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Abstract— Among numerous pattern recognition methods the 
neural network approach has been the subject of much research 
due to its ability to learn from a given collection of representative 
examples. This paper is concerned with the design of a Weightless 
Neural Network, which decomposes a given pattern into several 
sets of n points, termed n-tuples. Considerable research has 
shown that by optimising the input connection mapping of such 
n-tuple networks classification performance can be improved 
significantly. This paper investigates the hybridisation of Genetic 
Algorithm (GA) and Particle Swarm Optimisation (PSO) 
techniques in search of better connection maps to the N-tuples. 
Experiments were conducted to evaluate the proposed method by 
applying the trained classifier to recognise hand-printed digits 
from a widely used database compiled by U.S. National Institute 
of Standards and Technology (NIST).  
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I. INTRODUCTION 

Pattern recognition as a field is extremely diverse and has 
been applied in many areas such as science, engineering, 
business, medicine etc. The aim of pattern recognition is to 
classify objects into identifiable categories or classes after 
extracting features from the data. This data may be numerical, 
pictorial, textural, linguistic or any combination of these 
categories. The neural classification emulates the 
computational paradigm of the behaviour of neurons and their 
interconnections in human brain. Instead of recognizing a 
pattern by following a set of human-designed rules, as in the 
structural approaches, neural nets learn the underlying rules 
from a given collection of representative examples.  Among 
neural network models, the weightless or n-tuple form of 
network [6] stands out due to its own advantages over a variety 
of pattern recognition algorithms [20]. Considerable research 
activity has focused on the n-tuple method, both regarding 
theoretical issues [20][14] as well as applications to real-world 
tasks [21]. Several applications of n-tuple-based networks to 
handwritten character recognition tasks have been reported. 
Recognition of handwritten characters by a computer has been 
a topic of extensive research for many years [17]. The character 
recognition research can be classified based upon two major 
criteria: 1) the data acquisition process (on-line or off-line) and 
2) the text type (machine-printed or handwritten). The off-line 
handwritten character recognition has been selected as the 
application domain of the research presented in this paper, as it 
is relatively more complex compared to on-line and machine-
printed recognition [2]. 

 The n-tuple method decomposes a given pattern into 
several sets of n points, termed n-tuples. The classifier stores 
class-specific information about the training set in a number of 
look-up tables .The entries in each look-up table are addressed 
by sampling n specific data locations of the input that 
constitutes a ‘feature’ of the pattern. A pattern is classified as 
belonging to the class for which it has the most features in 
common with at least one training pattern of that class. The 
input connection mapping of the n-tuple classifier determines 
the sampling and defines the locations of the pattern matrix. 
There will be a vast number of possible connections for a 
matrix with the dimension like 32 by 32. The classification and 
generalization performance are highly dependent on these input 
mappings [5][13]. A random map is suitable for an un-
optimised problem [3] as it samples the point throughout the 
pattern matrix. Considerable research shows that by optimising 
the connections classification performance can be improved 
significantly [5][13][10]. Stochastic search algorithms like 
Particle Swarm [15] and Genetic Algorithm [12] were used 
previously to find the optimal set of connections to the n-tuple 
network. This paper will investigate the hybridisation of these 
two popular algorithms to select better connections to the 
network and the performance of the optimised network will be 
measured in recognizing handwritten characters from the NIST 
[28] database. Due to computational extensive nature of the 
simulations and also the stochastic nature of the proposed 
algorithms, all presented results will be taken over several test 
runs. Remainder of the paper has been organized as follows: 

  Section 2, 3 and 4 will introduce the n-tuple network, PSO 
and GA respectively. The hybridisation technique used to 
combine GA and PSO will be explained in Section 5. Section 6 
will presents the experimental results. Finally Section 7 will 
conclude the paper.  

II. N-TUPLE NETWORK 

An n-tuple classifier is a memory-based method. It is a type 
of a neural network with a structure that could be easily 
implemented using a RAM (Random Access Memory) [1]. The 
n-tuple method is more specifically known as a type of 
Weightless Neural Networks (WNN) or RAM networks 
(RAM-net). Unlike conventional networks, a weightless neural 
network uses explicit storage elements, rather than inter-
element connection weights, to keep its state. In weightless 
approach there is no variable weight between the nodes rather 
neuron functions are stored  in  look-up  tables. The  learning  
algorithm   is  very  simple,  the patterns  are   presented  to  the  
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Figure 1. An n-tuple network  

inputs of the network and then the patterns are stored in a 
certain way, which results in highly flexible and fast learning 
algorithms. Although the n-tuple classifier is not famously 
popular compared to some other methods, such as multilayer 
perceptrons [19], the networks based on the n-tuple method 
have two great strengths: they can be trained quickly and they 
can be implemented in conventional computers with greater 
ease when compared to other equation solving and minimising 
methods. The training of the basic classifier is a one-shot 
memorisation process. These advantages come at the cost of 
recognition robustness. It has been shown that the n-tuple 
method can  result in quite reasonable recognition performance 
if used with care [20]. 

Fig. 1 shows an n-tuple network, which is built out of RAM 
nodes. The input address of the RAM unit is also known as 
“tuple”. If the width of the address bus (also known as input 
connection map) is n bits then the tuple is termed as “n-tuple”. 
The width of the address bus is also known as “tuple-size”. 
Total number of tuples, denoted by R, is the number of tuples 
available to be optimised. R depends on the network’s 
structure. A group of RAM nodes in a tree-like structure is 
called a discriminator. The discriminator achieves its goal by 
presenting to each neuron only a subset of the input pattern, 
and adding up the outputs of its RAM nodes. This sum can be 
seen as a measure of the recognition confidence of the 
discriminator. Therefore, when the discriminator sees a 
previously learned pattern, its integer output reaches the 
discriminator's maximum. For an input vector, of size L, the 
number of necessary RAM nodes R of connectivity n that 
should be used to cover all inputs of the input vector should 
satisfy: R × n > L. L is known as the resolution of an image. A 
group of discriminators is used to distinguish a fixed number of 
classes. The number of classes, which need to be distinguished 
by a network, determines the number of discriminators needed 
in a network. The network shown in Fig. 1 can be used to 
distinguish a fixed number of classes. If it consists of ‘j’

discriminators, it can differentiate j classes. At the output of all 
discriminators there is a “decision block” where the winner 
class is chosen using some criteria such as the greatest sum, a 
threshold of the greatest sum, difference between sums etc. In 
greatest sum approach, the discriminator containing the greatest 
number of active RAM nodes is selected. Thus a pattern is 
'recognized' as the one whose discriminator 'fired' the most, that 
is, the discriminator with the highest count of memorized 
tuples.   

A. Motivation for Optimisation  
The classification performance of the n-tuple classifier is 

highly dependent on the input bits probed [5][13][19]. The 
number of possible connections for a 32 by 32 binary pattern 
matrix is enormous. Let us consider an n-tuple classifier of 150 
tuples with the tuple-size 8 bits. For an input binary image with 
a resolution of 32 bits by 32 bits the total number of available 
pixels will be 1024 bits. Now if the same pixel doesn’t repeat 
in a tuple then the possible number of tuples that can be formed 
is found by the formulae of combination, M = 1024C8 ≈
2.91×1019. If M tuples are divided into groups of 150 then total 
number of combinations will be B = MC150, which is a very 
large number. Therefore an exhaustive search for B mappings 
is impossible. The classification performance is a function of 
input mappings and it approximates to a normal distribution 
[3], where the majority of the mappings give average 
performance, but a small number of connection mappings give 
a relatively better performance. Bishop et al. [5] demonstrated 
the importance of choosing the sequence in which input is 
sampled to discriminate similar classes and applied a basic 
evolutionary technique to determine the sequence in which the 
input is sampled and the tuples formed. One sequence of input 
samples was used for the discriminators for most of the 
characters, but different sequences were used for the 
discriminators of characters which are too similar, such as c
and e , i and l. Since Bishop’s work genetic algorithms have 
been revisited by others more recently [10][4] to optimise the 
input connections of n-tuples. Other than GAs, algorithms like 
Tabu Search (TS) and Simulated Annealing (SA) were applied 
by Garcia and Souto [10] for this purpose. Optimisation by 
particle swarms was also reported for recognizing handwritten 
characters [4]. Noticeable improvement in performance by 
various algorithms [4][5][10][15] provided the motivation for 
our research to investigate the combination of two popular 
algorithms, GA and PSO, and to explore the effects of the 
hybridisation in the optimisation of  n-tuples.  

III. PARTICLE SWARM ON N-TUPLES

When particle swarm [15] is applied to n-tuple 
optimisation, the “tuples” of the n-tuple can be termed as 
“particles”. Thus each particle corresponds to an input 
connection map of the n-tuple network. The size of an n-tuple 
network is defined by the total number of tuples it is built with. 
Total number of tuples, denoted by R, is the number of tuples 
available to be optimised by a particle swarm. R depends on the 
network’s structure. The particle swarm technique makes use 
of a population of particles or input-maps (for n-tuples), where 
each particle has a position and a velocity. The PSO formulae, 
as shown in (1) and (2) define each particle as a potential 
solution in a multi-dimensional search space. The dimension of 
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the PSO corresponds to the bits or the tuple-size of each tuple. 
As the tuples are “n” bits, so the PSO will be n dimensional 
with the i-th particle represented as Xi=(Xi1,Xi2,..Xin). The PSO 
remembers the best position found by any particle which is 
known as global best, denoted by Pg. Additionally each particle 
remembers its own previously best found position designated 
as Pi=(Pi1,Pi2,…Pin) and its velocity Vi= (Vi1,Vi2,…Vin). Equation 
(1) and (2) will define the velocity and position of the i-th 
particle with d-th dimension [15]. 

Search in PSO starts with the random initialisation of 
particles’ positions and velocities within the allowed range 
defined by Xmax, Xmin, Vmax and Vmin. Usually Vmin is the negative 
of Vmax. Each particle keeps track of its own performance. At 
each iteration, the velocity of every dimension of a particle gets 
updated according to (1), where Vi,d, Pi,d and Pgd constitute the 
particle’s momentum. As this momentum is different for 
different dimension of a particle, this has effect to force the 
particle to change the trajectory in the search space towards the 
most promising areas. This momentum is essential, as it is the 
feature of PSO that allows particles to escape the local optima. 
In addition the ran1 and ran2 in (1) adds some random 
adjustments in velocities, which is essential to avoid the 
situation where the particle endlessly follows the exact same 
path. Constants 1ψ and 2ψ in (1) determine the relative 
influence of the “individuality” and “sociality” [15] traits of the 
particles and are usually both set the same to give each 
component equal weight as the individual and social learning 
rate.     

A.  Nearest Neighbour Interactions in PSO 
Particle swarm optimisation like any other stochastic 

algorithm may prematurely converge [16]. Fast rate of 
information flow between particles can create similar particles 
resulting in less diversity in the system., which increases the 
possibility of being trapped in local optima [16]. Although, in 
general, PSO results good solutions, in high–dimensional 
spaces it might stumble on local minima. It may be argued that 
many of the particles are wasting computational effort in 
seeking to move in the same direction (towards the local 
optimum already discovered), whereas better results may be 
obtained if various particles explore other possible search 
directions. An alternative way to battle premature convergence 
in PSO is to consider neighbourhood interactions in PSO 
dynamics. A significant modification in particle dynamics is 
required to introduce the effects of multiple other particles in 
each particle. Peram et al. [18] proposed a method where each 
particle is moved towards other nearby particles with a more 
successful search history, instead of just the best position 
discovered so far. This is in addition to the terms in the original 
PSO update equation (1). The proposed algorithm is described 
as Fitness-Distance-Ratio [18] based PSO (FDR-PSO) which 
selects only one other particle when updating each velocity 
dimension and which is chosen to satisfy two following 
criteria:  

• It must be near the particle being updated.  

• It should have visited a position of higher fitness.  

In FDR-PSO each velocity dimension is updated by 
selecting a particle that maximizes the ratio of the fitness 
difference to the one-dimensional distance. In other words, the 
d-th dimension of the i-th particle’s velocity is updated using a 
particle called the Pfdr, with prior best position Pb, chosen to 
maximize the following ratio: 

   FDR (b,i,d) =
dibd
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where b i and |...| denotes the absolute value. A new term 
was introduced into the velocity update equation with a new 
coefficient ‘ 3ψ ’ and a new stochastic weight factor ‘ran3’.
Like in the original PSO ‘ran3’ can be uniformly distributed in 
{0,1} or can have a constant value of 1. Note that the FDR-
PSO with 3ψ =0 is the same as the usual PSO algorithm 
described by [15]. The modified velocity equation for FDR-
PSO is presented below: 
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 Like other stochastic search algorithms, PSO is also very 
much problem dependent. No single parameter setting exists 
which can be applied to all problems [16]. For example 
choosing a value for the inertia weight, ω  in (1), could be 
critical. A large inertia weight favours exploration (global 
search), while a small inertia weight favours local search [22]. 

IV. GENETIC ALGORITHM ON N-TUPLES

The Genetic Algorithm introduced by Holland [12] is an 
adaptive search strategy based on a highly abstract model of 
biological evolution to find an optimal solution in a given 
problem space.  It consists of a population of individuals, 
representing possible solutions, which evolve through 
interaction and adaptation. The individual is represented as a 
‘chromosome’. For an n-tuple network each chromosome 
corresponds to each input map. If each map points to “n”
locations of the input matrix then the chromosome will be 
formed with these n location-values called “genes” [12]. While 
GA is applied to the n-tuple network, a population of individual 
input maps is initialised and then evolved from generation t to 
generation t + 1 by repeated applications of fitness evaluation, 
selection, recombination and mutation. Any map that has a 
fitness value greater than a threshold was considered as a fit 
map or tuple. The fitter a member of a population the more 
likely it is to produce an offspring. The partner selection 
strategy followed for this research was as simple as choosing 
the top two, three or four input-maps with high fitness values as 
the parent chromosomes (Table I). This selection process is 
known as ‘elitism’, which requires that the current fittest 
member (or members) of the population is not deleted and 
survives to the next generation [25]. Genetically-inspired 
operators like crossover and mutation are used to introduce 
new individuals into the population [12]. For the experiments 
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presented in this paper while implementing crossover, genes to 
offspring was copied from parent’s chromosomes.  One of the 
g-th (g = 1,..,n, where n is the chromosome length used for the 
n-tuple network) genes of the parents was selected randomly to 
be the g-th gene of the child. This is known as uniform 
scanning crossover.  Eiben et al. [9] introduced gene scanning 
as a reproduction mechanism that generalizes classical 
crossovers like uniform crossover and is applicable to an 
arbitrary number (two or more) of parents. Mutation was 
realised by replacing a gene of the new offspring with a 
randomly selected location-value from the input matrix. Large 
mutation rates with elitist selection turned out to be remarkably 
superior to that of traditional GA to obtain the global optimum 
solution effectively [23].  Mutation rates used by Garcia and 
Souto [10] in three different topologies of n-tuple networks 
were 95%, 60% and 75%. A variable mutation rate would 
theoretically make use of a high rate to speed up evolution until 
a certain “fitness level” is achieved, and then reduce mutation 
in order to increase the average fitness and produce a more 
balanced population [11]. Mutation rates used for GA in this 
work are listed in Table I. For one parent chromosome only 
mutation (asexual crossover) was used with very high mutation 
rate of 87.5%.  Mutation rates were reduced from 87.5% to 
50% as more parent chromosomes were found. Reduction in 
values of mutation rates also enables to find the global optima 
by performing local search using good solutions obtained so far 
[23]. 

TABLE I. GA OPERATORS

No. of fit tuples 
or connection 

maps  

Parameters   
No. of parent 
chromosome  

Crossover 
probability  Mutation rates  

1 1 1 87.5% 

2 2 0.5 75% 

3 3 0.33 62.5% 

4 3 0.33 62.5% 

5 or more  4 0.25 50% 

V. HYBRIDISATION OF GA AND PSO 
Hybridisation was achieved by switching between the GA 

and PSO at key stages of the search [29]. Individuals starting 
out as PSO particles, then switching to GA individuals, then 
back to particles and so on.  The algorithm starts with the Q
particles, where Q is the total number of particles (population 
size) in any iteration and they are initially distributed randomly 
over the whole pattern matrix. The unique strategy in the 
search algorithm was to reserve more tuples to a more critical 
class group [3]. The classes with high error rates were termed 
as critical classes. By using more class-specific tuples for a 
critical class the search algorithm would allow more time to be 
given to find features for a critical class. The target is to find R
number of class-specific tuples in total. To calculate the 
number of class-specific tuples for a class at first the error rate 
of that class was divided by the total error rate and then the 
result of the division was multiplied with the total available 
tuples (R). The result of the multiplication was rounded to the 
nearest integer. No normalisation was used in the calculation of 

class-specific tuples. Providing more tuples to a class with a 
high error rate ensures that the extra care has been taken for a 
critical class group. Tuples engaged to a specific class best 
learn the features of that class and also learn some features for 
other classes to an extent [4].  

Fitness of each particle is measured according to a reward 
and punishment based scheme [3], where a reward is associated 
with the correct recognition of the pattern and the penalties for 
misclassification and rejection. Based on fitness results each 
particle’s best positional values are updated. ‘Pi,d’ defines the 
location along the dimension d of the best positional value of 
each particle in the history. So ‘Pi,d’s represent best positions of 
all particles so far. Fitness of all Pi,d particles are compared 
with a fitness threshold described by (5), where ( )( )tOmax jii

 is 

the score of the best-performed tuple among all the tuples in the 
current iteration. 

( )( ) ( )( )texptOmaxThreshold jii
/1 τ−−×=

Fitness threshold exponentially decays over iterations 
according to the above equation, whereτ  should be carefully 
chosen and varied throughout the search as a trade-off between 
the performance and the speed. A solution falling within the 
threshold distance of a specified value would be considered as 
an acceptable solution. It was found in the experiments that 
dropping the value of τ  during unproductive iterations can 
substantially increase the speed of the search. In any iteration 
when PSO couldn’t find any new solution then the search 
algorithm was switched to GA. The best-performed tuples for 
PSO were selected as parents to produce offspring in the next 
generation.  GA and PSO used the same fitness and threshold 
functions (5) for evaluating maps.  If in any generation GA 
couldn’t find any new fit tuples then the algorithm was 
switched back to PSO. So GA and PSO together were 
searching for the required number of class-specific tuples (R).
During search the new particles for the PSO were found by 
updating the particles’ velocities and positions, according to (4) 
and (2). For GA genetic operators like mutation and crossover 
are applied to create new tuples.  While switching form GA to 
PSO particles velocities were initialised with the value of the 
minimum velocity. 

VI. EXPERIMENTAL RESULTS

Experiments were conducted to search for an optimal set of 
input connections maps by the hybrid GA and PSO algorithm. 
The network was built out of 150 tuples (R) with tuple-size 8. 
Due to n=8 the dimensionality of the hybrid PSO algorithm 
was 8. The available tuples were distributed among classes 
according to the difficulty associated in recognizing the 
patterns [3]. The task was to use hybrid GA-PSO algorithms to 
selectively choose tuples (as opposed to hill-climbing [3] and 
random selection [6]) that describe the classes better and later 
use these tuples to recognize a test data set. The NIST [28] 
database consists of handwritten digits (0,1…9) was used in the 
experiments. NIST released Special Database 3 (SD3) in 
February 1992 as the official training materials for the First 
Census Optical Character Recognition (OCR) Conference [28]. 
There are several partitions, denoted by hsf_{0,1,2,3}, in SD3 
containing digits, upper and lowercase character images. The 

               (5) 
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writers of the SD3 partitions were Census Bureau field 
personnel stationed throughout the United States. A separate 
partition of images, denoted by hsf_{4}, was released as the 
testing materials for the OCR conference and it was named as 
Special Database 7 (SD7). Writers of SD7 were high school 
students in Bethesda, Maryland. In our experiment the partition 
hsf_{0} of SD3 was used for training and the partition hsf_{4}
from the SD7 was used for testing. NIST recommends using 
images of hsf_{4} for testing as they are more difficult from 
other partitions and this ensures the heterogeneity between the 
training and testing set, a fact which is reflected in our results.  
There are 1000 images of each class in the training data set and 
half of those images were used to evaluate the solutions during 
the search. Each character used in the experiment was a binary 
image with the dimension 32 by 32.  All digits were scaled into 
same dimension and centred.  

To compare results, the N-tuple network was trained with 
various methods. The overall recognition rates, the average of 
all recognition rates of all classes, were found in the 
experiments. Initially an empirical value of 100 was chosen for 
τ  (5) in all experiments, which provided enough time to run 
the search for exploring solutions. A high value of 100 for τ
resulted in a slowly convergent system. It was found that 
dropping the value of τ  during unproductive iterations could 
substantially increase the speed of search.  In the experiment a 
5% drop in the value of τ  from 100 provided around four 
times quicker results with no noticeable difference in the 
performance. Selecting the right population size, Q, was crucial 
in terms of speed and performance. If the hybrid GA and PSO 
stops after a fixed number of iterations, a choice has to be 
made: either choosing a larger population or having more 
iterations [27]. For the experiment the termination criteria was 
not based on iterations. The goal was to find a fixed number of 
tuples whose fitness values were higher than a threshold value 
defined by (5). Thus the proposed algorithm can stop at any 
iteration as soon as it finds the required number of class-
specific tuples. Now for an 8 dimensional problem (n=8) to 
have more possibility that the swarm can pass over the entire 
input vector of 1024 bits even in a few iterations a suitable 
population size would be 200. The cognitive ( 1ψ ) and social 
( 2ψ ) parameters are not critical for PSO’s convergence. 
Typically both 1ψ and 2ψ  are set to a value of 2 [8], although 
assigning different values sometimes leads to improved 
performance [24]. In our experiment both values were set to 1. 
Setting the values to 2 made no noticeable difference. The 
value of 3ψ  in (4) was set to 2 as FDR-PSO 
( 1ψ = 2ψ =1, 3ψ =2) outperformed original PSO and several 
other variations of PSO in different tested benchmark problems 
[18]. Experimental settings for GA were described in Section 4. 
For PSO the inertia parameter, ω , can be decremented with 
the number of iterations from 0.7 to 0.4 as in [16]. In our 
approach as the PSO can terminate at any iteration, the inertia 
parameter was chosen to be a constant value of 0.7. The value 
of Vmax proved to be crucial, because large values could result 
in particles moving past good solutions and create excessive 
crowding or bumping around the best fit particle. In the 
experiments the Vmax of 2 was observed to be a good value to 
fine tune the entire search space with 200 particles. 

TABLE II. RESULTS OF T-TEST FOR  THE HYBRID GA-PSO 

2nd Algorithm 
Statistical Values  

t-value  p-value  

Random Selection [6] 12.30 1.00 

Hill-climbing type [3] 3.51 0.99 

Genetic Algorithm  2.19 0.97 

PSO ( 1ψ =1, 2ψ =1, Vmax=2) -1.83 0.04 

Figure 2. Box plot of training algorithms 

 The hybrid GA and PSO based search exhibited 3.68% 
higher recognition rate when compared to a conventionally 
trained n-tuple network [6]. The improvement by the hybrid 
algorithm over a hill-climbing type approach [3] and GA  were 
0.93% and 0.44% respectively. Statistical significance of the 
results was analysed by the student’s t-test [7]. The hybrid GA-
PSO was compared against other algorithms. The null 
hypothesis for the test was “average recognition rate by the 
hybrid GA-PSO is higher than a second algorithm”. For 10 
trials of each algorithm the degrees of freedom [7] was 18. In 
the test, a t-value was calculated from the experimental results 
and compared against the theoretical t-values at different 
confidence levels [7] and 18 degrees of freedom. Theoretical t-
values for 90%, 95%, 99% and 99.9% confidence level and 18 
degrees of freedom were 1.73, 2.10, 2.88, and 3.92. The t-
values found in the experiment against the null hypothesis are 
presented in Table II. Results show that the increases in 
recognition rates by the hybrid GA-PSO algorithm over 
conventional random selection and hill-climbing type approach 
[3] are statistically “very highly significant” [7] because the 
experimental t-values for these cases were greater than the 
theoretical t-value (3.92) at 18 degrees of freedom. The 
observed t-value against the original GA was 2.19 (greater than 
2.10) and this implies that the improved results by the hybrid 
algorithm over the GA alone were statistically significant at 
95% confidence level. The t-value against the original PSO is 
negative in the table, which means that the null hypothesis 
should be rejected and rather the alternative is true. The p-
values in the table indicate the probability of observing the 
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result by chance given that the null hypothesis is true. Small 
values of probabilities cast doubt on the validity of the null 
hypothesis. 

Fig. 2 displays the side-by-side box plots [26] of the results 
found in the experiment. Each box in the figure was 
constructed with the recognition rates of ten trials. The box plot 
conveys location and variation information in data sets, 
particularly for detecting and illustrating location and variation 
changes between different data groups of algorithms. The 
notches in Fig. 2 are drawn about the median so that notches 
that don’t overlap represent significant differences between 
medians (with 95% confidence). It can be noted that the 
recognition rates by conventional random approach were 
clustered at the bottom of the plot whereas data for PSO were 
clustered at the very top. The median of recognition rates for 
the hybrid algorithm was just below 85%, for PSO at 85%, for 
the hill-climbing type [3] was just below 84%, for GA was just 
above 84% and for randomly selected approach was near 81%.  
Box plots also show if there are unusual observations (outliers) 
in the dataset. Outliers are individually identified with a plus 
symbol in Fig. 2. where a single unusual observation for the 
random selection was observed.  

VII. CONCLUSION

This paper described how GA and PSO could be combined 
and applied to optimise an n-tuple network for recognizing 
binary handwritten characters from the NIST database. Results 
found by the hybrid method showed that the improvement over 
original GA, Hill climber and conventional randomly selected 
approach [6] was statistically significant. But the hybridisation 
of GA and PSO couldn’t outperform the performance of the 
original PSO approach. It was clear that by using the hybrid 
approach the connectivity pattern is rearranged in such a way 
that the more relevant features of the input patterns in the 
training set, for each class, tend to have more connections to 
the nodes in the group of tuples specific to that class, leading to 
an improvement of the performance of n-tuple classifiers.    
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