st+1. The mapping from
states to probabilities of selecting each possible action at each
time step, denoted by π is called the agent’s policy, where
πt(s, a) indicates the probability that at = a given st = s at
time t. Reinforcement learning methods specify how the agent
changes its policy as a result of its experiences. The agent’s
goal is to maximize the total amount of reward it receives over
the long run.

Q-Learning, a reinforcement learning algorithm, is a form
of the successive approximations technique of Dynamic Pro-
gramming, first proposed and developed by Watkins.[10] Q-
learning learns the optimal value functions directly, as opposed
to fixing a policy and determining the corresponding value
functions, like Temporal-Differences. It automatically focuses
attention to where it is needed, thereby avoiding the need to
sweep over the state-action space. Additionally, it is the first
provably convergent direct adaptive optimal control algorithm.

For the present research, the agent in the morphing airfoil
problem is its RL agent. It attempts to independently maneuver
from some initial state to a final goal state characterized by
the aerodynamic properties of the airfoil. To reach this goal,
it endeavors to learn, from its interaction with the environ-
ment, the optimal policy that, given the specific aerodynamic
requirements, commands the series of actions that changes
the morphing airfoil’s thickness or camber toward an optimal
one. The environment is the resulting aerodynamics the airfoil
is subjected to. It is assumed that the RL agent has no
prior knowledge of the relationship between actions and the
thickness and camber of the morphing airfoil. However, the RL
agent does know all possible actions that can be applied. It has
accurate, real-time information of the morphing airfoil shape,
the present aerodynamics, and the current reward provided by
the environment.

The RL agent uses a 1-step Q-learning method, which
is a common off-policy Temporal Difference (TD) control
algorithm. In its simplest form it is defined by

Q (s, a) ← Q (s, a) + α
{

r + γ max
a′

Q (s′, a′) − Q (s, a)
}
(1)

The Q-learning algorithm is illustrated as follows:[11]

Q-Learning()
• Initialize Q(s, a) arbitrarily
• Repeat (for each episode)

– Initialize s
– Repeat (for each step of the episode)

∗ Choose a from s using policy derived from Q(s, a)
(e.g. ε-Greedy Policy)

∗ Take action a, observe r, s′

∗ Q (s, a) ← Q (s, a) +
α

{
r + γ max

a′
Q (s′, a′) − Q (s, a)

}
∗ s ← s′

– until s is terminal
• return Q(s, a)

As the learning episodes increase, the learned action-value
function Q(s, a) converges asymptotically to the optimal
action-value function Q∗(s, a). The method is an off-policy
one as it evaluates the target policy (the greedy policy) while
following another policy. The policy used in updating Q(s, a)
can be a random policy, with each action having the same
probability of being selected. The other option is an ε-greedy
policy, where ε is a small value. The action a with the
maximum Q(s, a) is selected with probability 1-ε, otherwise
a random action is selected.

If the number of the states and the actions of a RL problem
is a small value, its Q(s, a) can be represented using a table,
where the action-value for each state-action pair is stored
in one entity of the table. Since the RL problem for the
morphing vehicle has states (the shape of the airfoil) on
continuous domains, it is impossible to enumerate the action-
value for each state-action pair. In essence, there are an infinite
number of state-action pairs. One commonly used solution
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is to artificially quantize the states into discrete sets thereby
reducing the number of state-action pairs the agent must visit
and learn. The goal in doing this is to reduce the number of
state-action pairs while maintaining the integrity of the learned
action-value function. This paper seeks to achieve this through
a multiresolution state-space discretization method. For the
problem at hand, this becomes most important for keeping
the number of state-action pairs manageable and the details
intact when more state variables are added in the form of other
morphing parameters.

III. LEARNING ON A 2-DIMENSIONAL CONTINUOUS
DOMAIN

Q-learning on a continuous domain quickly becomes in-
tractable when one considers that convergence of the algorithm
to the optimal action-value function is only guaranteed if
the agent visits every possible state an infinite number of
times.[10] An agent would therefore visit an infinite number of
states using an infinite number of actions an infinite number
of times. Add in the fact that the states can be defined by
anywhere from 1 to N continuous variables and the so-called
“Curse of Dimensionality” becomes a significant problem.

One way to cope with the inherent complexity of a continu-
ous domain learning problem is to discretize the state-space by
overlaying a pseudo-grid. The essential ideas of this concept
introduced for the 2-dimensional problems.

The 2-dimensional problem can be represented by a 2-
dimensional plane as represented by Fig. 1. An arbitrary set
of vertices

{
11X, 12X, . . . , ijX, . . .

}
are introduced at uniform

distances hx1 or hx2 apart. In the learning algorithm the
agent is only allowed to visit the overlaying vertices and their
corresponding states. For the 2-dimensional case, when the
agent is at the IJ th vertex X = IJX , it may only move to
vertices (I−1)JX , (I+1)JX , I(J−1)X , and I(J+1)X , a total of
4, or 2∗2, actions. This technique effectively reduces the state-
space from infinity to a finite number of states, thus rendering
the problem more manageable.

For this 2-dimensional discrete case, let Lx1 and Lx2 denote
the length in the x1- and x2-direction, respectively, of the
continuous domain. This results in

NV2 =
(

Lx1

hx1

+ 1
) (

Lx2

hx2

+ 1
)

=
2∏

i=1

(
Lxi

hxi

+ 1
)

(2)

vertices, where NV2 is the number of vertices. Therefore, there
are

N2 = 2 ∗ 2
2∏

i=1

(
Lxi

hxi

+ 1
)

(3)

state-action pairs, where N is the number of state-action pairs.
Discretizing the domain in this way can greatly simplify

a learning problem. Intuitively, the larger hxi is, the fewer
the number of vertices, resulting in fewer visits by the agent
necessary to learn the policy correctly. Special care must be
taken, however, in the choice of hxi

and the definition of the

IJ X 1I J X1I J X

1I J X

1I J X

1x

2x

1x
h

1x
h

1x
h

1x
h

2x
h

2x
h

2x
h

2x
h

Fig. 1. 2-Dimensional State Space with Overlaying Pseudogrid

goal the agent attempts to attain. If the only goal state lies
between vertices, then the agent will be unable to learn the
actions necessary to reach the goal state.

The “Curse of Dimensionality” can still become a problem
when using this technique. As N increases, the number of state-
action pairs increases quickly. Manipulation of hxi can allevi-
ate some problems, but can eventually become overwhelmed.
However, the number of state-action pairs remains finite. In
this paper a 2-dimensional problem is analyzed.

IV. MULTIRESOLUTION DISCRETIZATION FOR
N-DIMENSIONS

Discretizing a state-space for learning is beneficial in that
it creates a finite number of state-action pairs the agent must
visit. Generally, as the number of state-action pairs decreases,
the rate of convergence increases.[8] However, fewer state-
action pairs captures less detail of the environment. Also, using
the method described in Section III limits the agent to the
vertices. It is entirely possible that the goal the agent is seeking,
or any other area of interest, does not lie on a vertex. This
necessitates adding a range to the goal that encompasses one
or more of the vertices in the state-space. These vertices within
the goal range are pseudo-goals. (Fig. 2)

As the agent explores the coarsely discretized state-space
and garners rewards, it also notes the location of the pseudo-
goals. Once learning on the current discretization has con-
verged, the area surrounding and encompassing the psuedo-
goals is re-discretized to a finer resolution such that hxi2

<
hxi1

, where the subscript 1 denotes the initial discretization,
and subscript 2 denotes the second discretization. A new,
smaller range is defined for the goal and learning begins anew
in the smaller state-space. Fig. 3 shows the re-discretization of
the state-space.

This method can then be generalized for the N-dimensional
case. Let Lj

x1
, Lj

x2
, . . ., Lj

xN
denote the length in the x1-,

x2-, . . ., and xN -directions, respectively, and the superscript
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1x

2x

Goal

Goal Region

Pseudo Goal

Fig. 2. Multiresolution State Space Discretization – Phase 1: Coarse Grid,
Large Goal Range

1x

2x

Goal

Goal Region

Pseudo Goal

Sub Grid

Fig. 3. Multiresolution State Space Discretization – Phase 2: Finer Grid,
Smaller Goal Range

j denote the resolution of the discretization in which 1 is the
coarsest and M is the finest. The vertices for each resolution
are then set at distances hj

x1
, hj

x2
, . . ., hj

xN
apart. These terms

effectively define the fineness of resolution level j. Eqs. 2 and
3 can then be modified to calculate the number of vertices and
state action pairs for this method, as shown in Eqs. 4 and 5.

When the multiresolution learning is complete, there are

NVN
=

M∑
j=1

(
N∏

i=1

(
Lj

xi

hj
xi

+ 1
))

−
M−1∑
j=1

(
N∏

i=1

(
Lj+1

xi

hj
xi

+ 1
))

(4)
vertices. Therefore, there are

NN = 2N

⎛
⎝ M∑

j=1

(
N∏

i=1

(
Lj

xi

hj
xi

+ 1
))

−
M−1∑
j=1

(
N∏

i=1

(
Lj+1

xi

hj
xi

+ 1
))⎞

⎠
(5)

state-action pairs. Notice the second term of each equation
excises the duplicate vertices from one level of discretization
to the next. Also note that if the full state-space were simply

discretized by the finest level of hM
xi

, there would be

NVNfine
=

N∏
i=1

(
L1

xi

hM
xi

+ 1
)

(6)

vertices and

NNfine
= 2N

(
N∏

i=1

(
L1

xi

hM
xi

+ 1
))

(7)

state-action pairs. It can be shown that NVN
< NVNfine

and
NN < NNfine

by a significant amount, the magnitude of
which is determined by the factor by which each subsequent
descretization is reduced from the previous.

It is known that the time to convergence for Q-learning
increases exponentially as the complexity of the problem, i.e.
state-action pairs, increases. This method reduces a learning
problem to a series of smaller learning problems with rela-
tively few state-action pairs, on the order of several orders of
magnitude less. Rather than one large problem that will take
a great deal of time to converge, there are several quickly
converging smaller problems.

V. GENETIC ALGORITHM FOR ACTION-VALUE FUNCTION
APPROXIMATION

In this algorithm, periodically during learning the action-
value function is approximated using a genetic algorithm. The
genetic algorithm does not attempt to determine the weights
to be applied to some preselected set of basis functions as
is generally done, but instead chooses the basis functions

themselves and calculates the weights using least-squares.
Basis functions are often chosen by trial and error methods

that can be time consuming for the user. For methods such as
LSPI, it is not even determined if the selected basis functions
are acceptable until after the algorithm has run to completion.
By allowing the genetic algorithm to select the basis functions
and using a well understood method to calculate the weights,
this trial and error can be avoided. The only major limitation is
the sets of basis functions the user gives to genetic algorithm
to sift through. For this paper, the basis functions are simple
polynomials, sines and cosines, radial basis functions, and
cubic splines.

VI. POLICY ITERATION

The multiresolution discretization method provides a means
of learning the action-value function, Qπ (s, a), for a fixed
policy, π, in progressively finer detail. Now policy iteration
is integrated into the algorithm in addition to the genetic
algorithm. Since Q-learning is used in this algorithm, the
policy does not need to be represented explicitly or with any
sort of model. The policy can be determined using that action-
value function itself with the following relationship.

π (s) = max
a

Q (s, a) (8)

The multiresolution algorithm with the genetic algorithm al-
ready integrated can then use a similar relationship shown in
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TABLE I
DISTANCE BETWEEN ADJACENT VERTICES

Parameter Value
h1

x1
0.50

h1
x2

0.50
gf 0.20
M 3

Eq. 9 to determine the approximate policy.

π̂ (s) = max
a

Q̂ (s, a) (9)

Function approximation and policy iteration occurs on a regu-
lar basis at predetermined intervals. This algorithm compares
the current approximate policy, π̂(t) (s), and the approximate
policy calculated after the last interval, π̂(t−1) (s). When these
converge learning at the current level of discretization is
discontinued. The final set of basis functions as determined
by the genetic algorithm can then be used in lieu of the table
form of the action-value function.

VII. NUMERICAL EXAMPLE

This method is applied to the morphing airfoil problem first
developed in Reference [7]. Figure 4 shows a representative
airfoil. To learn the shape changing procedure the reinforce-
ment learning agent initially commands a random action from
the set of admissible actions. As described in Section III,
the admissible actions are restricted to movement to the two
closest vertices in any given direction from the current vertex.
For example, the agent chooses to move in the x1-direction
from vertex IJX in the 2-dimensional problem. For the initial
discretization, the two possible actions in the x1-direction are
defined as follows

A1
11 ≡ (I+1)JX − IJX = h1

x1

(10)
A1

12 ≡ (I−1)JX − IJX = −h1
x1

Eq. 10 can be summarized by saying the initial admissible ac-
tions in the x1-direction are A1 = ±h1

x1
. Similar relationships

can be found for the x2-direction. Admissible actions in the
other direction is A2 = ±h1

x2
. Each finer discretization is a

predetermined factor, gf , applied to the coarser discretization,
such that hj+1

xi
= gfhj

xi
. The number of levels of discretization

or resolution as defined earlier is M . These parameters are
listed in Table I, and the definitions of the xi axes are defined
in Table II.

Airfoil
Camber Line
Chord Line

Thickness

Fig. 4. Representative Airfoil

To read these tables consider the x1-direction, for example.
The agent changes ±0.50% of the chord in thickness in this
direction when hx1 = 0.50%.

TABLE II
AXIS DEFINITIONS

xi Definition
x1 Thickness (%)
x2 Camber (%)

The agent implements an action by submitting it to the
plant, which produces a shape change. The reward associated
with the resultant shape is evaluated. The resulting state, action,
and reward set is then stored in a database. Then a new action
is chosen, and the sequence repeats itself for some predefined
number of episodes or until the agent reaches a goal state.
Shape changes in the airfoil due to actions generated by the re-
inforcement learning agent cause the aerodynamics associated
with the airfoil to change. The aerodynamic properties of the
airfoil define the reward, as stated, and the structural analysis
offers a constraint on the limits of the morphing degrees
of freedom. Once the learning converges or the predefined
number of learning episodes elapses, the state-space is reduced
to the area around the area of interest, i.e. the goal, the range
and admissible actions are redefined, and a new round of
learning commences.

The purpose of the numerical example is to demonstrate
the learning performance of the reinforcement learning agent
utilizing the multiresolution state-space discretization method
using the genetic algorithm for function approximation and
employing policy iteration or comparison as the stopping
criterion.

The agent is allowed a maximum of 5000 episodes with
which to explore the state-space of thickness-camber combi-
nations for each level of discretization. The agent is instructed
to learn on 3 levels of discretization, which leads to a possible
15000 episodes total. The genetic algorithm and policy com-
parison are triggered every 200 episodes. The reward the agent
receives is calculated according to the following equation:

r = |g − cn−1| − |g − cn| (11)

where r is the reward, g is the goal, and c is the metric.
For this example, c is the lift coefficient, cl, of the airfoil
and g := cl = 0.3. The area of interest is the goal, and
the associated initial range is ±0.05. The performance of the
algorithm is analyzed by comparing the final value functions
and policies represented by the discrete action-value function
and the approximated action-value function. The policies are
represented by Eqs. 8 and 9, respectively.

Fig. 5 and 6 show the visual representation of the value
function and policy and approximated value function and
policy, respectively. The key in Table III describes the sig-
nificance of the colors for the policy representation in the
figures. The genetic algorithm approximates the action-value
function for each of the four actions separately. The final sets
of basis functions determined by the genetic algorithm were
13th degree polynomials for all four actions. Of course, the
weights applied to the basis functions as determined by linear
least-squares is different for each action. Both the discrete and
approximated value functions in the figures show a definitive
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TABLE III
POLICY COLOR KEY

Color Direction
Blue ←
Cyan →

Yellow ↓
Red ↑

ravine in the center of the camber axis. For this problem
and reward function, this ravine indicates where the goal of
cl = 0.30 is located. Notice the general agreement between the
discrete value function and the approximated value function.
Looking closely at the policy shown in Fig. 5, it is seen
that near the goal around a camber of 2.4% there are many
patches in which the agent could get “stuck” and not quite
reach the goal. This phenomenon is due to the agent not
taking quite enough time to learn those areas. However, Fig.
6 shows that many of those patches are smoothed by the
approximation, making it more likely that the agent will reach
the goal. Quantitatively, there is an 80% agreement between
the extracted discrete policy and the extracted approximated
policy. A full set performance simulations should and will be
run to determine the performance of the agent using both the
discrete policy and the approximated policy.

The agent converged to the policy shown in the figures in
2200 episodes: 600 episodes at the first level of discretization,
1200 at the second, and 400 at the third, which is 85% fewer
than the total 15000 episodes limit. The total computational
time that elapsed while the agent learned is 6.74 hours. If
the agent had been allowed to complete all 15000 episodes
without any other stopping criteria, the agent would have
a computational time upwards of 46 hours. This method
saved almost 40 hours of computational time, and it produced
an approximation of the action-value function without any
additional post-processing.

Fig. 5. Value Function (a) and Policy Representation (b)

VIII. CONCLUSIONS

A. Conclusions

The results show that the learning for this algorithm shows
80% agreement between the discrete policy and the approxi-
mated policy, showing good support for using the genetic algo-
rithm to determine basis functions for function approximation
using linear least-squares. The multi-resolution discretization
portion of this method is successful in greatly reducing the
time for convergence, increasing the rate of convergence, and

Fig. 6. Approximated Value Function (a) and Policy Representation (b)

achieving a goal with the very small range of 0.002 in fewer
than the allotted number of episodes. This method reduced the
total number of episodes by 85% from the total possible.
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