
978-1-4244-2794-9/09/$25.00 ©2009 IEEE

Bidding Languages for Auction-based Distributed
Scheduling

Chun Wang
Concordia Institute for Information
Systems Engineering, Concordia

University
Montreal, Canada

cwang@ciise.concordia.ca

Hamada H. Ghenniwa
Department of Electrical and

Computer Engineering, University of
Western Ontario
London, Canada

hghenniwa@eng.uwo.ca

 Weiming Shen
Centre for Computer-assisted

Construction Technologies, National
Research Council Canada

London, Canada
weiming.shen@nrc.gc.ca

Abstract—The kind of bidding languages used in
combinatorial auctions contributes to various aspects of
computational complexities. General bidding languages use
bundles of distinct items as atomic propositions associated with
logical connectives. When applying these languages to auction-
based scheduling, the scheduling timeline needs to be discretized
into fixed time units. We show that this discretization approach is
computationally expensive in terms of valuation, communication,
and winner determination. We present a requirement-based
bidding language designed for auction-based scheduling. In the
language, bids are specified as the requirements of scheduling a
set of jobs, and prices are attached to the job completion times.
Without timeline discretization, this language allows the
expression of scheduling valuation functions in a natural and
concise way, such that valuation and communication complexities
are reduced. In addition, it results in efficient winner
determination problem models. We have compared the winner
determination models formulated using the two types of
languages in terms of solving speed and scalability. Experimental
results show that the requirement-based language model exhibits
superior performance.

I. INTRODUCTION

In many combinatorial auctions (CAs), the goods to be sold
are the processing times of resources, e.g. landing timeslots of
airport runways [8], machine processing times of a factory
[13], computation and network accessing times of internet
resources [1], and the right to use railroad tracks for a period of
time [7]. In this class of CAs, agents have jobs that need to be
completed during specific time windows and they compete
with each other for the resources to schedule their own jobs
according to their respective objectives. We may refer this type
of CA as auction-based scheduling.

As in other CAs, agents’ valuations in auction-based
scheduling often exhibit complementarities. For example, due
to scheduling constraints, an agent may need to obtain a set of
specific combinations of time periods on resources to process
its jobs. The complementarities of agents’ valuations present
particular challenges for the design of bidding languages in
terms of expressiveness, conciseness, and naturalness. Logical
languages have been proposed to address this challenge [6].
These languages (denoted by BL) use bundles of items with
associated prices as atomic propositions and combines them
using logical connectives.

BL languages target CAs in general. However, they cannot
be applied to scheduling problems directly because they are
designed for auctioning discrete goods. In scheduling
problems, processing time on resources exhibit continuity. In
order to apply BL , the scheduling timeline of resources needs to
be discretized into fixed time units and these units are treated as
distinct items in BL [13] [3]. With timeline discretization, agents
can express their time related scheduling requirements, such as
release times, due dates, indirectly by attaching values to
various time units combinations. It will be shown in Section III,
that determining the value for a time unit’s combination could
be a NP-hard optimization problem in certain auction-based
scheduling settings. In addition, this timeline discretization
approach can generate a large number of items to be sold in the
auction if the time windows in question are not small. For
example, a one week time window on 10 resources can be
discretized into more than 100,000 time units if the time
accuracy we need is in minutes (which is a practical
requirement in many scheduling domains). Generally speaking,
in combinatorial auctions the number of bids is exponential in
the number of the items to be sold. A large number of items can
inflict heavy burdens on the auction in terms of bids evaluation,
communication, and winner determination.

An alternative to the timeline discretization approach is to
design languages which allow agents to directly express their
time requirements and the values associated. We refer to this
type of language as requirement-based language (denoted by

RL). RL languages enable agents to explicitly express their
time-related requirements without specifying the values on the
combinations of resource time units. For example, in a train
scheduling auction setting [7], Parkes and Ungar designed a
requirement-based language which allows train agents to
specify the accessing and leaving time on a rail road track in
their bids. Comparing with BL , RL languages do not require
agents to compute the values on the combinations of resource
time units. However, this does not mean that the computation
used to determine the values of time units’ combinations has
been eliminated by using RL . Instead, it is migrated to the
auctioneer’s winner determination (will be explained in detail
in Section 3). How this migration approach will affect the
computational complexity of auctioneer’s winner determination

Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics
San Antonio, TX, USA - October 2009

978-1-4244-2794-9/09/$25.00 ©2009 IEEE
4518

1-4244-2384-2/08/$20.00 ©2009 IEEE SMC 2009

is an important question that will be answered by the
comparative study.

This paper investigates the complexity issues of using BL
and RL in auction-based scheduling. While we focus only on
bidding languages, we assume agents’ strategic behavior and,
therefore, auctions are a suitable mechanism for the scheduling
problems. Kalagnanam and Parkes [2] reviewed four areas of
computational constraints, which restrict the space of feasible
combinatorial auction mechanisms, including, strategic
complexity, communication complexity, valuation complexity
and winner determination complexity. Since strategic
complexity is not affected by languages [6], we study the other
three in the context of auction-based scheduling. For valuation
and communication complexities, we compare the two types of
languages analytically; for the winner determination
complexity, we compare them experimentally. Our main results
are (1) in auction-based scheduling, RL languages have
reduced complexities in agents’ valuation and system’s
communication; (2) although RL languages migrate agents’
valuation complexity to the auctioneer’s winner determination,
this type of language enables scheduling specific modeling
techniques to be incorporated into the winner determination
problem formulation, which results in a more efficient model
than the traditional one formulated by BL in terms of solving
speed and scalability.

The rest of the paper is organized as follows: Section II
formulates the scheduling auction model and specifies the RL
language used in this paper; Sections III and IV, analyze the
valuation and communication complexities of BL and RL and
in Section V, we conduct a computational study to compare the
performance of the winner determination problem models
formulated using RL and BL . We conclude the paper in Section
VI.

II. THE AUCTION FOR SCHEDULING PROBLEMS

Wellman et al. [13] modeled a factory scheduling problem
as a CA problem. In the model, a factory conducts an auction
for time slots on a single resource. Time slots are treated as
distinct items that can be allocated for the production of
customer orders. Each customer (modeled as an agent) has one
single-operation job to be completed. An agent’s job is defined
by its duration, its release time, its deadline, and the price the
agent places on the job. To complete its job, the agent must
acquire a number of slots no less than the length, within its
feasible time window. In this paper, we expand the model from
Wellman et al. to accommodate multiple resources and multi-
operational jobs. We use this general model as the base for
comparing various types of complexities related to BL and RL .
We refer to this general model as the scheduling auction.

The scheduling auction consists of a set of agents, denoted
by N . Each agent g N∈ has a set of jobs gJ . Each job

g
jJ J∈ requires the processing of a sequence of operations ,j ko

()1,..., jk n= . An operation ,j ko has a specified processing

time ,j kp , and its execution requires the exclusive use of a

designated resource for the duration of its processing. gJ is
constrained by a release time gr by which the jobs are available
for processing, and a deadline gd by which all jobs must be
completed. There are precedence constraints among the
operations of a job And o precedence constraints among jobs.
An allocation of all jobs in gJ , on the resources over time,
form a schedule for agent g , denoted by gS . Let ()max

gC S

denote the completion time of the last job in gS (()max
gC S

,called the makespan of gS in machine scheduling). For each
agent g N∈ , its value for a schedule gS is ()g gv S . An agent
prefers a schedule with a shorter makespan, that is, for two
schedules gS and gS , if () ()max max

g gC S C S≤ ,

() ()g g g gv S v S≥ . In the context of using BL , with a little

abuse of notation, gS can also be seen as a set of time units
allocated to agent g . The overall objective of the auction is to
maximize the sum of all the agents’ values.

Fig. 1 shows an example of the scheduling auction problem
with three resources (1R , 2R , 3R) and four jobs. Job1 has 3
operations (1,1 1,2 1,3, ,O O O); job 2 has 2 operations (2,1 2,2,O O);
job 3 has 3 operations (3,1 3,2 3,3, ,O O O); job 4 has 2 operations (

4,1 4,2,O O). The arcs (with solid lines) represent the precedence
constraints between operations; and, arcs (with dotted line) link
operations to their designated processing resources.

The scheduling auction can be seen as a model of many real
world scheduling problems. In manufacturing, for example,
customers have jobs with different release times and deadline
requirements to be processed in the factory. The factory tries to
allocate the limited resources to the customers who value them
the most. Similar scenarios can also be found in other domains
such as transportation and grid computing. While there are
many scheduling models and algorithms in classical scheduling
theory, the scheduling auction modeled here assumes that
agents are self-interested and they behave strategically.

III. THE REQUIREMENT-BASED LANGUAGE

In the scheduling auction models, agents derive values
based on the levels that their objectives have been satisfied. In

Figure 1. Example of the Scheduling Auction Model

4519

1-4244-2384-2/08/$20.00 ©2009 IEEE SMC 2009

this section, we present a requirement-based bidding language
RL , in which the atomic propositions attach prices to

requirements of processing jobs rather than bundles of items
(as in BL). The purpose here is to design a language that
captures the intrinsic structure of the scheduling problem, such
that agents’ valuations can be expressed naturally and concisely
using the language.

A. General Structure of Atomic Propositions in RL

As depicted in Fig. 2, an Atomic Proposition of RL consists
of the Requirement of completing a set of Jobs according to a
Performance requirement and the Price that the agent is willing
to pay given the Performance requirement is satisfied. The
Performance is defined by a Measure and its Level. Formally,
an Atomic Proposition can be represented by a 4-tuple

, , , PrJobs Measure Level ice .

Jobs represent the set of jobs from an agent that needs to be
processed. For each job, the associated operations, constraints
over the operations, and eligibility constraints over resources
need to be specified. The actual content language used to
describe Jobs can be domain specific. We do not discuss it in
this paper.

Measure is a criterion based on which the quality of a
schedule for Jobs is evaluated. Some typical criteria include
total-production-time (makespan), mean flow-time, maximum
tardiness, and weighted tardiness.

Level is the value achieved by a schedule in terms of the
objective function specified in the Measure. For example, if the
Measure is makespan and the Level is 20, the semantic
interpretation of the Performance is to require the jobs to be
scheduled with a makespan no larger than 20.

Price is the amount of money that the agent is willing to pay
given that the Jobs are scheduled at a specific level based on
the measure. For example, the Atomic Proposition

, , 20, $100Jobs Makespan means if the Jobs are scheduled to
be completed with a makespan of 20, the agent is willing to pay
$100.

As the Performance (Measure and Level) can be defined by
the job agents, the Atomic Proposition structure is general
enough to capture job agents’ requirements regarding the
processing of their jobs. However, for a specific application
domain, it is normal that only a small portion of the measures is
of importance to agents. For example, in eMarket
environments, the common performance measure that a client
will require is the delivery date of his/her order, which is the
makespan in terms of scheduling. We will specify a type of RL ,
which uses makespan as the measure in the following
subsection.

B. The Completion Time-Based RL

The atomic proposition of the time-based RL consists of a
requirement of scheduling a set of jobs, the completion time
before which the jobs need to be completed, and the price that
the agent is willing to pay given the completion time is

Figure 2. Structure of Atomic Proposition in Requirement-Based Language

satisfied. We refer this atomic proposition as CBid
(Completion time-based bid).

CBid is a 4-tuple max, , ,g gJ C lft p where gJ is a set that

contains the descriptions of the jobs and constraints; max
gC

defines that the measure being used is makespan; lft is the
latest finishing time and p is the price that the agent is willing
to pay for max

gC lft≤ . CBids can also be connected by logical
connectives. For example, if an agent is willing to pay $100 for
the guarantee of completing its jobs before 4:00PM or $60 for
completing its job before 6:00PM, it can express this valuation
by submitting an XOR-CBid:

max max, , 4 : 00 ,$100 , , 6 : 00 ,$60g g g gJ C PM XOR J C PM .
Note that CBid requires an agent to reveal its true processing
requirements (job descriptions). However, it does not require
the agent to reveal its true valuation information (lft and p).
This is quite reasonable in many real world situations. For
example, a customer may benefit from lying about the true
value and due date of manufacturing a part, however, there is
no need to lie about the processing requirements of the part
because the part will eventually be processed based on the
requirements.

IV. VALUATION AND COMMUNICATION COMPLEXITIES

A. Valuation Complexity
Valuation is usually costly when using BL for auction-

based scheduling because agents need to solve a hard
optimization problem in order to determine the value of a
bundle. In this section, we analyze the computational
complexity of agent valuation.

We first define the value of a bundle in the BL setting. Let
gS be a schedule that contains jobs of agent g . For a bundle B

of time units, if gS B⊆ , we say gS is covered by B . In many
cases, a bundle can cover several feasible schedules for an
agent. We define the value of a bundle to an agent as the value
of the best schedule (with the shortest makespan) the bundle
covers.

Definition 1: Let Γ be the set of schedules of agent g
covered by B . The valuation of agent g on bundle B is set to
be the value of the best schedule *

gS ∈ Γ , such that for any
gS ∈ Γ , () ()*

g g g gv S v S≥ .

4520

1-4244-2384-2/08/$20.00 ©2009 IEEE SMC 2009

If we assume that, for any gS ∈ Γ , ()g gv S has been given
to agent g , according to Definition 1, the valuation problem for
a bundle of time units in the BL model can be described as:
given a set of jobs of an agent to be allocated to a bundle of
time units of various resources, what is the shortest possible
makespan that a feasible schedule can have? Answering this
question is equivalent to solving a job shop scheduling problem
with availability constraints (JSPAC), which is NP-hard [5].
This proves:

Proposition 1: In the scheduling auction model using BL , an
agent’s valuation problem for a bundle of time units is NP-
hard.

While agents’ valuation problems in BL models are NP-
hard, they become trivial in RL models. In RL models, agents
do not deal with bundles of time units. In other words, they do
not spend their computational time on finding appropriate time
units combinations on resources to schedule their job
requirements. Instead, they just send their requirements (jobs
and required completion times) and associated values as RL bids
to the auctioneer. Since we have assumed that, for any gS ∈ Γ ,

()g gv S is a given, the task of finding the value for a schedule

is trivial for agents using RL bids. Therefore, from the agents’
point of view, the RL model has the advantage of avoiding the
NP-hard problem of solving the JSPACs. However, this does
not mean agents’ valuation complexity has been eliminated in

RL models. In fact, this computational burden is shifted to the
auctioneer’s winner determination because, in RL WDP, the
auctioneer has to determine the winning bids and, at the same
time, schedule jobs on resources. This idea is illustrated in Fig.
3.

B. Communication Complexity
The communication complexity of an auction considers the

size of messages that must be sent between the agents and the
auctioneer. A simple measure of the size of messages could be
the number of bids needed to implement the outcome of an
auction. In general CAs, the number of bids for an agent is
2 1m − , where m is the number of items to be sold. However,
in the scheduling auction model, the number of feasible bids
can be restricted by the scheduling constraints. Formally,
consider an agent g has a job jJ with jn operations to be
processed in a time window with release time gr and deadline

gd . Let g gW d r= − be the size of the time window, which is
the number of time units between the release time and the
deadline. For each operation ko (since we only consider one job
for the time being, we drop the job subscript j to simplify the
notations), a processing time kp is given. To schedule the set of
operations inW , three constraints have to be satisfied:

1 1 1k k k jS p S for k n− −+ ≤ < ≤ (1)

1
gS r≥ (2)

Figure 3. In auctions using requirement-based bidding languages, agents’
valuation complexity is migrated to the auctioneer’s winner determination. In
addition to determining winning bids, the auctioneer needs to schedule jobs at
the same time.

j j

g
n nS d p≤ − (3)

Where kS is the starting time of ko . The starting time of an
operation could vary in different feasible schedules. By
counting the number of all combinations of feasible starting
times of operations, we can calculate the number of feasible
schedules in a time window W by the following formula:

1 2 2 3

1 2 1 1 1 1

... ...

0

... .. 1
n n nj j j

n n nj j j

W p p p W p p p W p

S S p S S p S− −

− − − − −

= = + = +

 (4)

By relaxing constraint (1) and set 1 2 ... 1
jnp p p= = = , an

upper bound of (4) can be obtained as ()1 jn

jW n− + . Since an
agent cab, at most, attach one value to a feasible schedule, the
following proposition holds:

Proposition 2 For an agent with one job jJ , the number of

bids in W is bounded by ()1 jn

jW n− + .

Although Proposition 2 shows that the number of BL bids
that an agent needs to submit does not grow exponentially in
W , it still increases drastically when W increases. In real
world applications, to maintain time accuracy, the time window
size W cannot be too small, which often results in a large
number of bids. If an agent has multiple jobs, the number of
multi-job bids will grow even more quickly because of the
combinations of single-job bids.

In the RL model, a CBid represents the value that an agent
has over the completion time of its jobs. Without loss of
generality, we assume the completion times are of integer
values. If an agent has a set of jobs gJ with a release time gr
and a deadline gd , the number of bids that the agent needs to
submit is bounded by g gW d r= − . For any problem instance
with operations’ processing times bigger than 2, in terms of the

communication complexity, the BL upper bound ()1 jn

jW n− +

is greater than the RL upper bound W .

4521

1-4244-2384-2/08/$20.00 ©2009 IEEE SMC 2009

V. WINNER DETERMINATION COMPLEXITY

In this section we conduct a computational study to
experimentally evaluate the complexities of winner
determination problems formulated using BL and RL . We use a
commercial optimization package CPLEX 10.1 as the winner
determination algorithm. For the BL winner determination
problem formulation we use the one presented in [12]. For the

RL formulation we use that presented in [14].

A. Experimental Setup
Common combinatorial auction benchmarks distributions,

such as those presented in [10], are designed for general CAs.
They are not for scheduling problems. In [4] Leyton-Brown et
al. presented a set of scheduling benchmark distributions
generated, based on the factory scheduling economy from
Wellman et al. [13]. These scheduling distributions are single-
resource, single-operation problems, which are special cases of
our scheduling auction model. Sandholm et al. have reported in
[11] that CPLEX 8.0 is slightly faster than CABOB on the set
of single-resource, single-operations scheduling distributions.
We design our scheduling test problems based on a suite of job
shop CSP benchmark problems developed in [9]. While the
job shop CSP benchmark problems are constraint satisfaction
problems, we have added a price parameter P to construct the
scheduling auction problem set. The price of job j is
randomly drawn from a uniform distribution on

(),j jU Pdu du Pdu+ , where du is the average duration of all
jobs, and jdu is the duration of job j . By considering different
sizes of problems (determined by the number of jobs in a
problem and number of operations in a job), a problem set was
randomly generated. In these problems the number of
operations ranges from 2 to 6; the number of jobs ranges from
2 to 7; and, in each problem instance, the number of resources
is equal to the number of operations.

The experiments were conducted on a 2.8 GHz Pentium
PC. For a problem instance, we first convert it to BL WDP and

RL WDP. Then we solve the two WDPs using CPLEX 10.1,
respectively. Each point in each plot is the mean run time for
10 problem instances with the same numbers of jobs and same
numbers of operations in each instance.

B. Experimental Results
Since we intended to compare the performance of BL WDP

and RL WDP in terms of solving speed and scalability, we
present the experimental results from two perspectives: (1)
given a fixed number of operations in the problems, how run
times change when the number of jobs increases (Fig. 4); (2)
given a fixed number of jobs, how run times change when the
number of operations increases (Fig. 5).

As shown in Fig. 4, for the first two groups of problems
(operation number=2 and operation number=3), the running
times of BL WDP and RL WDP are, initially, close. When the
number of jobs increases, the differences increase quickly. For
the rest of the two groups of problems (operation number=4
and operation number=5), RL WDP is more than 10 times faster

than BL WDP even at the size of 2 jobs. It is observed that, BL
WDP does not scale well. BL WDP can be 100 to 1000 times
slower when the number of jobs reaches 7.

Fig. 5 presents the results from a different angle. Again, we
see that BL WDP does not scale well when the number of
operations increases. On the contrary, the running times of RL
WDP are virtually unaffected when the number of operations
increases from 2 to 5 in all four groups of problems. The
scalability characteristics of RL WDP are further illustrated in
Fig. 6 and Fig. 7. It is shown in Fig. 6 that the scalability RL
WDP remains good when the number of jobs is smaller than 5.
When the number of jobs goes beyond 5, the scalability of RL
WDP decreases with a higher rate. Fig. 7 shows that RL WDP’s
scale very well along the number of operations at all job
number levels.

VI. CONCLUSION

As bidding languages have an impact on various aspects of
the computational complexities of an auction, the
understanding of the complexity implications of various
languages, in the context of the auction-based scheduling, is of
practical interest in the design of auctions for scheduling
problems. We have compared the general bidding languages
and the requirement-based bidding languages in terms of their
implications to the valuation, communication, and winner
determination complexities in auction-based scheduling. We
show that the requirement-based language provides concise,
natural representations of agents’ valuations and reduces
agents’ valuation complexity and system’s communication
complexity. An interesting finding is, although the auctioneer
has to solve winner determination and scheduling problems
concurrently, when allowing the requirement-based bidding
language, a RL WDP formulated by incorporating scheduling
specific modeling techniques can be far more efficient than the
standard BL WDP in terms of solving speed and scalability.
This computational efficiency and reduced valuation and
communication complexity makes the requirement-based
bidding language a suitable choice for auction-based
scheduling.

Another key benefit that the requirement-based bidding
languages can offer is that it preserves natural scheduling
constraints in the WDP formulation, which enables the design
of effective winner determination algorithms by leveraging the
wealth of scheduling research in the past several decades. The
general optimization package we have used in this paper has
produced good results. It is reasonable to predict that the design
of scheduling specific winner determined algorithms is a
promising direction worth exploring.

4522

1-4244-2384-2/08/$20.00 ©2009 IEEE SMC 2009

0.1

1

10

100

2 3 4 5 6 7
Number of jobs

Ti
m

e
(s

)

Op# = 2

Op# = 3
Op# = 4

Op# = 5

Operation number= 2

0.1

1

10

100

2 3 4 5 6 7

Number of jobs

Ti
m

e
(s

)

LR
LB

Operation Number=3

0.1
1

10
100

1000
10000

2 3 4 5 6 7
Number of jobs

Ti
m

e
(s

)

LR

LB

Operation Number=4

0.1
1

10
100

1000
10000

2 3 4 5 6 7
Number of jobs

Ti
m

e
(s

)

LR
LB

Operation number=5

0.1

10

1000

2 3 4 5 6 7
Number of jobs

Ti
m

e
(s

)
LR

LB

Operation number= 2

0.1

1

10

100

2 3 4 5 6 7

Number of jobs

Ti
m

e
(s

)

LR
LB

Operation Number=3

0.1
1

10
100

1000
10000

2 3 4 5 6 7
Number of jobs

Ti
m

e
(s

)

LR

LB

Operation Number=4

0.1
1

10
100

1000
10000

2 3 4 5 6 7
Number of jobs

Ti
m

e
(s

)

LR
LB

Operation number=5

0.1

10

1000

2 3 4 5 6 7
Number of jobs

Ti
m

e
(s

)
LR

LB

Job number=2

0.1

1

10

2 3 4 5 6

Number of operations

Ti
m

e(
s)

LR
LB

Job number=3

0.1
1

10
100

1000
10000

2 3 4 5 6

Number of operations

Ti
m

e
(s

) LR
LB

Job number=4

0.1
1

10
100

1000
10000

2 3 4 5
Number of operations

Ti
m

e
(s

)

LR
LB

Job number=5

0.1
1

10
100

1000
10000

2 3 4 5
Number of operations

Ti
m

e
(s

) LR
LB

Job number=2

0.1

1

10

2 3 4 5 6

Number of operations

Ti
m

e(
s)

LR
LB

Job number=3

0.1
1

10
100

1000
10000

2 3 4 5 6

Number of operations

Ti
m

e
(s

) LR
LB

Job number=4

0.1
1

10
100

1000
10000

2 3 4 5
Number of operations

Ti
m

e
(s

)

LR
LB

Job number=5

0.1
1

10
100

1000
10000

2 3 4 5
Number of operations

Ti
m

e
(s

) LR
LB

0.1

1

10

100

2 3 4 5

Ti
m

e
(s

)

Job# = 2
Job# = 3

Job# = 4
Job# = 5

Job# = 6
Job# = 7

Figure 4. Run times of BL WDP and RL WDP over jobs

Figure 5. Run times of BL WDP and RL WDP over operations

Figure 6. RL WDP scalability over jobs

Figure 7. RL scalability over operations

REFERENCES

[1] Buyya, R., “Economic Paradigm for Distributed Resource Management
and Scheduling for Service Oriented Grid Computing,” Ph. D thesis,
Monash University, April 12, 2002

[2] Kalagnanam, J. and D. C. Parkes, 2004, Auctions, bidding and exchange
design, David Simchi-Levi, S. David Wu, and Z. Max Shen (Eds.)
Handbook of Quantitative Supply Chain Analysis: Modeling in the E-
Business Era, Kluwer Academic Publishers.

[3] Kutanoglu, E., Wu, S. D. On combinatorial auction and Lagrangean
relaxation for distributed resource scheduling. IIE Trans., 31, 9 (Sept.
1999), 813-826.

[4] Leyton-Brown, K., Pearson, M., Shoham, Y. Towards a universal test
suite for combinatorial auction algorithms. In Proc. ACM Conf.
Electronic Commerce (ACM-EC), Minneapolis, MN. ACM, New York,
2000, 66–76.

[5] Mauguière, P., Billaut, J., and Bouquard, J. 2005. New Single Machine
and Job-Shop Scheduling Problems with Availability Constraints. J. of
Scheduling 8, 3, pp.211-231.

[6] Nisan, N., 2006. Bidding languages for combinatorial auctions.
Combinatorial Auctions, Cramton, Shoham, and Steinberg, eds., MIT
Press.

[7] Parkes, D. C. and Ungar, L. An Auction-Based Method for
Decentralized Train Scheduling. In Proceedings of 5th International
Conference on Autonomous Agents (AGENTS-01), Montreal, Quebec,
Canada, 2001, 43-50.

[8] Rassenti, S. J., Smith V. L., and Bulfin, R. L. A Combinatorial Auction
Mechanism for Airport Time Slot Allocation. Bell Journal of
Economics, vol. 13, no. 2, pp. 402-417, 1982.

[9] Sadeh, N., and Fox, M., Variable and value ordering heuristics for the
job shop scheduling constraint satisfaction problem. Artificial
Intelligence, 86, 1996, 1-41.

[10] Sandholm, T. Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135, 2002, 1-54.

[11] Sandholm, T., Suri, S., Gilpin, A. and Levine, D. CABOB: A Fast
Optimal Algorithm for Winner Determination in Combinatorial
Auctions. Management Science, 51, 3, 2005, 374-390.

[12] de Vries, S., Vohra, R.V. Combinatorial Auctions: A Survey. INFORMS
journal on Computing, 15, 3, 2003, 284-309.

[13] Wellman, M. P., Walsh, E., Wurman, P. R., and MacKie-Mason, J. K.
Auction Protocols for Decentralized Scheduling. Games and Economic
Behavior, 35(1-2), 2001, 271-303.

[14] Wang, C., Ghenniwa, H., Shen, W., "Constraint-Based Winner
Determination for Auction-Based Scheduling," IEEE Transactions on
Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 39,
No. 3, pp. 609-618, 2009.

4523

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

