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Abstract—The dynamic tree (DT) graphical model is a 
popular analytical framework for image segmentation and object 
classification tasks. A DT is a useful model in this context because 
its hierarchical property encodes information in multiple scales 
and its flexible structure fits complex region boundaries better 
than rigid quadtree structures such as tree-structured Bayesian 
networks. This paper proposes a novel framework for data fusion 
by using a DT model to fuse measurements from multiple sensing 
platforms into a non-redundant representation.  The structural 
flexibility of the DT will be used to combine common information 
across different sensor measurements of simulated objects of 
interest. The appropriate structure of the DT and its parameters 
for the data fusion application are presented and discussed along 
with fusion results from a simulated sonar survey mission. 

Keywords— belief propagation, dynamic tree, sonar, tree-
structured Bayesian network  

I. INTRODUCTION

In many sensing applications multiple measurements of the 
same region or object in question are presented to a human 
operator to combine or fuse into a single observation with no 
redundant information. In underwater surveys, the path 
trajectories of diverse sensing systems may overlap the same 
region many times, producing a heterogeneous set of 
measurements from the same object. The answer most 
commonly sought regarding a particular sensed object is an 
accurate geographic position linked to the set of corresponding 
measurements gathered from the sensing systems. In this paper 
we propose to use a probabilistic graphical model called a 
dynamic tree (DT) as the analytical framework for combining 
redundant sonar image contact information gathered from 
multiple sensing platforms. 

DT graphical models have been successfully implemented 
in image segmentation applications [1], [2], [3] since the 
analytical framework provides a flexible hierarchical structure 
which is desired in many image processing applications, e.g. 
texture segmentation across complex region boundaries. Here 
we propose a novel idea to use DTs in a hierarchical sensor 
fusion task.  In addition to its hierarchical structure, DT 
configurations are based on a probabilistic framework.  This 
framework uses probability distributions to model the 
relationships among sensor measurements and thus explicitly 
provides an estimate of uncertainty in the DT maximum a
posteriori (MAP) solution.  In other words, the solution of the 

DT is in terms of a distribution rather than a single value. The 
DT solution can be contrasted with an unsupervised clustering 
routine such as k-means clustering where the solution does not 
have an explicit measure of uncertainty. 

Fig. 1 depicts the proposed framework for DT sensor 
fusion.  The sensing scenario is illustrated at the top of the 
figure.  In the cartoon, each DT in the forest represents a 
single object of interest.  In the bottom of the figure, each DT 
is shown to be made up of a root node at the top level of the 
tree which represents true state of the object in question. 
Uncertainty from the sensing platform that collected the 
measurements on the object is represented in the intermediate 
level of nodes and raw sensor measurements are represented 
by the leaf nodes bottom level of the tree. 

The rest of the paper presents a solution to the sensor fusion 
problem of combining redundant sensor information using the 
analytical framework of DTs.  An overview of the properties 
of Bayesian networks and DTs is presented in the next section.  
A description of the DT sensor fusion architecture is then 
introduced.  Procedures for optimizing the DT and thus 

Figure 1. Dynamic tree sensor fusion architecture.  In a sensing scenario 
data is organized by a forest of dynamic trees.  Each tree represents the 
information known about an object sensed in the environment.  Within each 
dynamic tree, sensor measurements (leaf nodes) are linked to the true state of 
the object (root nodes) through an intermediate set of nodes that define the 
uncertainty interjected by the particular sensor. 
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finding the sensor fusion solution are then described.  The 
remaining sections explain the incorporation of target and 
sonar image texture features into the DT framework for sensor 
measurement discrimination and include results from a 
simulated sensing scenario. 

II. DYNAMIC TREE GRAPHICAL MODEL

In a Bayesian network (BN) graphical model, the 
factorization of the joint probability of a set of random 
variables (or nodes) is defined by the connections between 
nodes.  In Fig. 2 below a set of random variables {A,B,C,D} is 
connected as shown.  A directed link from parent node to child 
nodes defines the probability state of the child conditioned on 
the parent.  For example, the link labeled with a 1 in Fig. 2 
denotes the conditional probability P(C|A). Root nodes or 
nodes which do not have a parent are defined through an 
unconditional prior probability.  Using this notation the joint 
probability of the graph in Fig. 2 can be factored as  

P(A,B,C,D) = P(A)P(B|A)P(C|A)P(D|C).               (1) 

Inferring the probability mass function of a discrete random 
variable or node in the model can be done by simply 
evaluating the evidential nodes, or nodes in which the values 
are known, and marginalizing or summing over all the 
unknown nodes.  For example, to infer the probability of the 
states of random variable C when the values at nodes B=b and 
D=d in Fig. 2 requires a summation over the probability mass 
function of variable A in the numerator and A and C in the 
denominator of (2).  This expression (i.e. the posterior) can be 
written according to Bayes’ rule as 
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The computational complexity of marginalization increases 
as the number of nodes and links increases in the BN.  In most 
inference cases, the probability mass function at each node in 
the BN needs to be updated after the introduction of new 
evidence into the network.  For tree-structured networks, i.e. 
child nodes have only one parent, the marginalization or belief 
update at each node is carried out using a fast sum-product

Figure 2. Bayesian network graphical model.  Nodes A, B, C, and D are 
random variables, and links between the nodes define conditional probability 
relationships. 

algorithm known as belief updating or Pearl’s message passing 
[4]. The belief updating algorithm greatly reduces computation 
time and provides a standard programming framework to 
accomplish the marginalization over the entire network. 

A dynamic tree (DT) graphical model [1] is a tree-
structured BN whose joint probability P(Z,X) includes a 
random variable Z that defines the linkage between nodes X in 
the tree.  The structure or nodal linkage of the DT is defined 
by Z in the form of a matrix whose element in the ith row and 
jth column is written as Zij.  Each element in Z is the indicator 
of the connection between the child node Xi and the parent 
node Xj in which case Zij = 1 if nodes Xi and Xj are connected, 
otherwise Zij = 0.  Each element in the set of N nodes X = {X1,
X2, …, XN} is a discrete random variable with a probability 
mass function defining the probability of nodal states.  Further, 
the nodes in X are members of either of the 2 disjoint subsets 
Xh or Xe (X = {Xh U Xe}) which are hidden nodes and 
evidential/observable nodes respectively. The conditional 
probability table (CPT), denoted by ij, represents the state 
transition probabilities, or P(Xi|Xj), between any two 
connected nodes Xi and Xj.  To complete the DT model, root 
nodes are assigned an appropriate prior probability. 

The joint probability P(Z,X) defines all possible nodal states 
and nodal linkages (hereafter called structures) of the DT.  The 
most desirable structure of the DT is the one that maximizes 
P(Z,X).  The solution is equivalently found by maximizing the 
a posteriori (MAP) probability P(Z,Xh|Xe) [1].  In terms of the 
sensor fusion problem we propose in this paper, the MAP 
solution yields a non-redundant set of object root nodes 
connected to the most likely sensing platform nodes, which are 
connected to the most likely set of measurements that originate 
from the particular sensing platforms.  Hence, the most 
important part of translating a DT framework into the sensor 
fusion problem is to define the sensor and object relationships 
in terms of the structure variable Z and the CPTs that define 
the internodal relationships so that the DT solutions are within 
the realm of possibility, and more importantly are the most 
likely answer given a priori constraints.  The next section will 
discuss the sensor fusion problem within the framework of 
DTs and detail the steps necessary to optimize the structure 
given sensor measurements on leaf nodes of each tree. 

III. SENSOR FUSION FRAMEWORK

In the sensor fusion DT framework, the root nodes of the 
DT are random variables that define the true state of the 
sensed objects or targets, nodes that correspond to a particular 
sensor make up the intermediate layer of the tree, and leaf 
nodes or nodes at the bottom of the tree take the value of raw 
sensor measurements.  Using this framework, an algorithm 
was developed that takes the raw sensor measurements and 
sensor identification from an underwater sensing mission and 
automatically builds a DT for each unique object using a 
structural optimization algorithm combined with belief 
updating.  The algorithm outputs a forest or group of DTs, 
each having an inferred probability distribution of the true 
contact location.  Thus the DT sensor fusion framework yields 
two valuable pieces of information: 1) an object location in 
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terms of a probability mass function and 2) a parent-child 
relationship that links the object to the sensing platforms and 
raw measurements that gathered the information about its 
state. 

In the sensor fusion framework presented here the solution 
to the DT is found by maximizing an objective function J(Z,X)
that is the linear combination of 3 DT log joint pdfs or 

),(ln),(ln),(ln),( 332211 XZXZXZXZ PwPwPwJ ++= .      (3) 

The nodes in each of the trees are random variables 
representing the contact location (DT 1), sonar image texture 
features (DT 2), and object features (DT 3) respectively.  
(Note: the maximization using the three DTs is analogous to 
assuming independence between the random variables 
describing location, texture, and object features.) The structure 
or nodal linkage in the three DTs is assumed to be the same, 
i.e. if the nodal linkage in one tree is changed then the two 
remaining trees undergo the same structural change. Fig. 3 is 
an illustration of the parallel DT structure. 

Raw sensor information that is ultimately used to resolve the 
structure of the tree occupies the leaf nodes of DT 1, DT 2, 
and DT 3. In DT 1 the geographic position of the object is 
taken directly from the sensor measurement. In DT 2 three 
sonar image texture parameters of correlation length in the x-
direction, correlation length in the y-direction, and the K-
distribution shape parameter are extracted via the algorithm 
described in [5]. In DT 3 the object size and shape features are 
extracted by a correntropy-based technique which is detailed 
in [6]. The measurements in the leaf nodes assume values as 
soft evidence [7] which means the leaf node receives 
information in the form of a probability distribution rather than 
a fixed value or hard evidence. For DT 1, the contact location 
measurement of the sensor for the object in question is 
assumed to be a discretized multivariate Gaussian random 
variable with the mean centered about the measured 
geographic location and a co-variance determined by the 
navigational accuracy of the sensor. For DT 2, the texture 
measurements are assumed to be drawn from a discretized 
multivariate Gaussian distribution with a covariance 
commensurate with the number of samples used to estimate 
the texture features [8]. For DT 3, the object feature 
measurements are assumed to be drawn from a discretized 
multivariate Gaussian distribution as well. 

For a fixed structure Z and evidence on the leaf nodes, 
P(X|Z) is determined solely by the belief update or message 
passing algorithm [4], [7]. In the sensor fusion framework 
described here we assume a uniform prior on each root node.  
A CPT is generated between intermediate level XI and leaf 
nodes XL by assigning a multivariate Gaussian with a mean at 
each soft evidence value in the discretized grid. The co-
variance of the CPT between the root and intermediate nodes 
for DT 1 is defined by the navigational uncertainty of the 
sensing platform.  The CPT between the intermediate level 
and the leaf level in DT 2 and DT 3 represents the influence of 
the parameters used to discretize the multivariate normal soft 
evidence into a discretized multivariate pdf. 

 Figure 3. Parallel DT sensor fusion structure.  The objective function J(Z,X) 
is a weighted sum of the DTs formed for the X-Y location, image texture, and 
object feature measurements. 

Given a set of measurements, the optimal graph structure is 
one in which the objective function J(Z,X) in (3) is 
maximized. A general algorithm for finding the optimal graph 
structure follows: 

1. Input parameters: P(Z) where Z ∈  {Z1, Z2, … , ZN } is 
a set of N possible graph structures, soft evidence on 
leaf nodes XL, weights w1, w2, w3, and CPTs between 
leaf and intermediate nodes LI.

2. For i = 1:N
a. Assign structure Zi.
b. Calculate P(Zi).
c. Calculate maximum a posterior value of 

Pk(X|Zi), for k = 1,2,3 using belief 
propagation. 

d. Calculate J(Zi,X)
3. Maximum value of J(Z,X) over all i gives globally 

optimal solution. 

IV. DYNAMIC TREE INITIALIZATION AND OPTIMIZATION

For this DT framework a Bell number [9] calculation yields 
a computationally infeasible solution for a globally optimal 
exhaustive search over all possible DT structures for even a 
small number of input nodes. For example, with only 10 
measurements from a single sensor, the possible number of 
DT structures is 115,975. Thresholding by geographic 
proximity and initializing the structure via unsupervised 
clustering reduces the possible number of DT solutions and 
thus the search over the possible structure types is less time-
consuming. A proximity constraint is reasonable because it is 
not necessary to fuse contacts that are too distant from one 
another assuming a reasonable accuracy in the sensor’s 
navigation system. The following subsections describe the DT 
initialization and optimization algorithm that yields the local 
maximization of the objective function J(Z,X) under these a
priori constraints. 

A. Geographic Data Clustering via LBG-VQ 
The data is initially clustered by geographic proximity with 

the LBG-VQ algorithm [10], [11]. The algorithm yields 
subgroups of sensor measurements that are in close proximity 
to one another and aims to produce an initial DT forest 
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structure that is near a local maximum of (3). LBG-VQ is an 
iterative vector quantization algorithm that meets two criteria: 
1) the nearest neighbor condition, that is, each member of a 
cluster is assigned a label that corresponds to the closest 
centroid to the member and 2) a distortion criteria, i.e. the sum 
of the distances from all the points in a cluster to a valid 
centroid is less than some threshold value. 

A sample problem is now introduced to illustrate the use of 
the LBG-VQ clustering algorithm in the DT initialization.  
Referring to Fig. 4, an initial map of contacts are detected with 
sensors from two different sensing platforms and have 
locations defined by x and y. In Step 1 of the algorithm, the 
LBG-VQ algorithm clusters objects on the x-y input space 
with an output that assigns centroids (stars) to possible 
geographic centers of the objects. In Step 2, a DT forest is 
initialized with the centroids as the root nodes and the object 
locations as the leaf nodes. In Step 3, the leaf nodes are 
partitioned by centroid assignment. In Step 4, sensing platform 
nodes are assigned at the intermediate level depending on 
which sensing platform produced measurements.  In Step 5, 
the centroids are linked to the leaf node partitions through the 
intermediate platform ID nodes to initialize the DT forest. 

B. Dynamic Tree Optimization via Simulated Annealing 
After the DT forest is initialized by the LBG-VQ clustering 

algorithm, the locally optimum structure is calculated using 
simulated annealing. Simulated annealing (SA) is a stochastic 
search algorithm used to find maxima in large optimization 
problems and draws its name from the method of allowing 
magnetic systems to find low-energy structures through 
annealing [12],  [13]. In the DT sensor fusion framework, 
parent-child connections are changed at random and accepted 
if either the new structure results in a higher log posterior or 
randomly exceeds a threshold governed by the decreasing 
“temperature” of the annealing process. A proximity constraint 
prevents a random change to an impossible structure based on 
the geographic location of the candidate nodes. The stochastic 
nature of SA allows for “unfavorable” structures or low MAP 
values frequently in early iterations of the algorithm in hopes 
of avoiding local maxima. At later iterations, the algorithm 
performs like a stochastic greedy search and with high 
probability only accepts new structures that increase the MAP 
value. The structure acceptance is governed by a temperature 
parameter that decreases as the number of iterations increases. 

Following the outline of the DT optimization algorithm 
described in Section III, a summary of the DT sensor fusion 
algorithm is presented in Fig. 5. The algorithm requires inputs 
of the raw sensor measurements as probability distribution 
functions, an initial structure, and an annealing schedule with 
an initial temperature. 

V. EXPERIMENT AND RESULTS

To demonstrate the ability of the DT algorithm to automate 
a sensor fusion task, a scenario was simulated where two 
different sensing platforms collected a total of 28 sonar images 
via two different tracks or passes along an object field.  A 
total of 7 objects were sensed varying numbers of times by the 
two sensing platforms. Fig. 6 depicts the sensing scenario and 

Figure 4: LBG-VQ clustering to initialize the DT forest.  Contacts are first 
clustered by contact location then connected into an initial tree based on 
centroid membership and sensing platform association. 

the groupings {1,2} and {3,4,5} were specifically included to 
test the ability of the DT algorithm in resolving multiple object 
detections that are within the navigational uncertainty of the 
sensing platform.  The overlapping red dashed boxes in Fig. 6 
represent a notional uncertainty of the object locations.  This 
uncertainty manifests itself as an ambiguity with regards to 
object uniqueness in the sensor fusion task.  

Side-look sonar images were generated by inserting 
physics-based object simulations [14] into textured 
backgrounds generated from a correlated K-distribution [5].  
Simulated images were accurately generated for range and 
sensing aspect angle for the two platforms in the scenario. As 
an example, the series of images in Fig. 7 depicts the 
simulations of Object 1 in Fig. 6. (Note: The white dots in the 
images are fixed in x-y geographic coordinates as a reference 
to the different sensing aspect angles.) 
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Figure 5: Summary of the DT optimization algorithm. 

DT 1, DT 2, and DT 3 of Fig. 3 were initialized with the 
respective contact location, the image texture measurement, 
and object feature discretized probability density function 
(pdf). The multivariate discrete probability mass function 
obtained from the measurements is produced by discretizing 
the continuous multivariate normal pdf to a multidimensional 
matrix so that we can use a discrete inference framework. The 
contact location pdf was assumed drawn from a multivariate 
normal distribution with a mean equal to the x-y location and a 
diagonal covariance matrix 2I, where  = x = y.  The sonar 
image texture features of x correlation length, lx, and y
correlation length, ly, were estimated from the sonar images 
using the procedure described in [5]. To form a multivariate 
pdf using the features, the feature set was assumed drawn from 
a multivariate normal distribution with a mean equal to the 
estimated values of the features and a diagonal covariance 
matrix with a common standard deviation of t. Object 
features were extracted from the images using the technique 
described in [6] and a multivariate normal distribution was 
created using the same procedure used for the sonar image 
texture pdf. 

The DT algorithm was initialized and tested against the 
simulated data fusion scenario for varying levels of 
uncertainty in the sensing platforms navigation sensors and in 
the feature estimates. For each experiment, the parallel DT 
structures were initialized using the LBG-VQ algorithm. 

Figure 6.  Simulated data fusion scenario.  In the scenario, two sensing 
platforms make a pass through a field of seven targets at different trajectories.  
Red boxes around the targets represent the notional uncertainty in the objects 
true location, hence the need to use additional features to discern between 
sensed objects. 

P(Z) was assigned a uniform distribution, i.e. all linkages are 
equally likely thus simplifying the calculation of J(Z,X).  The 
weights of J(Z,X) were empirically chosen to be w1 = 0.6, w2 = 
0.3, and w1 = 0.1 based on results from a previously simulated 
scenario as a training example. The variances of the 
multivariate normal distributions were varied to simulate 
different levels of navigational error and uncertainty in feature 
estimates.  

Table I organizes the results of the experiment by standard 
deviation in the navigation and feature estimate values. The 
tabulated results have two metrics.  The first metric is the 
number of correct object calls; or rather do all of the objects in 
the scenario have at least one node assigned in the top level of 
the DT. For the first metric, the notation (+3) means at least 
three of the object nodes have a duplicate in the top level of 
the tree. The second metric is whether all the leaf nodes of the 
DT link to the correct root node, e.g. 25/28 means 3 leaf nodes 
were linked incorrectly to the ground truth root node. As 
expected, the best performance was obtained in the lowest 
noise case, N = (0.25, 0.5, 25) and F = (0.25, 0.5, 25), where 

N and F are the standard deviation of navigation uncertainty 
and feature uncertainty respectively. All the objects root nodes 
have been assigned correctly with three duplicates and all the 
leaf nodes are all linked to the correct root nodes. In the case 
of high noise, N = (5, 10, 200) and F = (5, 10, 200), two 
objects are merged in the top level of the tree and 8 leaf nodes 
are linked to the incorrect root node. 

The computational cost of the algorithm depends on the 
number of leaf nodes within a subgroup and the resolution of 
the discretized CPTs and discretized features at the leaf nodes. 
In practice, the problem of the number of nodes in a subgroup 
largely dominates the latter factors. Table II below shows the 
computation time required for DT structure optimization as 
presented in this paper as a function of the number of nodes 

1. Initialize parameters 
a. Accepted structure changes A = 0
b. Proposed changes P = 0
c. Max number of structure changes Amax
d. Max number of total changes Pmax
e. Initial temperature t = t0
f. Minimum temperature tmin
g. Temperature decay constant K, (0<K<1)

2. Initialize parallel DT structure via LBG-VQ 
procedure in Section IV-A 

3. Calculate J(Z,X) using belief propagation 
4. Set Ea = J(Z,X)
5. Randomly change a node’s parent connection in the 

DT under proximity constraints 
6. Recalculate J(Z,X) using belief updating 
7. Set Eb = J(Z,X)
8. Set Pc = exp((Eb – Ea)/t)
9. IF Eb > Ea, accept node connection change; Ea = Eb,

A = A + 1; P = P + 1
10. ELSEIF Pc>Uniform RV (0,1), accept node 

connection change; Ea = Eb, A = A + 1; P = P + 1
11. ELSE P = P + 1
12. ENDIF
13. IF P > Pmax OR A > Amax; t = Kt; A = 0; P = 0;
14. ENDIF
15. IF t<tmin AND A =0; END Routine. 
16. ELSE Return to Step 5.  
17. ENDIF.
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Figure 7. Image examples for Object 1 in the data fusion scenario. Object 1 
is a cylindrical target sensed at a broadside and off-center angle from the two 
sensing passes. The white dots in the images are used as reference points for 
image alignment.  

in a single tree. The times were computed using the scenario 
data above on a desktop PC running MATLAB®. Although 
Table II is not a comprehensive benchmark for DT 
optimization algorithms, it does illustrate the explosion of 
computational complexity of finding locally optimal DT 
structures with more than just a few nodes. 

VI. CONCLUSIONS

A dynamic tree sensor fusion architecture was presented to 
automate the task of combining like objects that have 
discriminating measurements. A description of the DT 
structure optimization algorithm including its initialization by 
LBG-VQ was explained in detail. An experimental scenario of 
two sensing platforms traversing an object field was simulated 
at two different sensing angles. Measured geographic locations 
and image features were extracted and used to fuse 
redundantly sensed objects via optimization of the DT 
structure or nodal linkage. Data fusion results for various 
levels of sensor noise were presented and the DT fusion 
method was shown to be effective for the scenario presented. 
The fusion error rate for the algorithm presented was shown to 
be approximately proportional to the level of noise in the 
feature measurements and the sensing platform navigational 
error. A short discussion of the computational complexity of 
the DT structure optimization as a function the number of 
nodes in the network was presented in closing. 

TABLE I. EXPERIMENTAL RESULTS FOR DATA FUSION SCENARIO

Navigation uncertainty ( N)
f1 0.25 0.5 1 5
f2 0.5 1 2.5 10 

  F
ea

tu
re

 n
oi

se
 (

F)

f1 f2 f3 25 50 75 200 

0.25 0.5 25 
7/7  (+3) 

28/28 
7/7  (+2) 

26/28 
6/7 

20/28 
5/7 

20/28 

0.5 1 50 
7/7  (+3) 

27/28 
7/7  (+2) 

26/28 
6/7 

20/28 
5/7  

20/28 

1 2.5 75 
7/7  (+4) 

27/28 
7/7  (+1) 

24/28 
6/7 

20/28 
5/7 

20/28 

5 10 200 
7/7  (+4) 

25/28 
7/7  (+4) 

25/28 
7/7  (+3) 

25/28 
5/7 

20/28 
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TABLE II. COMPUTATIONAL TIME

Number of nodes 
per tree

Computational time 
per tree

2 ~20 seconds 
3 ~20 seconds 
4 ~80 seconds 
5 5 minutes 
8 29 minutes 
9 35 minutes 

Pass 1 Look 1 Rng ~ 50M Pass 1 Look 2 Rng ~ 30M 

Pass 2 Look 1 Rng ~ 20M Pass 2 Look 2 Rng ~ 60M 
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