2009 IEEE International Conference on
Systems, Man, and Cybernetics |
![]() |
Abstract
Particle swarm optimization (PSO) is known to suffer from stagnation once particles have prematurely converged to any particular region of the search space. The proposed regrouping PSO (RegPSO) avoids the stagnation problem by automatically triggering swarm regrouping when premature convergence is detected. This mechanism liberates particles from sub-optimal solutions and enables continued progress toward the true global minimum. Particles are regrouped within a range on each dimension proportional to the degree of uncertainty implied by the maximum deviation of any particle from the globally best position. This is a computationally simple yet effective addition to the computationally simple PSO algorithm. Experimental results show that the proposed RegPSO successfully reduces each popular benchmark tested to its approximate global minimum.