
Efficient Optimized Composition of

Semantic Web Services

Rattikorn Hewett, Bach Nguyen and Phongphun Kijsanayothin

Department of Computer Science, Texas Tech University

Rattikorn.Hewett@ttu.edu, Bach.Nguyen@ttu.edu, kphongph@gmail.com

Abstract— Advances in Internet and software technology

play increasing roles in creating work environments and online

services that impact our everyday living. Web service computing

paradigm has revolutionized how these software applications can

be developed rapidly and reliably by employing available serv-

ices available in standard forms across the web. Automatic com-

position of web services is necessary and challenging when there

are a huge growing number of available web services but no

single service offers the desired function. This paper presents an

approach to automatically combining published web services to

meet the application requirements using as few services as possi-

ble. Our approach is based on heuristic algorithms that incorpo-

rate semantics of services from their ontology into identifying

valid executable services in the composition structure. The paper

describes the approach and evaluates its performance on public

service repositories. Our experimental results show correct op-

timized solutions 100% of the time, with a reduction in the aver-

age running time, compared to champion of Web service chal-

lenge’06 competition, of 60.2% over 31 composition problems.

Keywords: semantic web services, automatic service compo-

sition, service-oriented computing, ontology, heuristic search.

I. INTRODUCTION

Advances in Internet and software technology play in-

creasing roles in creating work environments and online serv-

ices that impact our everyday living. It is no longer necessary

to go to bookstores to buy books or to visit banks to complete

certain transactions. Many types of services can be obtained

any time and anywhere that are networked accessible across

the Internet. Modern enterprises rely on software to conduct

business or perform day-to-day operations. Web service

computing paradigm has revolutionized how developers can

rapidly and reliably create these service-oriented software

applications by employing available web services. The term

web services (or services) refer to self-contained platform

independent software units prescribed by standard machine-

readable specifications and protocols to support interoperable

services for distributed applications across the Web [4, 6].

When there is a huge growing number of available web

services that no single service can offer the desired function,

automatic composition of web services becomes necessary

and challenging. Current approaches to automatic web serv-

ice composition in the literature (see [1, 4, 6, 7] for surveys)

often include service discovery techniques for selecting ap-

propriate services and integrating them into a composite serv-

ice structure that has been pre-specified [7]. In syntactic

composition, syntactical languages such as BPEL and WS-

CDL are used to specify interfaces and process flows of com-

bined services, while semantic composition relies on DAMLS

(ServiceModel), for specifying semantics of service processes

along with service ontology languages (e.g., OWL-S and

WSMO) for guiding inferences in planning systems (e.g.,

Golog, HTN) [3, 6]. However, most of these approaches re-

quire manually written templates of composite structures. No

assembling of complex flows from atomic service message

exchanges is automatically derived from a search process [7].

Other automated approaches to web service composition are

based on formal methods including logical inductions and

model checking for deriving composition paths [4]. However,

they tend to be very complex and computationally expensive.

Furthermore, service compositions based on rules, or logical

planners [3, 4, 7, 8] often rely on representational models that

may be suitable for planning problems but unnecessarily

complex for service composition problems.

This paper addresses the issue of semantic web service

composition, specifically how to efficiently and automatically

construct a valid executable composition (sequence) of pub-

lished services to satisfy the application requirements with

minimal number of services. Our approach is based on an

effective modeling approach and two heuristic algorithms that

incorporate semantics of services from their ontology into

identifying valid executable services in the composition struc-

ture. The rest of the paper is organized as follows. Section II

describes related work including champion of Web service

challenge’06 competition [10] system by Weise et al. [9],

which we use in our comparison study. Section III defines the

problem and introduces our modeling approach. Section IV

presents our composition approach along with its complexity

analysis and Section V illustrates its use for solving service

composition problems. Section VI empirically evaluates the

approach by comparing our results with those obtained by

Weise et al.’s system. The paper concludes in Section VII.

II. RELATED WORK

Several automated approaches to semantic service compo-

sition have been proposed [3, 5-9, 11, 12]. Most use back-

ward search control, like in planning systems, and indexing

mechanisms to improve efficiency. The optimization of the
number of services deployed in a composition has been stud-
ied using graph-based [9] and planning-based [5] approaches.

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4165

Weise et al. [9], champion of WS-challenge06 competition,
employ three alternatives: iterative deepening depth first
search, greedy search, and genetic algorithms. The greedy
search usually outperforms the rest. Weise et al.’s greedy
algorithm searches in a backward fashion using a heuristic
that prefers a service that produces a maximum number of
parameters for a current goal, which is updated (for the next
move) to include the input parameters required by the selected
service. Our approach, however, searches forwardly. It pre-
fers a service that produces the highest number of (1) new
desired parameters, and (2) new parameters when results from
(1) are the same.

Oh et al. [5] extend WSPR, a planning-based web service
composition to handle semantic service composition. WSPR
uses forward and backward search and a heuristic-based re-
gression search that prefers a web service with a large cover-
age set of the desired output parameters. The overall per-
formance is dominated by the forward search step that, for a

repository of n services and m parameters, takes O(n2m), a
polynomial time of a higher degree than that of our approach.
Hoffman et al. [2] propose a forward search approach that

takes polynomial time reasoning for semantic service compo-

sition (not necessary optimal). However, the analysis as-

sumes that discovery to be a pre-process step. Unlike [2], our

polynomial time complexity does not require this assumption.

Furthermore, we aim to optimize the composition.

III. PROBLEM FORMULATION AND MODELING APPROACH

A. The Optimized Semantic Service Composition Problem

Given a service repository W over a set of parameters P,

where each web service w � W, is described by its corre-

sponding set of input (output) parameters in(w) (out(w)) � P.

Let KB be a knowledge base containing an ontology in a web

service domain. In a context of web service composition, the

ontology typically represents models of type and part-whole

hierarchies of service parameters and relevant concepts at

various abstraction levels. Thus, KB, over a set of parameters

P, describes the semantic of parameters in P.

Suppose we want to develop a composite web service C

with a set of input (output) parameter requirements I (O) � P.

Given a service repository W and an ontology knowledge base

KB, over a set of parameters P, an optimized semantic web

service composition problem for a composite service C is to

find an executable sequence of web services from W that

takes I to produce O with a minimal number of services.

Such an executable sequence is obtained by exploiting infor-

mation from the web service ontology in KB.

Figure 1. Example of an ontology KB.

To see the impact of the ontology, consider a trivial serv-

ice composition problem for a composite service C specified

by I = {address type} and O = {name, street, zip} for a given

W = {w | in(w) = {USaddress}, out(w) = {address, zip}} and a

KB as shown in Figure 1. The ontology allows us to infer that

address type can be a US address making w applicable for I of

C. Furthermore, we can also infer that address consists of

name and street and therefore, O of C can be satisfied. With-

out the ontology, the development of service C would have

been viewed as unsuccessful.

B. Service Composition Modeling Approach

We propose a state space search model where a state repre-

sents a set of callable parameters of the composite service

application developed so far along with their related concepts

obtained by service ontology. Each transition from one state

to another represents an applicable web service to be de-

ployed in the service composition. In other words, the model

consists of a set of states S with an initial state s0 � S, a set of

goal states, G � S, and a set of actions (or moves) W repre-

senting web services available in a repository. We define p(s)

� P to be a set of callable parameters in state s. Thus, p(s0) =

I and G = {s � S | O � p(s)}.

To exploit service semantics, for a given set of concepts A

in a service ontology KB, we define infer-semantics(A) to be a

set of inferred concepts of A. For example, for a KB in Fig-

ure 1, infer-semantics({US address, European address}) pro-

duces {address, zip, name, street}. Thus, infer-semantics

includes all successors of a given set of concepts, some of

which are service parameters. As in a typical interpretation, a

part-whole (type) hierarchy exhibits a logical AND (OR) of

all inferred concepts.

A web service w is applicable to state s, if in(w) � p(s).

This is called syntactic matching. Similarly, for semantic

matching, we replace p(s) by p(s) � infer-semantics(p(s)). A

transition �: S � W � S moves one state to another by apply-

ing an applicable appropriate service action. Note that if �(s,

w) = t then p(t) = p(s) � out(w). In general, p(s) collects all

callable parameters along all possible paths from s0 to s. Thus,

p(s) exhibits a monotone (non-decreasing) property. This

property also holds for semantic matching (i.e., p(s) � infer-

semantics(p(s))) and in dynamic composition (where deter-

mining applicable services are checked from dynamically

updated service repository) when published web service

changes do not retract old parameters. In Section C of Part IV,

we will show that the monotone property is crucial to the effi-

ciency of our proposed approach.

IV. AUTOMATIC SEMANTIC SERVICE COMPOSITION

Our approach to automatically constructing a valid execu-

table web service composition structure consists of two basic

steps: (1) finding an executable sequence of web service ap-

plications that satisfy a given composite service requirements,

and (2) pruning unnecessary web services in the sequence

obtained in Step (1) so that it has (near) minimal number of

services. Step (1) is based on Build-sequence, a greedy search

algorithm, as described in Section A. For Step (2), to obtain a

(near) minimal sequence of service composition, we propose

US address

address zip

name street

address type

US address European address

has-part

can-be

4166

the Prune-sequence algorithm as described in Section B. Sec-

tion C gives complexity analysis of the proposed algorithms.

A. Constructing Service Composition

Basic steps of the Build-sequence algorithm are shown in

Figure 2. In Line 2, the search starts from an initial state that

represents an initial set of callable parameters from a given set

of required input parameters I of a composite service to be

developed along with corresponding elaborated concepts de-

rived from the service ontology. To advance to each next

state, build-sequence employs heuristic to select an appropri-

ate applicable service to apply to a current state. In particular,

as indicated in Lines 6-8, it prefers a service that produces the

highest number of new parameters. In Line 9, if there is no

applicable service that produces a higher number of new pa-

rameters, the application of such applicable services would

not lead to a new state. Thus, search halts with no solution

found. Otherwise, after the appropriate service is selected, a

set of callable parameters and their associated semantic

concepts are updated for a new state as shown in Line 11.

The search continues until either a goal state is reached in that

a given set of the desired output parameters of a composite

service O can be obtained or we exhaust all service options

and no solution for the semantic service composition problem

can be found.

Figure 2. The Build-sequence algorithm.

We further refine the heuristic so that Build-sequence pre-
fers a service that produces the highest number of (1) new
desired output parameters (not shown here), and (2) new pa-
rameters when results from (1) are the same.

To improve performance of the algorithm, note that be-

cause of the monotone property of parameters and related

concepts representing each state along the sequence of execu-

table services, services that are applicable to a current state

must also be applicable to the following states in the se-

quence. Thus, checking for the applicability of previously

applicable services can be omitted and we can save time on

Line 6 of Figure 2. Finally, for inference on the ontology, we

implement a hash table to retrieve children of each concept in

the ontology in a way that no table lookup is repeated. Infer-

semantics recursively retrieves all successors of each concept.

Since each table lookup takes a constant time for each con-

cept, infer-semantics of a set of concepts in the ontology of m

concepts takes O(m) time.

B. Optimized Composition

The goal in this step is to eliminate unnecessary services in

seq = <w1, w2, …., wk> , which was obtained in Step (1),

where �(si �1, w i) = si for i = 1, … , k, p(s0) = I and sk � G, i.e.,

O � p(sk). It is clear that, for semantic composition, when web

service w produces (invokes) parameter x, i.e., x � out(w), x

and infer-semantics(x) are assumed to be callable parameters

in the next state. Thus, we can compute p(si) = p(si	1) �

out(wi) � infer-semantics(out(wi)) for i = 1, … , k. We refer to

any element of O as a desirable parameter.

Our pruning mechanism determines which web service in

the seq is necessary for the requirements in a bottom up fash-

ion. Suppose N is a collection of all necessary services found

from the bottom of the path seq so far. Conceptually, a web

service is necessary if it is the only service (among itself and

all services in N) that produces a new parameter that is either

(1) desirable or (2) a required input parameter of some service

in N such that the required input parameter cannot be pro-

duced by any service in N.

To check if web service wi that moves state si–1 to state si

on the seq path is necessary, we define (i) Ni, a set of all nec-

essary services applied to seq after wi, (ii) Oi, a set of desir-

able parameters produced by all services in Ni, and (iii) Ii, a

set of input parameters required by all services in Ni such that

they cannot be produced by any application of service in Ni in

the seq order. Both Oi and Ii are used for testing the above

condition (1) and (2), respectively, in order to determine if wi

is necessary or not. Figure 3 shows our proposed pruning

conditions are checked in Lines 9 and 11, respectively.

Note that a set of desirable parameters produced by all

service in Ni (necessary services wj for j > i) is equivalent to a

set of desirable parameters produced by all service in Ni+1 and

those that produced by wi+1 (and their inferred concepts),

therefore we obtain Line 4 of Figure 3. Similarly, the neces-

sary input parameters required by all services in Ni can be

obtained by first finding the necessary input parameters re-

Procedure Prune-sequence
Inputs: O, a set of output parameters for a composite service;

seq = < w1, w2, …., wk > obtained from Build-sequence
Output: seq containing only necessary services (defined above).

1

2
3
4

5
6
7

8
9
10

11
12
13

14

for i � k to 1
Ni � {wj | i < j
 k}; necessary services after applying wi

Ei � out(wi+1) � infer-semantics(out(wi+1));
Oi � Oi+1 � (O � Ei); desirable parameters created by services in Ni

Ii � (Ii+1 � Ei) � in(wi+1)
 ; input parameters required by all services in Ni such that
 ; none can be produced by (any service in) Ni in the seq order.

New � p(si) – p(si	1); a set of new parameters produced by wi

if New � (O – Oi) � � ; there is a new parameter that
; is desirable but cannot be produced by Ni

or New � Ii � � ; or that is a necessary input parameter for Ni

then wi is necessary
else Eliminate wi;

end for

Figure 3. The Prune-sequence algorithm.

Procedure Build-sequence
Inputs: A web service repository W, a service ontology KB, a set of input

(output) parameters I (O) of a composite service C
Output: An executable sequence of services seq that satisfies I and O

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

seq � nil;
Current � I � infer-semantics(I) ; current state represents a set of
;callable parameters and their related concepts derived from ontology
while W �� � do

max � 0
for each applicable service w to Current do; i.e., in(w) � Current

Neww � out(w) – Current
if |Neww| > max then max � |Neww|; service � w

if max = 0 then return nil; no service can lead to a new state
Append service to seq
Current � Current � Newservice � infer-semantics(Newservice)

 if O � Current then return seq
; goal state is reached since callable parameters in Current cover O

else W � W – {service}
return nil ;no sequence composition found

4167

quired by all services in Ni+1 that cannot be produced by wi+1

(and their inferred concepts) and then adding in(wi+1) as

shown in Line 5. By making use of the results in a previous

iteration, our approach provides an efficient pruning mecha-

nism.

Although the pruning concept is not new, correct design of

efficient pruning procedure can be subtle. For example, the

required input parameters Ii defined as {x � in(w) | w �

Ni} � {x � out(w) | w � Ni} would be erroneous because it did

not take the order of service applications into account.

C. Complexity Analysis

Let n be |W|, a number of web services in the repository,

and m be a total number of concepts in the service ontology

including parameters in the repository. To analyze the Build-

sequence algorithm, recall that the callable parameters of

states along any path in the state space search model exhibit a

monotone property. Thus, each application of a new service

to a state always yields a new state with a larger set of call-

able parameters (and corresponding inferred concepts). This

monotone property implies that there is no backtrack required

in the search since any applicable service to any previous state

on the same path is also applicable to the next following

states. Thus, the search can always move forward and Build-

sequence guarantees to find a solution if it exists. Further-

more, the maximum number of states generated and traversed

can be obtained from the longest possible (solution) path.

To determine the longest path generated by Build-

sequence, we first note that the path is of finite length since P

and W are finite and since a repetition of any service applica-

tion will not lead to a new state. Therefore, any valid service

composition sequence in our modeling approach contains no

more than all services in the repository. This gives an upper

bound of a valid service composite path length to be n. On

the other hand, any path from an initial state to any state in a

complete state space has length of at most m (see the longest

path from the top to the bottom element of a complete lattice

of m element set). From the above arguments, a valid se-

quence of our service composition problem has length at most

min(n, m). Since each state may be applicable to at most n

services, the maximum search space is n.(min(n, m) + 1) and

therefore, Build-sequence takes O(n.min(n, m) + m) time. The

additional O(m) time is contributed by infer-semantics as de-

scribed in Section A. For the Prune-sequence algorithm, as

shown in Figure 2, the for loop iterates at most k � min(n, m)

times and thus, the pruning step takes linear time, specifically

O(min(n, m)). Thus, an overall semantic service composition

has time complexity of O(nm) for a repository of n services

and a service ontology of m concepts.

V. AN ILLUSTRATION

Consider an online bookshop, where we want to develop a

book order service application that lets a customer sign on a

store account to find a purchase record including a tracking

number and cost of a specific book. In particular the applica-

tion has I/O specifications: I = {email, password, title, author}

and O = {orderID, trackingID, cost}. Instead of developing

this application from scratch, a developer decides to use web

services available on the Internet.

I = {email, password, title, author}, O = {orderID, trackingID, cost}
Web service w Input pars. in(w) Out pars. out(w)

w1: GetDiscountPrice ISBN, status discount cost
w2: FindBook title, author ISBN

w3: GetBookInfo ISBN title, author, year,
publisher, cost

w4: PurchaseBook authenticated, authorized, ISBN orderID
w5: GetUserId email userID
w6: Payment credit card, price, shipping fee authorized
w7: Authenticate userID, password authenticated

Figure 4. Service repository and service ontology.

Suppose a service repository of available services and

service ontology are given at the top and bottom part of Fig-

ure 4, respectively. For example, the Payment web service,

w6, authorizes a specific book purchase if a customer’s credit

card can cover the charge. As indicated at the bottom left part

of Figure 4, the ontology represents the fact that there are two

types of cost (i.e., regular and discount), each of which com-

bines the price of the book and its shipping fee. A hash table

of keys (e.g., discount cost, regular cost) where each has asso-

ciated concepts of its children is used to facilitate ontology

inferences. Note that some concepts in the ontology do not

appear in the repository (e.g., trackingID, billing address) and

vice versa (e.g., authorized). In this scenario, since there is no

single service in the repository that satisfies the composite

service I/O requirements, we apply the Build-sequence algo-

rithm to find appropriate executable combined services that

meet the required specifications.

Figure 5. Search valid composition sequence.

Figure 5 shows a partial search tree generated by Build-

sequence, where corresponding callable parameters and in-

ferred concepts of each state in the resulting sequence (using

variables shown in a box at the bottom right corner) are given

in a table on top right corner of Figure 5. For example, in the

s p(s) & Inferred concepts w: # new pars

s0 {e, pd, t, a}�� w2:1, w5:1
 s1 p(s0) �{b}�� w3:4, w5:1
s3 p(s1)�{t, a, y, pb, c}�{pr, sf} w5:1
s5 p(s3)�{u-id}�{e, ad, st, cc} w1:1,w6:1,w7:1
s6 p(s5)�{dc}�� w6:1, w7:1
s9 p(s6)�{ao}�� w7:1
s11 p(s9)�{ae}�� w4:1
s12 p(s11)�{o-id}�{ba,da,t-id,dd}

…

s0

s1

w2

s2

w5

s3

w3

s5

w5

s6

w1

s9

w6

s11

w7

s12

w4

w5

s4

s7

w6

s8

w7

s10

w7

…

… …

…

userID

address statusemail credit card

orderID

tracking
ID

billing
address

delivery
address

delivery
date

cost

priceshipping
fee

discount
cost

cost

regular
cost

has-partis-a

a (author), ad (address), ae (authenticated), ao (authorized),
b (ISBN), ba (billing address), c (cost), cc (credit card),
da (delivery address), dc (discount cost), dd (delivery date),
e (email), o-id (orderID), pb (publisher), pd (password),
pr (price), rc(regular cost), sf (shipping fee), st (status),
t (title), t-id (trackingID), u-id (userID), y (year)

4168

first row of the table, the search starts from an initial state s0

where its callable parameters are in I = {e, pd, t, a} and no

new additional concepts can be inferred from I from the given

ontology. Since in(w2) = {t, a}� I, w2 is applicable to s0 and

so is w5. These are the only applicable services to s0. Build-

sequence selects the first service found that produces new

parameters the most. This is indicated by a service in boldface

with a corresponding heuristic value after a colon. Here w2 is

selected with a new parameter b produced as shown in the

second row of the table. The process continues until a state

whose set of callable parameters covers O is found or no more

services can be considered. In this scenario, a sequence <w2,

w3, w5, w1, w6, w7, w4> is obtained. Next we apply the Prune-

sequence algorithm to filter out unnecessary services.

Figure 6. Pruning to minimize number of services to be deployed.

Figure 6 shows the results obtained by Prune-sequence.

As shown in Figure 3, recall that for a service application

level i, a service is necessary if its application results in a new

parameter that is (1) desirable but cannot be produced by

other following necessary services (i.e., in O but not Oi,) or

(2) a necessary input parameter for other following necessary

services (i.e., in Ii). Starting from the bottom service w4, since

N7 is empty then O7 = �. As shown in the second set (new

parameters) and last set (new inferred concepts) after the label

“s12:” in Figure 6, since w4 produces a new parameter o-id that

can infer another new parameter t-id, both of which satisfies

(1), thus w4 is necessary.

Next we check if w7 is necessary. Since w7 produces a new

parameter ae � I6, therefore (2) is satisfied and w7 is neces-

sary. Similarly, w6 is necessary because there is at least one

new parameter produced by w6, namely ao � I5. To check if

w1 is necessary, the only new parameter produced by w1 (see

the second set after the label “s6:”) is dc and no other new

parameters or concepts can be inferred (see the third set after

the label “s6:”). Since dc O � O4 and also dc I4, thus, w1

does not satisfy both (1) and (2), and therefore it is not neces-

sary. Similar process continues until we reach the first serv-

ice application in the sequence. The resulting minimal se-

quence obtained is < w2, w3, w5, w6, w7, w4>.

VI. EXPERIMENTS

Our analysis shows that the proposed approach is theoreti-

cally efficient. To further evaluate the approach, we conduct

experiments on public benchmark data that are used for 2006

Web Service Challenge competition [10]. We compare our

results with those obtained by Weise et al.’s approach [9],

which won a championship of EEE06 (IEEE International

Conference on e-Technology, e-Commerce and e-Service’ 06)

Web Service Challenge Competition [10]. Weise et al.’s
system (will be referred to as WS) for optimizing semantic
web composition is also available at [9].

We employ 10 service repository data sets, each of which

contains (1) service ontology in XML Schema format, (2) a

directory containing service descriptions, and (3) a test file

consisting of one or more service composition problems.

Each web service is described in WSDL and a composition

request is expressed in XML. As shown in Table I, each of

the Repositories 1-6 contains a single composition problem,

whereas Repository 7, 8, 9, and 11 contains four, eight, 10

and three problems, respectively. This gives a total of 31

composition test problems. We ran experiments with both

approaches on a PC with Core 2 Duo (1.67GHz), Window

Vista Home Premium and 3 GBs RAM.

Table I shows our experimental results, where the last two

columns (columns 7 and 8) compare the running times be-

tween our approach and WS. The better running times are in

boldface. The average result of each repository data set is

summarized in a shaded row below results of each of the

composition problems in the repository. As noted earlier, each

TABLE I. COMPARISONS WITH EEE06 CHAMPION.

Ours WS
Test #Serv. #Params. Before After %reduct. Time(ms) Time(ms)

1 1000 56210 5 5 0% 119 168
2 1000 56210 18 12 33% 1454 3100
3 10000 58254 16 10 38% 14224 55702
4 2000 58254 17 15 12% 3511 8546
5 4000 58254 35 30 14% 27668 22857
6 8000 58254 50 40 20% 81496 45432

7.1 118 1590 3 2 33% 3 22
7.2 118 1590 2 2 0% 2 90
7.3 118 1590 7 3 57% 5 14
7.4 118 1590 4 4 0% 6 13
7 118 1590 4 2.8 23% 4 34.8

8.1 480 15540 5 2 60% 19 21
8.2 480 15540 2 2 0% 7 22
8.3 480 15540 5 3 40% 17 15
8.4 480 15540 8 4 50% 36 14
8.5 480 15540 3 3 0% 14 22
8.6 480 15540 2 2 0% 9 14
8.8 480 15540 2 2 0% 6 18
8.9 480 15540 3 3 0% 10 19
8 480 15540 3.8 2.6 19% 14.8 18.1

9.1 978 979740 3 2 33% 15 23181
9.3 978 979740 6 3 50% 47 18998
9.4 978 979740 4 4 0% 34 22936
9.5 978 979740 3 3 0% 20 21444
9.6 978 979740 2 2 0% 13 16527
9.7 978 979740 4 4 0% 60 15596
9.9 978 979740 3 3 0% 22 16311
9.10 978 979740 4 4 0% 45 15626
9.11 978 979740 3 3 0% 25 16409
9.12 978 979740 6 4 33% 64 16234
9 978 979740 3.8 3.2 12% 34.4 18,326.2

11.1 4000 10890 11 8 27% 1161 3433
11.3 4000 10890 8 6 25% 548 2934
11.5 4000 10890 5 4 20% 154 2979
11 4000 10890 8.0 6.0 24% 621.2 3115.3

Avg 1680.4 332,457.6 8.0 6.3 18% 4,219.8 10,603

s0: {e, pd, t, a}� � Given O = {o-id, t-id, c}
… … …

s5: p(s3) �{u-id}�{e, ad, st, cc}
 N3 = {w4, w7, w6}
 O3 = {o-id, t-id} I3 = {b, u-id, cc, pr, sf}
s6: p(s5) � {dc}� �
 N4 = {w4, w7, w6}
 O4 = {o-id, t-id} I4 = {b, u-id, cc, pr, sf}
s9: p(s6) � {ao}� �
 N5 = {w4, w7}
 O5 = {o-id, t-id} I5 = {ao, b, u-id}
s11: p(s9) � {ae}� �
 N6 = {w4}
 O6 = {o-id, t-id} I6 = {ae, ao, b}
s12: p(s11) � {o-id}�{ba, da, t-id,dd}
 N7 = �
 O7 = � I7 = �

s5

…

w1

s6

w6

s9

w7

s11

w4

s12

s0

4169

of the first six repository data sets contains a single composi-

tion problem and therefore there is no result for other compo-

sition problems shown for these data sets. Columns 4 and 5

indicate the number of services in the service composition

solution obtained by Build-sequence and Prune-sequence,

respectively. Column 6 shows a percentage of reduction in

the number of services in the composition as a result of our

minimization by pruning.

On the average, our approach reduces the number of un-

necessary services by 23%, 19%, 12%, 24% in Repository 7,

8, 9 and 11, respectively. In general, our approach reduces

the number of unnecessary services by 18% on the overall

average over 31 composition problems. On correctness, our

approach produces a composition solution with correct num-

ber of minimal services for each problem in every repository

data (not shown here). Thus, its correctness is 100%.

On the running times, as indicated in the last row of Ta-

ble I, our approach significantly reduces the average running

time, compared to WS, by 60.2%. Our approach performs

better than WS 29 out of 31 test cases. On the other hand, for

the Repositories 5 and 6, WS only reduces the running times,

compared to ours, by an average of 37.4%. Since the most

time consuming step for our approach is finding applicable

services to a current state during the search for service com-

position solution in Build-sequence, our approach tends to

perform poorly when a solution depth is long. As shown in

Table I, composition solutions in Repositories 5 and 6 require

at least 30 and 40 services, which are significantly more than

other cases. Furthermore, most other approaches including

WS have implemented sophisticated frameworks and mecha-

nisms (e.g., indexing, caching) to improve performance effi-

ciency.

The most striking results are those obtained in Reposi-

tory 9, where our approach has dramatically gained speed up

in the running times in each composition problem by three

orders of magnitude. In this data set, our approach reduces

the average running time, compared to WS, by 99.8%. One

characteristic of this repository is an extremely large number

of parameters in the repository. We conjecture that the num-

ber of parameters (including concepts in the ontology) does

not negatively impact the running time as much as the number

of services. This is to be expected for semantic web service

composition. The results obtained in this data set support the

strength of our approach when semantic inferences are de-

manding. Considering the fact that WS is a champion of

EEE06 Web service challenge competition, our approach per-

forms very well.

VII. CONCLUSION

This paper presents a simple modeling approach together

with two efficient heuristic algorithms for developing a com-

posite web service application from a given service repository

and service ontology. The approach focuses on using knowl-

edge in the ontology to help construct the composition struc-

ture. It automatically searches for appropriate combination of

(near) minimum number of executable services to satisfy the

input and output requirements of the application to be devel-

oped. We describe complexity analysis of our approach and

experiments to evaluate the approach in practice. Our empiri-

cal results on the majority of public benchmark data sets out-

perform those obtained by a champion of EEE06 Web service

challenge competition despite the fact that no sophisticated

efficiency mechanism has been exploited.

Current inference mechanism for semantic composition is

simple in that it deals with inheritance and specification of

part-whole relationships. In general, it is desirable to enable

aggregation of part-whole relationships. This would increase

possible options for valid construction that can enhance

composition of semantic web services. Future work includes

(1) enhancement of this inference capability, (2) improvement

of some efficiency mechanisms as used in other systems, and

(3) incorporation of quality of service factors including non-

functional features such as security into the selection of ap-

propriate web services during the service composition.

REFERENCES

[1] M. Beek, A. Bucchiarone and S. Gnesi, “Web Service Compo-
sition Approaches: From Industrial Standards to Formal Methods”,
in Proc. of Conf. on Internet and Web App. and Services (ICIW’07),
IEEE Com. Soc. Press, Mauritius, 2007.

[2] J. Hoffmann, J. Scicluna, T. Kaczmarek, I. Weber, "Polyno-
mial-Time Reasoning for Semantic Web Service Composition," in
Procs. of IEEE Inter. Conf. on Services, pp.229-236, 2007

[3] S. McIlraith, T. Son, "Adapting Golog for Composition of Se-
mantic Web Services," in Procs. of IEEE Inter. Conf. on Knowledge
Representation and Reasoning KR'02, pp. 482-493, 2002.

[4] N. Milanovic, and M. Malek, “Current solutions for Web Serv-
ice Composition”, Internet Computing, IEEE Computer Society
Press, 8(6): 51-59, 2004.

[5] S. Oh, J. Yoo, H. Kil, D. Lee, and S. Kumara, “Semantic Web
Sevice Discovery and Composition Using Flexible Parameter Match-
ing” in Proc. of IEEE Joint Conf. CEC/EEE, pp. 533-542, 2007.

[6] J. Rao and X. Su, “A Survey of Automated Web Service Com-
position Methods”, in Workshop on Semantic Web Services and Web
Process Composition, Springer-Verlag, pp. 43-54, 2004.

[7] B. Srivastava and J. Koehler, “Web Service Composition - Cur-
rent Solutions and Open Problems”, ICAPS 2003 Workshop on
Planning for Web Services, 2003.

[8] S. G. H. Tabatabaei, W. M. N. W. Kadir, S. Ibrahim, "Semantic
Web Service Discovery and Composition Based on AI Planning and
Web Service Modeling Ontology," in Procs. of IEEE Inter. Conf. on
Services Computing APSCC'08, pp.397-403, 2008.

[9] T. Weise, S. Bleul, D. Comes, K. Geihs, "Different Approaches
to Semantic Web Service Composition," in Procs. of IEEE Inter.
Conf. on Internet and Web App. and Services, pp. 90-96, 2008 (soft-
ware: http://www.it-weise.de/documents/files/BWG2007WSC_software._
zip, available 2009).

[10] WS-Challenge 06, http://ws-challenge.georgetown.edu/ws-challenge/
wsc06/, available 2009.

[11] R. Zhang, I. Arpinar and B. Aleman-Meza, “Automatic Compo-
sition of Semantic Web Services,” in Proc. of Inter. Conf. on Web
Services, ICWS '03, Las Vegas, Nevada, pp. 38-41, 2003.

[12] Y. Zhang, T. Yu, K. Raman, and K. Lin, “Strategies for effi-
cient syntactical and semantic web service discovery and composi-
tion”, in Proc. of IEEE Joint Conf. CEC/EEE, pp. 452-454, 2007.

4170

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

