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Abstract—The kind of bidding languages used in 
combinatorial auctions contributes to various aspects of 
computational complexities. General bidding languages use 
bundles of distinct items as atomic propositions associated with 
logical connectives.  When applying these languages to auction-
based scheduling, the scheduling timeline needs to be discretized 
into fixed time units. We show that this discretization approach is 
computationally expensive in terms of valuation, communication, 
and winner determination. We present a requirement-based 
bidding language designed for auction-based scheduling. In the 
language, bids are specified as the requirements of scheduling a 
set of jobs, and prices are attached to the job completion times. 
Without timeline discretization, this language allows the 
expression of scheduling valuation functions in a natural and 
concise way, such that valuation and communication complexities 
are reduced. In addition, it results in efficient winner 
determination problem models. We have compared the winner 
determination models formulated using the two types of 
languages in terms of solving speed and scalability. Experimental 
results show that the requirement-based language model exhibits 
superior performance. 

I. INTRODUCTION

In many combinatorial auctions (CAs), the goods to be sold 
are the processing times of resources, e.g. landing timeslots of 
airport runways [8], machine processing times of a factory 
[13], computation and network accessing times of internet 
resources [1], and the right to use railroad tracks for a period of 
time [7]. In this class of CAs, agents have jobs that need to be 
completed during specific time windows and they compete 
with each other for the resources to schedule their own jobs 
according to their respective objectives. We may refer this type 
of CA as auction-based scheduling.  

As in other CAs, agents’ valuations in auction-based 
scheduling often exhibit complementarities. For example, due 
to scheduling constraints, an agent may need to obtain a set of 
specific combinations of time periods on resources to process 
its jobs. The complementarities of agents’ valuations present 
particular challenges for the design of bidding languages in 
terms of expressiveness, conciseness, and naturalness. Logical 
languages have been proposed to address this challenge [6]. 
These languages (denoted by BL ) use bundles of items with 
associated prices as atomic propositions and combines them 
using logical connectives.  

BL  languages target CAs in general. However, they cannot 
be applied to scheduling problems directly because they are 
designed for auctioning discrete goods. In scheduling 
problems, processing time on resources exhibit continuity. In 
order to apply BL , the scheduling timeline of resources needs to 
be discretized into fixed time units and these units are treated as 
distinct items in BL [13] [3]. With timeline discretization, agents 
can express their time related scheduling requirements, such as 
release times, due dates, indirectly by attaching values to 
various time units combinations. It will be shown in Section III, 
that determining the value for a time unit’s combination could 
be a NP-hard optimization problem in certain auction-based 
scheduling settings. In addition, this timeline discretization 
approach can generate a large number of items to be sold in the 
auction if the time windows in question are not small.  For 
example, a one week time window on 10 resources can be 
discretized into more than 100,000 time units if the time 
accuracy we need is in minutes (which is a practical 
requirement in many scheduling domains). Generally speaking, 
in combinatorial auctions the number of bids is exponential in 
the number of the items to be sold. A large number of items can 
inflict heavy burdens on the auction in terms of bids evaluation, 
communication, and winner determination.  

An alternative to the timeline discretization approach is to 
design languages which allow agents to directly express their 
time requirements and the values associated. We refer to this 
type of language as requirement-based language (denoted by

RL ).  RL  languages enable agents to explicitly express their 
time-related requirements without specifying the values on the 
combinations of resource time units. For example, in a train 
scheduling auction setting [7], Parkes and Ungar designed a 
requirement-based language which allows train agents to 
specify the accessing and leaving time on a rail road track in 
their bids. Comparing with BL , RL  languages do not require 
agents to compute the values on the combinations of resource 
time units. However, this does not mean that the computation 
used to determine the values of time units’ combinations has 
been eliminated by using RL . Instead, it is migrated to the 
auctioneer’s winner determination (will be explained in detail 
in Section 3). How this migration approach will affect the 
computational complexity of auctioneer’s winner determination 
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is an important question that will be answered by the 
comparative study.  

This paper investigates the complexity issues of using BL
and RL  in auction-based scheduling. While we focus only on 
bidding languages, we assume agents’ strategic behavior and, 
therefore, auctions are a suitable mechanism for the scheduling 
problems. Kalagnanam and Parkes [2] reviewed four areas of 
computational constraints, which restrict the space of feasible 
combinatorial auction mechanisms, including, strategic 
complexity, communication complexity, valuation complexity 
and winner determination complexity. Since strategic 
complexity is not affected by languages [6], we study the other 
three in the context of auction-based scheduling. For valuation 
and communication complexities, we compare the two types of 
languages analytically; for the winner determination 
complexity, we compare them experimentally. Our main results 
are (1) in auction-based scheduling, RL  languages have 
reduced complexities in agents’ valuation and system’s 
communication; (2) although RL  languages migrate agents’ 
valuation complexity to the auctioneer’s winner determination, 
this type of language enables scheduling specific modeling 
techniques to be incorporated into the winner determination 
problem formulation, which results in a more efficient model 
than the traditional one formulated by BL  in terms of solving 
speed and scalability. 

The rest of the paper is organized as follows: Section II 
formulates the scheduling auction model and specifies the RL
language used in this paper; Sections III and IV, analyze the 
valuation and communication complexities of BL  and RL  and 
in Section V, we conduct a computational study to compare the 
performance of the winner determination problem models 
formulated using RL  and BL . We conclude the paper in Section 
VI. 

II. THE AUCTION FOR SCHEDULING PROBLEMS

Wellman et al. [13] modeled a factory scheduling problem 
as a CA problem. In the model, a factory conducts an auction 
for time slots on a single resource. Time slots are treated as 
distinct items that can be allocated for the production of 
customer orders. Each customer (modeled as an agent) has one 
single-operation job to be completed. An agent’s job is defined 
by its duration, its release time, its deadline, and the price the 
agent places on the job. To complete its job, the agent must 
acquire a number of slots no less than the length, within its 
feasible time window. In this paper, we expand the model from 
Wellman et al. to accommodate multiple resources and multi-
operational jobs. We use this general model as the base for 
comparing various types of complexities related to BL and RL .
We refer to this general model as the scheduling auction. 

The scheduling auction consists of a set of agents, denoted 
by N . Each agent g N∈ has a set of jobs gJ . Each job 

g
jJ J∈ requires the processing of a sequence of operations ,j ko

( )1,..., jk n= . An operation ,j ko  has a specified processing 

time ,j kp , and its execution requires the exclusive use of a 

designated resource for the duration of its processing. gJ is
constrained by a release time gr by which the jobs are available 
for processing, and a deadline gd by which all jobs must be 
completed. There are precedence constraints among the 
operations of a job And o precedence constraints among jobs. 
An allocation of all jobs in gJ , on the resources over time, 
form a schedule for agent g , denoted by gS . Let ( )max

gC S

denote the completion time of the last job in gS ( ( )max
gC S

,called the makespan of gS in machine scheduling). For each 
agent g N∈ , its value for a schedule gS is ( )g gv S . An agent 
prefers a schedule with a shorter makespan, that is, for two 
schedules gS and gS , if ( ) ( )max max

g gC S C S≤ ,

( ) ( )g g g gv S v S≥ . In the context of using BL , with a little 

abuse of notation, gS can also be seen as a set of time units 
allocated to agent g . The overall objective of the auction is to 
maximize the sum of all the agents’ values.  

Fig. 1 shows an example of the scheduling auction problem 
with three resources ( 1R , 2R , 3R ) and four jobs. Job1 has 3 
operations ( 1,1 1,2 1,3, ,O O O ); job 2 has 2 operations ( 2,1 2,2,O O ); 
job 3 has 3 operations ( 3,1 3,2 3,3, ,O O O ); job 4 has 2 operations (

4,1 4,2,O O ). The arcs (with solid lines) represent the precedence 
constraints between operations; and, arcs (with dotted line) link 
operations to their designated processing resources. 

The scheduling auction can be seen as a model of many real 
world scheduling problems. In manufacturing, for example, 
customers have jobs with different release times and deadline 
requirements to be processed in the factory. The factory tries to 
allocate the limited resources to the customers who value them 
the most. Similar scenarios can also be found in other domains 
such as transportation and grid computing. While there are 
many scheduling models and algorithms in classical scheduling 
theory, the scheduling auction modeled here assumes that 
agents are self-interested and they behave strategically. 

III. THE REQUIREMENT-BASED LANGUAGE

In the scheduling auction models, agents derive values 
based on the levels that their objectives have been satisfied.   In 

Figure 1. Example of the Scheduling Auction Model  

4519



1-4244-2384-2/08/$20.00 ©2009 IEEE       SMC 2009 

this section, we present a requirement-based bidding language
RL , in which the atomic propositions attach prices to 

requirements of processing jobs rather than bundles of items 
(as in BL ). The purpose here is to design a language that 
captures the intrinsic structure of the scheduling problem, such 
that agents’ valuations can be expressed naturally and concisely 
using the language.      

A. General Structure of Atomic Propositions in RL

As depicted in Fig. 2, an Atomic Proposition of RL consists 
of the Requirement of completing a set of Jobs according to a 
Performance requirement and the Price that the agent is willing 
to pay given the Performance requirement is satisfied. The 
Performance is defined by a Measure and its Level. Formally, 
an Atomic Proposition can be represented by a 4-tuple

, , , PrJobs Measure Level ice .

Jobs represent the set of jobs from an agent that needs to be 
processed. For each job, the associated operations, constraints 
over the operations, and eligibility constraints over resources 
need to be specified. The actual content language used to 
describe Jobs can be domain specific. We do not discuss it in 
this paper.  

Measure is a criterion based on which the quality of a 
schedule for Jobs is evaluated. Some typical criteria include 
total-production-time (makespan), mean flow-time, maximum 
tardiness, and weighted tardiness.  

Level is the value achieved by a schedule in terms of the 
objective function specified in the Measure. For example, if the 
Measure is makespan and the Level is 20, the semantic 
interpretation of the Performance is to require the jobs to be 
scheduled with a makespan no larger than 20. 

Price is the amount of money that the agent is willing to pay 
given that the Jobs are scheduled at a specific level based on 
the measure. For example, the Atomic Proposition 

, , 20, $100Jobs Makespan  means if the Jobs are scheduled to 
be completed with a makespan of 20, the agent is willing to pay 
$100.  

As the Performance (Measure and Level) can be defined by 
the job agents, the Atomic Proposition structure is general 
enough to capture job agents’ requirements regarding the 
processing of their jobs. However, for a specific application 
domain, it is normal that only a small portion of the measures is 
of importance to agents. For example, in eMarket 
environments, the common performance measure that a client 
will require is the delivery date of his/her order, which is the 
makespan in terms of scheduling. We will specify a type of RL ,
which uses makespan as the measure in the following 
subsection. 

B. The Completion Time-Based RL

The atomic proposition of the time-based RL consists of a 
requirement of scheduling a set of jobs, the completion time 
before which the jobs need to be completed, and the price that 
the agent is willing to pay given the completion time is  

Figure 2. Structure of Atomic Proposition in Requirement-Based Language 

satisfied. We refer this atomic proposition as CBid 
(Completion time-based bid). 

CBid is a 4-tuple max, , ,g gJ C lft p where gJ is a set that 

contains the descriptions of the jobs and constraints; max
gC

defines that the measure being used is makespan; lft is the 
latest finishing time and p is the price that the agent is willing 
to pay for max

gC lft≤ . CBids can also be connected by logical 
connectives. For example, if an agent is willing to pay $100 for 
the guarantee of completing its jobs before 4:00PM or $60 for 
completing its job before 6:00PM, it can express this valuation 
by submitting an XOR-CBid:

max max, , 4 : 00 ,$100 , , 6 : 00 ,$60g g g gJ C PM XOR J C PM .
Note that CBid requires an agent to reveal its true processing 
requirements (job descriptions). However, it does not require 
the agent to reveal its true valuation information ( lft and p ).
This is quite reasonable in many real world situations. For 
example, a customer may benefit from lying about the true 
value and due date of manufacturing a part, however, there is 
no need to lie about the processing requirements of the part 
because the part will eventually be processed based on the 
requirements. 

IV. VALUATION AND COMMUNICATION COMPLEXITIES

A. Valuation Complexity 
Valuation is usually costly when using BL  for auction-

based scheduling because agents need to solve a hard 
optimization problem in order to determine the value of a 
bundle. In this section, we analyze the computational 
complexity of agent valuation.  

We first define the value of a bundle in the BL  setting. Let 
gS be a schedule that contains jobs of agent g . For a bundle B

of time units, if gS B⊆ , we say gS is covered by B . In many 
cases, a bundle can cover several feasible schedules for an 
agent. We define the value of a bundle to an agent as the value 
of the best schedule (with the shortest makespan) the bundle 
covers. 

Definition 1: Let Γ be the set of schedules of agent g
covered by B . The valuation of agent g  on bundle B is set to 
be the value of the best schedule *

gS ∈ Γ , such that for any
gS ∈ Γ , ( ) ( )*

g g g gv S v S≥ .
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If we assume that, for any gS ∈ Γ , ( )g gv S  has been given 
to agent g , according to Definition 1, the valuation problem for 
a bundle of time units in the BL  model can be described as: 
given a set of jobs of an agent to be allocated to a bundle of 
time units of various resources, what is the shortest possible 
makespan that a feasible schedule can have?  Answering this 
question is equivalent to solving a job shop scheduling problem 
with availability constraints (JSPAC), which is NP-hard [5]. 
This proves:   

Proposition 1: In the scheduling auction model using BL , an 
agent’s valuation problem for a bundle of time units is NP-
hard. 

While agents’ valuation problems in BL  models are NP-
hard, they become trivial in RL  models. In RL  models, agents 
do not deal with bundles of time units. In other words, they do 
not spend their computational time on finding appropriate time 
units combinations on resources to schedule their job 
requirements. Instead, they just send their requirements (jobs 
and required completion times) and associated values as RL bids 
to the auctioneer. Since we have assumed that, for any gS ∈ Γ ,

( )g gv S  is a given, the task of finding the value for a schedule 

is trivial for agents using RL bids. Therefore, from the agents’ 
point of view, the RL  model has the advantage of avoiding the 
NP-hard problem of solving the JSPACs. However, this does 
not mean agents’ valuation complexity has been eliminated in 

RL models. In fact, this computational burden is shifted to the 
auctioneer’s winner determination because, in RL  WDP, the 
auctioneer has to determine the winning bids and, at the same 
time, schedule jobs on resources. This idea is illustrated in Fig.  
3.  

B. Communication Complexity 
The communication complexity of an auction considers the 

size of messages that must be sent between the agents and the 
auctioneer. A simple measure of the size of messages could be 
the number of bids needed to implement the outcome of an 
auction. In general CAs, the number of bids for an agent is
2 1m − , where m is the number of items to be sold. However, 
in the scheduling auction model, the number of feasible bids 
can be restricted by the scheduling constraints. Formally, 
consider an agent g  has a job jJ  with jn operations to be 
processed in a time window with release time gr and deadline

gd . Let g gW d r= − be the size of the time window, which is 
the number of time units between the release time and the 
deadline. For each operation ko (since we only consider one job 
for the time being, we drop the job subscript j to simplify the 
notations), a processing time kp is given. To schedule the set of 
operations inW , three constraints have to be satisfied:  

1 1 1k k k jS p S for k n− −+ ≤ < ≤   (1) 

1
gS r≥      (2) 

Figure 3. In auctions using requirement-based bidding languages, agents’ 
valuation complexity is migrated to the auctioneer’s winner determination. In 
addition to determining winning bids, the auctioneer needs to schedule jobs at 
the same time. 

j j

g
n nS d p≤ −     (3)  

Where kS is the starting time of ko .  The starting time of an 
operation could vary in different feasible schedules. By 
counting the number of all combinations of feasible starting 
times of operations, we can calculate the number of feasible 
schedules in a time window W by the following formula: 

1 2 2 3

1 2 1 1 1 1

... ...

0

... .. 1
n n nj j j

n n nj j j

W p p p W p p p W p

S S p S S p S− −

− − − − −

= = + = +

  (4) 

By relaxing constraint (1) and set 1 2 ... 1
jnp p p= = = , an 

upper bound of (4) can be obtained as ( )1 jn

jW n− + . Since an 
agent cab, at most, attach one value to a feasible schedule, the 
following proposition holds: 

Proposition 2 For an agent with one job jJ , the number of 

bids in W is bounded by ( )1 jn

jW n− + .

Although Proposition 2 shows that the number of BL bids 
that an agent needs to submit does not grow exponentially in
W , it still increases drastically when W increases. In real 
world applications, to maintain time accuracy, the time window 
size W cannot be too small, which often results in a large 
number of bids. If an agent has multiple jobs, the number of 
multi-job bids will grow even more quickly because of the 
combinations of single-job bids. 

In the RL model, a CBid represents the value that an agent 
has over the completion time of its jobs. Without loss of 
generality, we assume the completion times are of integer 
values. If an agent has a set of jobs gJ with a release time gr
and a deadline gd , the number of bids that the agent needs to 
submit is bounded by g gW d r= − . For any problem instance 
with operations’ processing times bigger than 2, in terms of the 

communication complexity, the BL upper bound ( )1 jn

jW n− +

is greater than the RL upper bound W .
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V. WINNER DETERMINATION COMPLEXITY

In this section we conduct a computational study to 
experimentally evaluate the complexities of winner 
determination problems formulated using BL  and RL . We use a 
commercial optimization package CPLEX 10.1 as the winner 
determination algorithm. For the BL winner determination 
problem formulation we use the one presented in [12]. For the 

RL  formulation we use that presented in [14].  

A. Experimental Setup 
Common combinatorial auction benchmarks distributions, 

such as those presented in [10], are designed for general CAs. 
They are not for scheduling problems. In [4] Leyton-Brown et 
al. presented a set of scheduling benchmark distributions 
generated, based on the factory scheduling economy from 
Wellman et al. [13]. These scheduling distributions are single-
resource, single-operation problems, which are special cases of 
our scheduling auction model. Sandholm et al. have reported in 
[11] that CPLEX 8.0 is slightly faster than CABOB on the set 
of single-resource, single-operations scheduling distributions. 
We design our scheduling test problems based on a suite of job 
shop CSP benchmark problems developed in [9].  While the 
job shop CSP benchmark problems are constraint satisfaction 
problems, we have added a price parameter P to construct the 
scheduling auction problem set. The price of job j  is 
randomly drawn from a uniform distribution on

( ),j jU Pdu du Pdu+ , where du is the average duration of all 
jobs, and jdu is the duration of job j . By considering different 
sizes of problems (determined by the number of jobs in a 
problem and number of operations in a job), a problem set was 
randomly generated. In these problems the number of 
operations ranges from 2 to 6; the number of jobs ranges from 
2 to 7; and, in each problem instance, the number of resources 
is equal to the number of operations.  

The experiments were conducted on a 2.8 GHz Pentium 
PC. For a problem instance, we first convert it to BL WDP and

RL WDP. Then we solve the two WDPs using CPLEX 10.1, 
respectively. Each point in each plot is the mean run time for 
10 problem instances with the same numbers of jobs and same 
numbers of operations in each instance.   

B. Experimental Results 
Since we intended to compare the performance of BL WDP 

and RL WDP in terms of solving speed and scalability, we 
present the experimental results from two perspectives: (1) 
given a fixed number of operations in the problems, how run 
times change when the number of jobs increases (Fig. 4); (2) 
given a fixed number of jobs, how run times change when the 
number of operations increases (Fig. 5).  

As shown in Fig. 4, for the first two groups of problems 
(operation number=2 and operation number=3), the running 
times of BL WDP and RL WDP are, initially, close. When the 
number of jobs increases, the differences increase quickly. For 
the rest of the two groups of problems (operation number=4 
and operation number=5), RL WDP is more than 10 times faster 

than BL WDP even at the size of 2 jobs. It is observed that, BL
WDP does not scale well. BL WDP can be 100 to 1000 times 
slower when the number of jobs reaches 7.  

Fig. 5 presents the results from a different angle. Again, we 
see that BL WDP does not scale well when the number of 
operations increases. On the contrary, the running times of RL
WDP are virtually unaffected when the number of operations 
increases from 2 to 5 in all four groups of problems. The 
scalability characteristics of RL WDP are further illustrated in 
Fig. 6 and Fig. 7. It is shown in Fig. 6 that the scalability RL
WDP remains good when the number of jobs is smaller than 5. 
When the number of jobs goes beyond 5, the scalability of RL
WDP decreases with a higher rate. Fig. 7 shows that RL WDP’s 
scale very well along the number of operations at all job 
number levels.  

VI. CONCLUSION

As bidding languages have an impact on various aspects of 
the computational complexities of an auction, the 
understanding of the complexity implications of various 
languages, in the context of the auction-based scheduling, is of 
practical interest in the design of auctions for scheduling 
problems. We have compared the general bidding languages 
and the requirement-based bidding languages in terms of their 
implications to the valuation, communication, and winner 
determination complexities in auction-based scheduling. We 
show that the requirement-based language provides concise, 
natural representations of agents’ valuations and reduces 
agents’ valuation complexity and system’s communication 
complexity. An interesting finding is, although the auctioneer 
has to solve winner determination and scheduling problems 
concurrently, when allowing the requirement-based bidding 
language, a RL WDP formulated by incorporating scheduling 
specific modeling techniques can be far more efficient than the 
standard BL WDP in terms of solving speed and scalability. 
This computational efficiency and reduced valuation and 
communication complexity makes the requirement-based 
bidding language a suitable choice for auction-based 
scheduling. 

Another key benefit that the requirement-based bidding 
languages can offer is that it preserves natural scheduling 
constraints in the WDP formulation, which enables the design 
of effective winner determination algorithms by leveraging the 
wealth of scheduling research in the past several decades. The 
general optimization package we have used in this paper has 
produced good results. It is reasonable to predict that the design 
of scheduling specific winner determined algorithms is a 
promising direction worth exploring.  
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Figure 4. Run times of BL WDP and RL  WDP over jobs 

Figure 5. Run times of BL WDP and RL  WDP over operations 

Figure 6. RL  WDP scalability over jobs 

Figure 7. RL  scalability over operations 
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