
The Use of TurSOM for Color Image Segmentation

Derek Beaton
James J Kaput Center for Research and Innovation in

Mathematics Education
University of Massachusetts Dartmouth

Fairhaven, MA 02719

Iren Valova, Dan MacLean
Computer and Information Science Department

University of Massachusetts Dartmouth
North Dartmouth, MA 02747

Abstract—This work presents an application of TurSOM for
high-dimensional segmentation and cluster identification.
TurSOM is a variation algorithm of the SOM algorithm, which
introduces a new mechanism of self-organization: connection
reorganization. We have theoretically presented TurSOM in very
recent previous work, however, the applicability of the novel
architecture is expanding as we explore it numerous advantages
and possibilities. The intent of these experiments, and TurSOM
itself, is to be able to segment and identify various distinct objects
in color data (red, green, blue).

Keywords—Self-organizing Maps, Turing Unorganized
Machines, unsupervised learning, clustering, segmentation

I. INTRODUCTION

TurSOM [1, 2, 3, 4] is a self-organizing map algorithm that
introduces a very new, and unique aspect of self-organization –
connection reorganization. TurSOM is inspired by the initial
self-organizing map algorithm proposed by Kohonen [5], and
the model of the human cortex proposed by Turing, called
unorganized machines [6].

The original rules of neuron learning from Kohonen’s
algorithm still apply to the neurons in TurSOM, however,
TurSOM introduces some new neuron features, as well as
several new features to establish self-organization in
connections, which facilitates a multi-network behavior. One of
the most significant features of connection reorganization is
that connections between neurons may be removed entirely,
allowing multiple networks to compete for input within a single
input space. This behavior has two major advantages: 1) it
happens during execution, and 2) it facilitates separate
networks discovering and maping distinct and unique patterns
in input space.

TurSOM’s multiple network behavior serves as an in-
execution method of clustering and pattern identification.
TurSOM has been used previously for simple two dimensional
pattern identification [1, 2], gray scale image segmentation [1,
3], and preliminarily for higher dimensional work [4], which
we are building upon in this work.

II. TURSOM

A. Background
TurSOM exhibits two forms of competitive learning by

simultaneously reorganizing both neurons and connections.
The first level of competitive learning exists within the

neurons, as Kohonen’s algorithm does, by neurons competing
for input (best matching unit - BMU). However, TurSOM has a
mechanism, known as the gap junction (GJ), which facilitates
connection reorganization. Since a connection between neurons
can be removed altogether, this facilitates the second level of
competitive learning. When a connection between neurons is
removed, only the neurons within that network are affected,
leading to the selection of the best matching network (BMN).
The compartmentalized details of TurSOM are broken down,
and elaborated on in the following sections.

B. Reorganization
Traditionally, the connections between neurons in SOM

algorithms provide path and neighbor information for the
winning neuron. These connections, for the most part, exist to
bind neurons together most commonly in a one-dimensional
chain (neurons have at most two neighbors) or a two-
dimensional lattice structure (grid or hexagonal).

TurSOM’s primary component, and most significant
contribution, is that it adds functionality to the connections.
Connections now have a mechanism called the gap junction
(GJ), which observes: 1) the length of the connection it resides
on; and 2) connections that are nearby. Both attributes are
measured by neuron positions. As the GJ observes the length of
the connection it resides on (figure of gap junction), if the
length becomes too long, with respect to the current network it
is in, the connection is severed, effectively splitting the current
network in two.

Additionally, connections can exchange places, if the
neurons they are connecting would be better off with other
neighbors. This exchange happens between two connections
and three to four neurons (depending on the number of neurons
in the region).

These features were introduced to account for and correct
non-linearity in connections, which our previous work [7, 8, 9
10] indicates that “tangled” networks can cause convergence
issues, as well as misrepresent the underlying data.

C. Neuron Responsibility
Neurons in TurSOM exist in nearly the same capacity as

they do in a traditional SOM algorithm. However, there is one
major feature that has been added to the neurons of TurSOM
that requires explanation. Neurons that are effectively “freed”
from a connection – that is, the connection it had with another
neuron that was removed due to (effectively) incompatibility in

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4337

attributes now have a Neuron Responsibility Region (NRR).
Essentially, all neurons that do not have the maximum number
of neighbors possible enter a state where they are actively
seeking new neighbors to complete their connections. In order
to seek for new neighbors, a neuron needs to look in a radius
beyond where it exists, and must find another neuron that is
also actively looking for another connection.

The neuron responsibility radius is determined by the
number of available inputs and the number of total neurons that
exist in the input space. This value is dependent on the
dimensionality of attributes, and subsequently, if that
dimensionality is even or odd numbered. If n is even, where n
is the number of attributes:

1

er e

where e is:

1
2e !

2

If the value of n is odd:

1

or o

where o is:

1
2

12 !
2o

!

Where represents the number of dimensions and is
calculated by dividing the number of inputs by the number of
available neurons. is the number of theoretical inputs a
neuron is responsible for.

D. Connection Responsibility
Connection responsibility is governed by the GJ

mechanism. The term gap junction is borrowed from biology,
where it represents a mechanism that is found in neural cells
and is responsible for the bi-directional communication of
electrical signals between neurons. The gap junction of
TurSOM, however, is not biologically accurate, as TurSOM
does not model electrical or chemical relationships like ART3
[11]. The GJ of TurSOM is biologically inspired, as it plays the
role of communicating information between neurons. The GJ
decides if, and when a connection will either remove itself
from the network, or exchange positions with another
connection.

This is the primary and most significant behavior of
TurSOM. As Kohonen posited, given enough iterations a one-
dimensional SOM will converge with linearity (no tangles),
effectively in a Peano-like curve. However, two-dimensional

networks have no such guarantee. In previous work [8, 10] we
have shown that initialization techniques that are already
Peano-like (Hilbert curves), converge faster than random
initialization, and have no tangling in the network. TurSOM
circumvents the requirement for a non-tangling initialization
method because the connections reorganize in execution.

1) Connection Learning Rate
The gap junction of TurSOM is responsible for computing

what is known as the connection learning rate (CLR). This is a
value that is analogous to the neuron learning rate with one
critical difference: as a neuron learning rate progresses it gets
smaller – causing neurons to move less and less, whereas the
connection learning rate increases over time, allowing more
stringent and stable connection behavior.

The connection learning rate is a measure that calculates the
length of the connection – determined by the neurons it
connects – and then computes the “relative bigness” of that
connection with respect to all other connections in that network
– not all connections that exist in the input space. The relative
bigness is computed by using a modified version of the
standard upper outlier formula, most prominently used for
boxplots:

3 3 1(())CLR Q i Q Q

In the standard upper outlier formula, i is either 1.5 for mild
outliers, or 3 for extreme outliers. In TurSOM however, it is an
incrementing value. As the network progresses, the value of i
increases, which means that in the early iterations of TurSOM,
connections can be quite small and rapidly reorganize, and in
late iterations a connection must become quite large in order to
remove itself from the network. The connection learning rate
does not influence connection reorganization, however.
Connection reorganization is determined by neuron positions
and is used a method to prevent network tangling.

E. Algorithmic Explanation
TurSOM’s algorithmic steps being with the same as

Kohonen’s SOM algorithm, and this section will provide
explanation only for the new steps and features that are
exclusive to TurSOM. Just like Kohonen’s algorithm, selecting
input, finding the best matching unit via competitive learning,
and moving a unit and its neighbors toward the input are the
first steps. One significant detail to note is that with TurSOM,
the selection of best matching unit also indicates the selection
of a best matching network. The following steps are unique
features for TurSOM:

1) Check connection lengths
All the connection lengths in the input space are checked to

see if they are longer than the value that is currently held by the
connection learning rate variable. If a connection is larger than
the CLR value, that connection is removed from its network
and subsequently causes two separate networks to exist.

When disconnection occurs, i, of CLR is incremented,
effectively increasing the CLR value. Additionally, any
neurons that were subject of disconnection now have their

4338

responsibility radius (NRR) activated, and search for other
neurons with a free connection that are within the radius.

2) Connection Exchanges
In addition to connections being removed or added (when

two actively seeking neurons find each other) to the network,
connections are also exchanged between neurons to optimize
neighbors in a network.

Connections are exchanged between neurons in addition to
the removal and addition of connections, because neurons may
have better neighbors. Connection exchanges also avoid
network tangling. Given three neurons: A, B, and C where
neurons A and B are directly connected to one another, and C
is in either the same or a different network from A and B,
connections will be exchanged if the topological attributes of A
and B are less similar than either A is to C or B is to C.

III. GROWING

The algorithmic and feature descriptions of TurSOM
provided in Section II are for a one-dimensional network. One-
dimensional networks have advantages and disadvantages over
two-dimensional lattice structures in SOM networks. Firstly,
the disadvantages are that one-dimensional networks may not
provide accurate topological information, and will not in fact
be representative of the underlying data. The features of
TurSOM are not necessarily limited to one-dimensional
networks, but are implemented only for one-dimensional
networks.

To ensure that TurSOM is a robust SOM that will
accurately represent underlying data, a growing mechanism has
been introduced. The growing mechanism that TurSOM has is
a single growth effect similar to that of growing grids [12]
introduced by Fritzke. Prior to explaining the growing
mechanism of TurSOM, we shall briefly review highly
regarded growing SOM networks.

A. Growing Architectures
Growing architectures are most significantly attributed to

the work of Fritzke [12,13,14]. In more recent SOM history,
other algorithms including ParaSOM [15] and ESOINN [16]
also have growing mechanisms. The following subsections
include brief, qualitative descriptions of these algorithms and
the growing mechanisms contained therein.

1) Fritzke’s Architectures
Growing cells (GC), growing grids (GG), and growing

neural gas (GNG) are all algorithms attributed to Fritzke. The
fundamental behavior of all of these algorithms is that they
start out with a minimal network size and continue to grow
until some user-defined threshold is met. This user threshold
can be number of neurons, or number of iterations that the
network is executing. Each of these algorithms possesses
similar features that allow the algorithms to grow or behave in
different ways.

Fritzke’s algorithms all contain age parameters, either for
the neurons (GG, GC) or for the connections (GNG). As the
age parameter increases (as a consequence of winning via
competitive learning), more neurons and edges are introduced
to those with high age values. High age values indicate a region
of input space that is apparently dense with input, as selection

in that region is quite high. The age parameters will be less
over time as there are now more neurons or edges to distribute
over that area.

2) ParaSOM
ParaSOM is another growing algorithm that also exploits

the inherent parallel nature of the SOM algorithm. ParaSOM
also has unique features of its neurons – the neurons have a
Gaussian radius within which they are responsible for all input
under that distribution. Similar to Fritzke’s algorithms,
ParaSOM has a growing mechanism that is based largely on
age of the neurons.

3) ESOINN
ESOINN (enhanced self-organizing incremental neural

network) [16] is a newer architecture that utilizes a growing
mechanism. During execution, ESOINN (and similarly SOINN
– ESOINN’s predecessor) add or remove connections based on
criteria of density and age of nodes and connections.

ESOINN’s behavior however, is different from the other
architectures in that it uses a two best-matching unit
methodology. ESOINN’s competitive process selects the best
unit for the current input, as well as the next best unit.

ESOINN’s connection building and removal relies on
density information provided by the neurons in the network.
Connection addition occurs when two best-matching units are
either in the same subclass, or if one of the nodes is a newly
grown node, introduced by growing mechanisms. In the final
stages of the network, nodes are reclassified for optimal class
identification, which will consequently remove connections
between nodes that are determined to be from different sub-
classes.

B. Growing Mechanism in TurSOM
TurSOM has a very different growing mechanism, and even

a vastly different initialization method than other algorithms
mentioned in this paper. A major difference between TurSOM
and all other architectures is that TurSOM begins as a statically
sized one-dimensional network. As it adapts to input, new
nodes are never introduced – only connections and neurons are
self-organizing.

Effectively TurSOM uses a growing mechanism that is
semi-analogous to Fritzke’s GG. The GG algorithm adds either
entire rows, or entire columns of neurons. However, TurSOM
grows only once. The growing mechanism can be instantiated
by either a user-defined iteration value, or based on a value
measuring one-dimensional convergence.

In TurSOM’s growing mechanism, both rows and columns
are added to the one-dimensional network. Growing transforms
the previous one-dimensional sub-networks into grids of a
square size. For example, a one-dimensional sub-network of
size 10 will become a grid of neurons in a 10x10 lattice
structure.

To maintain unsupervised, and unbiased approach to
placing neurons in input space, after growth occurs, TurSOM
simply increments attributes by a very small number, so that
neurons are distinct, but very similar to their predecessor
(previous row or column). Effectively, the initial row is

4339

duplicated and shifted in either all, or just one dimension by the
same incrementing value.

IV. INITIALIZATION & PHASES

TurSOM places neurons for initialization with one of two
methods: 1) random vectors in input space or 2) Hilbert-curve
initialization [8,9,10]. Hilbert-curve initialization is a method
developed by the authors to place neurons in input space,
without having any network tangling at initialization. In
addition, we have shown that preventing network tangling at
initialization leads to faster convergence, and little to no
network tangling during execution.

However, tangling issues are of no concern to TurSOM
during the second phase of execution: connection-adaptation
phase.

A. Network Adaptation Phase
TurSOM has a user-defined parameter to indicate which

phase it should begin with. The network-adaptation phase is
effectively the standard SOM map algorithm and behavior.
Network-adaptation (NAP), does not allow connections to
reorganize, simply it allows neurons to self-organize. It is done
as a preliminary step to connection-adaptation, wherein
connections are allowed to reorganize.

B. Connection-Adaptation Phase
The connection-adaptation phase (CAP) of TurSOM is

effectively the primary, and most important phase of TurSOM,
wherein the connections become active learners and critical to
the self-organizing process of all sub-networks.

CAP transition is a user-defined parameter, in TurSOM’s
current form, however, nothing bars CAP transition from being
instantiated by a convergence metric to indicate that the (whole
single original) network is no longer a viable learning tool.

CAP often occurs at network instantiation, which would
completely replace NAP. However, the user may indicate that
TurSOM should operate as a regular SOM for a given amount
of iterations or until a certain level of convergence has been
reached.

V. EXPERIMENTS

The following experiments build upon prior works [1, 2, 3,
4], with the intent of taking TurSOM to scale for high-
dimensionality, as well as a more user-friendly product, where
the number of user definable parameters is reduced.

Previous work [1, 2] has shown that TurSOM is a unique
contribution to the SOM-variant field. The most significant
contributions of TurSOM have been a reduction in execution
time (measured in iterations), and in-execution network
partitioning. In-execution partitioning is effectively a form of
clustering. Traditionally, prior work with SOMs (and many
variants) required a post processing technique (such as PCA) to
group neurons together, or that the number of nodes of a SOM
were limited, and those nodes represent clusters in a fashion
that would be similar to k-means or a non-linear PCA.

This paper is presenting an extension of previous work [3,
4] with respect to high-dimensionality. In [3], and to a lesser
extent [1] (the origin of TurSOM) we present TurSOM as a

method of image segmentation and clustering. Dimensionality
did not exceed three dimensions (x and y locations and gray
scale value of pixels). Here, we extend this to larger input space
with more intricate patterns, specifically, concentric color-
degrading circles, and an extension of two benchmark patterns,
the double-spiral and the circle-ring pattern.

Both experiments presented here use random vector
initialization for the x and y locations, whilst the red, green,
and blue (RGB) values are initialized to 127, effectively
rendering the neurons as gray pixels.

A. Concentric Color-Degrading Circles
This experiment uses a pattern that uses seven concentric

circles in a degrading pattern, beginning with black, and
followed by the colors found in a spectrum, effectively that of a
rainbow: red, orange, yellow, green, blue, violet. This pattern is
displayed in Fig.1.

Figure 1. The original pattern of concentric color-degrading circles

The following series of figures present TurSOM, in one-
dimensional form, adapting to this pattern. Initialization of
TurSOM for this pattern has 200 neurons as shown in Fig.2.

Figure 2. Initialization of TurSOM with 200 neurons to random vectors.

Fig. 3 demonstrates TurSOM during the first phase –
network-adaptation. Network-adaptation includes two phases,
wherein the first phase includes a high neighbor hood radius, to
effectively collapse the network and reduce tangling. The
second phase has a low neighborhood radius.

Fig. 4 shows TurSOM still in mode of network adaptation.
Neurons are approaching vectors, but the network is still highly
tangled. The behavior at this stage is no different than a normal
SOM. However, if a normal SOM were too continue execution
from this state, the amount of required iterations until Peano-
curve like convergence are very high [3].

4340

Figure 3. 100 Iterations into TurSOM execution

Figure 4. TurSOM after 500 iterations

Figure 5. TurSOM in iteration 1250, still in network-adaptation.

Fig. 5 demonstrates TurSOM in iteration 1250, still in
network-adaptation phase. Fig. 6, in iteration 1800
demonstrates TurSOM after connection-adaptation phase was
turned on in iteration 1251. This displays the in-execution
clustering behavior of TurSOM. The mechanisms of this
behavior are elaborated on in [1, 2].

Fig. 6 shows TurSOM in iteration 1800, well into
connection-adaptation. However, comparable to network-
adaptation and traditional SOMs, TurSOM is capable of
quickly identifying distinct patterns.

B. Double-Spiral Circle-Ring pattern
This pattern is based on two benchmark patterns, the

double-spiral and the circle-ring patterns. Each are common
benchmark patterns for clustering and distinguishing between
overlapping data in the same input space. Below is how the
pattern looks without a network present

.
Figure 6. TurSOM in iteration 1800

Figure 7. Circle-Ring and Double-Spiral with various colors and
overlapping x and y coordinates.

Fig. 7 demonstrates the patterns as they exist in space. In
this experiment, the growing mechanism of TurSOM will also
be demonstrated. Fig. 8 displays TurSOM at initialization. This
experiment uses 100 neurons for the network. Few neurons are
needed at initialization when the growing mechanism of
TurSOM is used, as the number of neurons will, at some
iteration (defined by the user) will increase to better map
patterns.

Figure 8. TurSOM with 100 neurons at initialization with random vectors.

4341

Figure 9. TurSOM at iteration 100 during network-adaptation phase.

Figure 10. TurSOM at iteration 250 during network-adaptation phase.

Figs. 9 and 10 show TurSOM at iterations 100, and 250
respectively. The behaviors are similar to the prior experiment.
In this experiment, the first phase of network-adaptation lasts
for 200 iterations. Fig. 10 shows TurSOM in a state that is still
very like a traditional SOM.

Figure 12. TurSOM at iteration 850. Connection-adaptation has been on-
going for 99 iterations.

Figs. 12 and 13 demonstrate TurSOM in it’s fully featured
mode. As Fig. 12 shows, TurSOM discovers distinct patterns in
five-dimensional space. Fig. 13 demonstrates the effects of the
growing mechanism of TurSOM, approximately 250 iterations
into execution.

VI. CONCLUSION & DISCUSSION

In this paper we present new application of TurSOM that
demonstrates the capability of high dimensional pattern
segmentation. Color image segmentation is a very powerful
tool, and TurSOM is a simple, yet effective method of

providing it. TurSOM is not a vast variant of the traditional
SOM algorithm, yet introduces certain features that make it far
more powerful as a pattern recognition and identification tool.

Figure 13. TurSOM at iteration 1250. The growing mechanism was turned
on at iteration 1001.

REFERENCES

[1] D. Beaton, “Bridging Turing Unorganized Machines and Self-organizing
Maps for Cognitive Replication”, UMass Dartmouth MS Thesis, 2008

[2] D. Beaton, I. Valova, D. MacLean, “TurSOM: A Turing Inspired Self-
organizing Map,” accepted to IJCNN, 2009, in press.

[3] D. Beaton, I. Valova, D. MacLean, “Growing Mechanisms and Cluster
Identification with TurSOM,” accepted to IJCNN, 2009, in press.

[4] D. Beaton, I. Valova, D. MacLean, “Color Objects Identification with
TurSOM,” accepted to ICCNS 2009, in-press.

[5] T. Kohonen. Self-Organizing Maps, Springer, second ed., 1995.
[6] D.C. Ince (ed.). Collected Works of A.M. Turing – Mechanical

Intelligence, Vol. 3/4 Elsevier Science Publishing, 1992
[7] D.Beaton, I.Valova, D.MacLean, “CQoCO: a Measure for Comparative

Quality of Coverage and Organization for Self-Organizing Maps,”
Neurocomputing (in review), Elsevier.

[8] I.Valova, D.Beaton, A.Buer, D.MacLean, “Fractal Initialization for
High-Quality Mapping with Self-Organizing Maps,” Journal of Neural
Computing and Applications (in review), Springer.

[9] Iren Valova, Daniel MacLean, Derek Beaton, "Identification of Patterns
via Region-Growing Parallel SOM Neural Network," icmla,pp.853-858,
2008 Seventh International Conference on Machine Learning and
Applications, 2008

[10] I. Valova, D. Beaton, D. MacLean, “Role of Initialization in SOM
Networks - Study of Self-Similar Curve Topologies”, Proceedings
International Conference on Artificial Neural Networks in Engineering
(ANNIE), Vol.18, pp 681-688, 2008

[11] G. Carpenter, S. Grossberg. “ART 3: Hierarchical Search Using
Chemical Transmitters in Self-organizing Pattern Recognition
Architectures,” Neural Networks, Vol. 3, pp. 129-152, 1990.

[12] B. Fritzke. “Growing Grid – a self-organizing network with constant
neighborhood range and adaptation strength,” Neural Processing Letters,
Vol 2 No. 5 9-13 1995.

[13] B. Fritzke. “A Growing Neural Gas Network Learns Topologies,” Adv.
In Neural Information Processing Systems, Vol. 7 pp. 625-632, 1994.

[14] B. Fritzke. “Kohonen Feature Maps and Growing Cell Structures – a
Performance Comparison,” Advances in Neural Information Processing
Systems, Vol. 5, 1993.

[15] I. Valova, D. Szer, et al. A parallel growing architecture for self-
organizing maps with unsupervized learning, Neurocomputing, Vol. 68
pp. 177-195, 2005.

[16] S. Furao, T. Ogura, O. Hasegawa. “An Enhanced Self-Organizing
Incremental Neural Network for Online Unsupervised Learning,” Neural
Networks, Vol. 20 No. 8, pp. 893-903, 2007.

4342

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

