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Abstract— A major issue in model-free reinforcement learning
is how to efficiently exploit the data collected by an exploration
strategy. This is especially important in case of continuous, high
dimensional state spaces, since it is impossible to explore such
spaces exhaustively. A simple but promising approach is to fix
the number of state transitions which are sampled from the
underlying markov decision process. For several kernel-based
learning algorithms there exist convergence proofs and notable
empirical results, if a fixed set of transition instances is used. In
this article, we will analyze how function approximators similar
to the CMAC-architecture can be combined with this idea. We
will show both analytically and empirically the potential power
of the CMAC architecture combined with an offline version of
Q-learning.

I. INTRODUCTION

Given a markov decision process (T, S, U, P, r)1, many
model-free reinforcement learning algorithms suffer from find-
ing an appropriate data structure to store the Q-function
Q : S × U → R. For discrete and finite state spaces, the Q-
learning algorithm ( [1], [2]) is able to perfectly learn the Q-
function only with a lookup-table. In this article, we consider
the known problem of scaling Q-learning to continuous state
spaces. Since we assume that no prior knowledge concerning
the model (system dynamics) is available, the problem of
learning the Q-function is twofold. First, an exploration pro-
cedure must collect examples of possible state transitions and
their corresponding rewards. Then, a function approximator
can be used to derive the Q-function from these examples.
This work concentrates on two aspects of this procedure.

1) Since we want to learn a Q-function in reasonable time,
every exploration strategy will necessarily leave out
large parts of the continuous state space. An important
question is therefore how to make efficient use of a small
set of sampled state transitions

2) Powerful function approximators can help to compensate
the problem of less data by generalization techniques.
Unfortunately, many of these approximators are not able
to preserve convergence of the Q-learning algorithm.
Thus, it is necessary to search for approximator schemes
for which convergence can be shown either analytically
or at least empirically

The basic idea of this work is to combine the CMAC
function approximator with the fitted Q iteration algorithm

1Timesteps (T), states (S), actions (U), probabilities (P), reward function
(r).

from [3]. The first problem of the enumeration above is
addressed by the design of the fitted Q iteration algorithm.
We propose two variants of the CMAC-architecture to solve
the second problem. In the rest of the paper, we will first
present an extension to the fitted Q iteration algorithm and then
discuss important issues of combining function approximators
with this algorithm. We will also present empirical evidence
for typical reinforcement learning benchmarks.

II. FITTED Q ITERATION AND RELATED WORK

Before approximating a Q-function, the fitted Q iteration
algorithm employs a pure random exploration to sample tran-
sition instances. State transitions are represented by four tuples
(st, ut, rt, st+1) with st, st+1 ∈ S, ut ∈ U and rt = r(st, ut).
After a certain number of transition instances is stored, the
set of four tuples is kept fixed and the actual inference of
the Q-function starts. The inference procedure consists of
several iterations of computing new approximations of the Q-
function. As shown in Fig. 1, we extended the fitted Q iteration
algorithm by interleaving the inference procedure with an ε-
greedy exploration strategy. The original fitted Q iteration
algorithm can be viewed as a special case of this algorithm by
setting ε = 0 and stopping the algorithm after the first iteration
of the main loop. The ε-greedy strategy enables us to apply
the fitted Q iteration algorithm on problems for which only
very long sequences of state transitions lead to a goal state. In
such a setting, pure random exploration would visit the goal
state only very few times.

The power of the fitted Q iteration algorithm comes from
its modularity. Since all updates are done offline2, approximat-
ing the Q-function can be viewed as a separate, supervised
learning problem. The question arises if there are function
approximators especially suited for offline updating.

In [4], a special class of approximators called averagers
is discussed. An averager builds a weighted sum of known
output values from the training patterns to approximate an
unknown output value. Since the sum of weights is always
equal to one, averagers can be regarded as special kernel-based
methods. The proposed algorithm, fitted value iteration, uses
offline updating and is shown to converge for all approximators
belonging to the averager class. Fitted value iteration is similar

2The term ”offline” refers to the strict separation of sampling transition
instances and updating the Q-function
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Initialization
• N := 0, choose discount rate 0 < γ < 1
• Set of four tuples F := ∅
• ∀s ∈ S, u ∈ U : Q̂0(s, u) := 0

Main Loop
Exploration
If |F| ≤ maxInstances

• Sample a set Fnew of four tuples
(sl

t, u
l
t, r

l
t, s

l
t+1), l = 1, ..., |Fnew| by

an ε-greedy exploration strategy and the
current approximation of the Q-function
Q̂N .

• F ← F ∪ Fnew

Inference Loop
M := 0
While M not exceeds a certain threshold

• N ← N + 1,M ← M + 1
• Build a set of training patterns from F

T F := {(xl, yl), l = 1, ..., |F|}
– Inputs:

xl := (sl
t, u

l
t)

– Outputs:
yl := rl

t + γ maxu∈U Q̂N−1(sl
t+1, u)

• Use a supervised learning method to in-
duce an approximation Q̂N of the Q-
function from the set of training patterns
T F .

End of Inference Loop
End of Main Loop

Fig. 1. Fitted Q Iteration with ε-greedy exploration. After the number of
stored state transitions exceeds the threshold maxInstances, the main loop
is executed until the sequence of Q-functions converges.

to fitted Q iteration, except that the probability model and the
reward function are assumed to be given in advance. Thus,
it suffices to approximate the value function instead of the
Q-function.

In [5], a similar approach to averagers is presented by aggre-
gating states into clusters. A Q-learning variant is developed,
which averages all rewards from states belonging to the same
cluster.

In [6], both an algorithm and theoretical results for using
kernels with model-free reinforcement learning are provided.
Again, the proposed method approximates a Q-function by
making offline updates on a previously sampled set of state
transitions. In contrast to averagers as used in [4], the class of
kernels considered in this article is exclusively designed for
continuous state spaces, including gaussian kernels and every
other function Φ : [0, 1] → R

+ satisfying the normalizing
condition

∫ 1

0
Φ(x)dx = 1. Beside the guaranteed convergence

of the algorithm, the authors can show that the approximations
will converge to the actual (optimal) Q-function, if the number
of sampled state transitions grows to infinity and a bandwidth
parameter is adjusted properly. Intuitively, the bandwidth con-

trols the shape of the neighborhood of a kernel, much like the
standard deviation of a gaussian process. To achieve this result,
all sampled transition instances are assumed to be statistically
independent. This may be a limitation for real learning tasks,
since state transitions are typically collected while following
a certain trajectory.

The fitted Q iteration algorithm as presented in [3], uses
ensembles of regression trees to approximate the Q-function.
These ensembles create partitions of the input space (S × U )
with constant output value for all elements of the partition.
Since this procedure can also be formulated as a kernel-based
method, the authors were able to prove convergence of the
fitted Q iteration algorithm. A major difference to the work
in [6] is that the algorithm scales to continuous action spaces
and that a single kernel is used for all actions.

Unfortunately, for many popular function approximators
different from kernel-based methods, it turns out to be difficult
to prove convergence of Q-learning variants. In spite of this
fact, there is much evidence that a variety of those approxima-
tors can be successfully applied to model-free reinforcement
learning. For example, in [7], neural networks are used with
offline updating to learn a Q-function. The LSPI algorithm
from [8] also employs the idea of separating the sampling
(exploration) phase from actually computing a policy. Indeed,
Q-functions are only computed with respect to a fixed policy,
because LSPI is a variant of approximate policy iteration.
The approximator used in LSPI is an extension of the LSTD
algorithm [9] which is a technique from linear regression.
Instead of performing gradient descent, as it is typically done
for CMACs, a solution is computed by solving a system of
linear equations in the least square sense.

The power of the CMAC function approximator for rein-
forcement learning problems has already been demonstrated
in combination with the sarsa(λ) algorithm ( [10], [11]). The
sarsa(λ) algorithm is similar to Q-learning in the sense that
both algorithms learn a state-action value function. The major
difference between sarsa(λ) and Q-learning is that sarsa(λ) is
an on-policy method and includes eligibility traces. Although
there is no proof of convergence for sarsa(λ) using a CMAC
approximator, convergence could be shown empirically [10].

We believe that it is worth studying the CMAC-architecture
in combination with offline updates of a Q-function as it is
implemented in the fitted Q iteration algorithm. The training
of the CMAC approximator consists of a (linear) gradient
descent and therefore aims at minimizing the mean squared
error (MSE) on the training patterns. Although there is no
guarantee that a global minimum of the MSE is encountered,
this procedure seems to be better than building average values.
As mentioned above, there is empirical evidence that the
CMAC works well in combination with temporal difference
learning methods.

Since the Q-function is rarely linear with respect to the state
(action) variables states, the state space is usually replaced
by a feature space. As in [10], our implementation of the
CMAC uses an intuitive feature representation by employing
overlapping grids. The power of the CMAC can be increased

2

Proceedings of the 2007 IEEE Symposium on Approximate 
Dynamic Programming and Reinforcement Learning (ADPRL 2007)



by manually designing such a set of grids. However, the
CMAC also works well with regular, low resolutional grids
as we will demonstrate by our empirical results.

To discuss the potential of the CMAC, we will also present
an averager version of the CMAC. We aim at establishing a
convergence guarantee on the one hand, while keeping some
favorable properties of the CMAC-architecture on the other
hand. This will also allow a direct comparison between the
CMAC-architecture and function approximators belonging to
the averager class.

III. TWO CMAC-ARCHITECTURES

A. Basic functionality of the CMAC

To perform gradient descent, it is required to parametrize
the Q-function by a vector of parameters �w. Every element
of �w corresponds to a feature from the feature vector �φx =
(φx(1), φx(2), ..., φx(n)) which is built for every state-action
pair x = (s, u) ∈ S × U . The Q-function is represented by
the scalar product of the feature vector with the vector of
parameters

Q̂(x) =
n∑

i=1

w(i)φx(i)

What makes the CMAC special is the layout of the feature
space. Binary features are used to partition the input space
in several, possibly non-disjunctive sets. These sets are also
called receptive fields. As in [10], we will consider receptive
fields simply to be cells of a grid which is laid over the
input space. As illustrated in Fig. 2, the feature space consists
of several overlapping grids. Every cell of one of the grids

first grid

second grid

input space

Fig. 2. Layout of the feature space. The figure is taken from [10] with minor
modifications

corresponds to a binary feature φ(i), which is active for an
input x (φx(i) = 1), if and only if x lies within the cell.
Otherwise, the feature is inactive (φx(i) = 0). Since the grids
are overlapping, every input lies in several cells and therefore
activates several features.

To adjust the parameter vector �w, a set of training patterns
T F = {(xl, yl), l = 1, ..., |T F|} is presented to the CMAC.
The mean squared errror (MSE) on the set of training patterns
is defined as

MSE(�w) =
1

|T F|
∑

(xl,yl)∈T F
(yl − Q̂(xl))2

Since it holds

∀i ∈ {1, .., n} :
∂Q̂(x)
∂w(i)

= φx(i),

the gradient of the MSE can be easily computed. To minimize
the MSE, the parameter vector �w is gradually updated propor-
tional to the negative direction of the gradient of the MSE. To
enlarge the set of training patterns, it is possible to duplicate
individual training patterns and therefore using every pattern
several times. The update of the parameter vector �w is usually
done for every single training pattern.

�w′ = �w + α(yl − Q̂(xl))�φxl (1)

Here, �w′ denotes the new parameter vector which replaces the
old vector �w immediately after the update. The learning rate
0 < α < 1 is a positive step-size parameter. Since binary
features are used, the update rule (1) can be simplified to

w(i)′ =

{
w(i) + αyl − αQ̂(xl), for φxl(i) = 1 (2)

w(i), for φxl(i) = 0 (3)

B. The averager CMAC

In [12], an MDP with six states and four binary features
is presented for which the value iteration algorithm diverges
if backups of the value function are approximated with a
CMAC.3. The following argument is given to explain this
undesired behavior: The CMAC possibly exaggerates the
largest difference between two target functions f and g, if
the two functions are replaced by the corresponding (CMAC)
approximations f̂ and ĝ. For example, let the largest difference
between f and g be d := ||f − g||∞. If a CMAC is used
to approximate the functions f, g, resulting in approximations
f̂ , ĝ, it possibly holds d < d̂ := ||f̂ − ĝ||∞. Function
approximators showing this behavior are called exaggerators.
It is shown in [12] that a sequence of Q-learning updates on a
function approximated by an exaggerator possibly diverges to
infinity. In contrast, an approximator belonging to the averager
class does not exaggerate and therefore never diverges.

We will now present an alternative update rule by which
the CMAC is turned into an averager.

w(i)′ =

⎧⎪⎨
⎪⎩

yl (initial), for φxl(i) = 1 (4)

(1 − α)w(i) + αyl, for φxl(i) = 1 (5)

w(i), for φxl(i) = 0

The first case is only relevant for the first, initial update of
the parameter w(i). A consequence of the new update rule is
that the CMAC now computes an average value with respect
to all activated features

Q̂avr(x) :=
1

|{j|φx(j) = 1}|
n∑

i=1

w(i)φx(i) (6)

We will call the new CMAC-architecture an A-CMAC or an
averager CMAC. What is the difference between the CMAC

3The presented example considers the problem of approximating a value
function instead of a Q-function as we do in this work
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update rule (2) and the A-CMAC update rule (5)? Consider
the second case of the A-CMAC update rule in detail: w(i)′ =
w(i) + αyl − αw(i). The only difference compared with the
CMAC update rule is that the term αQ̂(xl) = α�φxl �w is
replaced by the term αw(i). The A-CMAC makes only local
updates, since only w(i) is incorporated into the update of the
i’th component of �w. For example, consider a certain cell of a
grid and the corresponding parameter w(j). If w(j) is updated
according to the original CMAC update rule, the new value of
w(j) is influenced by parameters corresponding to other cells
of other grids. Thus, the update incorporates information about
other parts of the input space. This may increase the quality
of the approximation, but it may also destroy convergence.

Theorem 1: Let cmac be a CMAC-architecture for which
every element of the input space activates the same number
of binary features and all updates are performed according
to the update rule of the A-CMAC. Further, let (Q̂avr

N ) be
the sequence of Q-functions generated by the extended fitted
Q iteration algorithm if the cmac architecture is used as
the supervised learning method. Then, (Q̂avr

N ) converges to
a uniquely defined fix-point for N → ∞.

Proof: The proof is adapted from [3] to the update rule
used by the A-CMAC. Let n be the total number of binary
features and m the constant number of features activated by
an input x = (s, u) ∈ (S ×U). We consider only iterations of
the inference loop occuring after the set of transition instances
F has been fixed (|F| ≥ maxInstances). Let the final
set of training patterns be T F := {(xl, yl), l = 1, ..., T}.
By inspecting the averager update rules (4),(5), it is easy
to see that there exist constants 0 ≤ β(i, l) < 1, i ∈
{1, ..., n}, l ∈ {1, ..., T} such that w(i) =

∑T
l=1 β(i, l)yl

with ∀i ∈ {1, ..., n} :
∑T

l=1 β(i, l) = 1. Since it holds
yl = rl

t + γ maxu′∈U Q̂avr
N−1(s

l
t+1, u

′), the approximated Q-
function (6) can be written as

Q̂avr
N (s, u) =

1
m

n∑
i=1

φ(s,u)(i)
T∑

l=1

β(i, l)(rl
t

+ γ max
u′∈U

Q̂avr
N−1(s

l
t+1, u

′))

Let the operator Ĥ be a mapping defined on functions of the
form K : S × U → R

ĤK(s, u) :=
1
m

n∑
i=1

φ(s,u)(i)
T∑

l=1

β(i, l)(rl
t

+ γ max
u′∈U

K(sl
t+1, u

′))

Then it holds

||ĤK − ĤK̄||∞ =

max
(s,u)∈(S×U)

[| 1
m

n∑
i=1

φ(s,u)(i)
T∑

l=1

β(i, l) ∗

(γ max
u′∈U

K(sl
t+1, u

′) − γ max
u′∈U

K̄(sl
t+1, u

′))|]

≤ max
(s,u)∈(S×U)

[| 1
m

n∑
i=1

φ(s,u)(i)
T∑

l=1

β(i, l) ∗

(γ max
u′∈U

[K(sl
t+1, u

′) − K̄(sl
t+1, u

′)])|]

≤ max
(s,u)∈(S×U)

[| 1
m

n∑
i=1

φ(s,u)(i)
T∑

l=1

β(i, l) ∗

(γ max
u′∈U, l′∈{1,...,T}

[K(sl′
t+1, u

′) − K̄(sl′
t+1, u

′)])|]

= max
(s,u)∈(S×U)

[| 1
m

n∑
i=1

φ(s,u)(i) ∗

(γ max
u′∈U, l′∈{1,...,T}

[K(sl′
t+1, u

′) − K̄(sl′
t+1, u

′)])|]

= max
(s,u)∈(S×U)

[|γ max
u′∈U, l′∈{1,...,T}

[K(sl′
t+1, u

′) − K̄(sl′
t+1, u

′)]|]

≤ max
(s,u)∈(S×U)

[|γ(K(s, u) − K̄(s, u))|]

= γ||K(s, u) − K̄(s, u)||∞
< ||K(s, u) − K̄(s, u)||∞

Since Ĥ is equal to the update operator of the averager CMAC,
the sequence of Q-functions (Q̂avr

N ) converges due to the
(banach) fix point theorem (see for instance [13])

C. Discussion of the A-CMAC

We want to discuss a certain benefit of weighted averages
as presented above, compared to equally weighted averages.
Examples for equally weighted averages are ensembles of
regression trees as used in [3] or k-nearest neighbor with-
out distance weighting. Both the CMAC and the A-CMAC
weight an individual update by a positive learning rate α.
To illustrate this fact, we perform three example-updates (A-
CMAC) on a parameter w for different training patterns
(x1, y1), (x2, y2), (x3, y3). We assume that all training patterns
activate the feature corresponding to parameter w. If the
patterns are presented in ascending order, the final value of
w is (1 − α)2y1 + (1 − α)αy2 + αy3. If additional training
examples are presented, the influence of the first training
patterns will decrease more and more, since y1, y2, y3 will be
repeatedly multiplied by (1 − α). Thus, the A-CMAC tends
to prefer training patterns which are presented last. In other
words, the A-CMAC builds a prototypical output value based
on the last training patterns. This effect is especially strong
for high learning rates. Even if the learning rate is lowered,
the effect will be still visible if a large set of training patterns
is used. Trivially, an equally weighted average is equivalent to
the special learning rate α = 1

|T F| .
Consider a second example (Fig. 3) showing a small set of

training patterns combined with a high learning rate. Again, we
will assume that the training patterns are presented in ascend-
ing order. After performing several updates for every training
pattern, parameter w(1) will be most influenced by training
pattern (x2, y2), while parameter w(2) will be most influenced
by training pattern (x3, y3). This is reasonable, since (x2, y2)
is prototypical for the left cell, while (x3, y3) is prototypical

4

Proceedings of the 2007 IEEE Symposium on Approximate 
Dynamic Programming and Reinforcement Learning (ADPRL 2007)



2x x1 x3

����������

w(1) w(2)

Fig. 3. Two overlapping cells corresponding to the parameters w(1) and
w(2). The three dots denote training patterns located at different positions
within the input space. The learning rate α is set to 0.8

for the right cell. Indeed, if the training patterns are presented
in a different order, it may occur that training pattern (x1, y1)
influences both cells the most. A straightforward extension
to the A-CMAC update rule will be therefore to compute an
optimal presentation order for the training patterns. However,
we believe that even if the presentation order is suboptimal,
weighting the updates with a positive learning rate is better
than computing an equally weighted average. For example,
consider a set of grids with low resolution, as we used them
for our empirical results. Since many training patterns will fall
into the same grid cell, an equally weighted average will not
be meaningful. In such a setting, a prototypical representation
of the input space is better suited even if the cells have
suboptimal prototypes. This may also be a reason why the
CMAC works well with low resolutional grids. We will show
empirical results concerning this issue in the next section.

IV. EMPIRICAL RESULTS

We performed experiments both for the mountain car plant
and the acrobot plant. Every experiment consists of several
runs of the (extended) fitted Q Iteration algorithm combined
with the CMAC-architectures described above.

1) CMAC (original)
2) A-CMAC (averager CMAC)
3) AE-CMAC (A-CMAC with equally weighted averages)

For both benchmark problems, we used a similar layout of
the feature space. Twenty (ten) overlapping grids are laid
over the state-action space for the acrobot (mountain car)
benchmark. All grids have a constant resolution of ten in every
dimension of the state space. Since both the mountain car and
the acrobot come with discrete actions, the resolution of the
one-dimensional action space was designed such that every
action falls into a distinct grid cell. In general, all described
CMAC-architectures are able to deal with continuous action
spaces. All sampled transition instances are duplicated ten
times to enlarge the set of training patterns.

In the following subsection, we will empirically compare the
performance of the different CMAC-architectures with respect
to convergence issues as well as to the quality of the learned
policies.

A. Mountain Car

The task of the mountain car benchmark is to drive a car to
the top of a mountain by accelerating the car in the forward
and backward direction. The system dynamics we used for
simulating the mountain car can be found in [14]. The state
space is two-dimensional and consists of the position (x) of

the car and the velocity (ẋ) of the car. An episode ends
if a goal state is reached or the current state violates the
constraints x ∈ [−2, 2], ẋ ∈ [−5, 5]. The set of goal states
is given by {(x, ẋ)| x ≥ 1.0}. During the learning phase of
the algorithm, an episode is also terminated if the length of
the episode exceeds the threshold maxSteps = 300. Two
discrete actions are available, corresponding to forces from the
set F ∈ {−4, 4}. The discount rate was set to γ = 0.98 and
the learning rate was set to α = 0.01. We used the following
reward function

r(st, ut) =

⎧⎨
⎩

0, if st is a goal state

−1000 if st violates constraints

−1, else

We found out that the convergence of the original CMAC
heavily depends on the number of sampled episodes. We
therefore performed two experiments, one with 50 sampled
episodes and another with 150 sampled episodes. No addi-
tional sampling by an ε-greedy policy was done. Thus, every
run of the algorithm consists of a single iteration of the main
loop. The inference loop (inner loop) terminates after N = 500
iterations. All episodes start from a randomly chosen state
from the set {(x, ẋ)| x ∈ [−0.5, 0.5], ẋ = 0}. The following
figures show the performance of twenty averaged runs of
the fitted Q Iteration algorithm after sampling 50 episodes.
This corresponds approximately to 6200 sampled transition
instances. The figures show that the original CMAC was not
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Fig. 4. Steps to the goal. The learned policies were tested by running 1000
episodes from randomly chosen starting states (50 sampled episodes)

able to converge to a stable policy. In contrast to the averager
CMACs, the Bellman Residual diverged to infinity. The policy
found by the A-CMAC is not optimal (which would be 17
steps) but reasonably good.

The figures 8-11 show the performance of twenty averaged
runs of the fitted Q Iteration algorithm after sampling 150
episodes. This corresponds approximately to 18600 sampled
transition instances. The figures show that the original
CMAC is more likely to converge to a stable policy if many
transition instances are sampled. If many transition instances
are available, the original CMAC outperforms the averager
CMACs. Unfortunately, there is no guarantee for such a
behavior. Fig. 10 shows that the Bellman Residual of the
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Fig. 5. Success rate. The success rate gives the percentage of episodes
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Fig. 6. Bellman Residual:

∑
(xl,yl)∈T F (Q̂N (xl)−Q̂N−1(xl))2

|T F|
(50 sampled episodes)

original CMAC may diverge even if the policy converges near
to an optimum.

B. Acrobot

A detailed task description and the system dynamics of the
acrobot benchmark can be found in [15]. To summarize, the
goal is to swing up the second link of the acrobot above a
line of certain height. The state space is four-dimensional
and consists of the angles of the two links θ1, θ2 and their
corresponding angular velocities θ̇1, θ̇2. An episode ends if a
goal state is reached or the current state violates the constraints
θ̇1 ∈ [−4π, 4π] and θ̇2 ∈ [−9π, 9π]. During the learning phase
of the algorithm, an episode is also terminated if the length
of the episode exceeds the threshold maxSteps = 500. For
testing a learned policy, we allow episodes to have a length
of 1000. The action set consists of three discrete torques
F ∈ {−1, 0, 1} applied at the second joint of the acrobot.
The discount rate was set to γ = 0.98, the learning rate to
α = 0.01 and the exploration rate to ε = 0.1. The reward
function is analog to the function used for the mountain car
benchmark.

Every run of the algorithm consisted of six iterations of
the main loop. During every iteration of the loop, one hun-
dred new episodes were sampled by an ε-greedy exploration
strategy. The inference loop (inner loop) always terminated
after a hundred iterations. Thus, a total number of N =
600 approximations of the Q-function was computed. All
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Fig. 8. Steps to the goal. The learned policies were tested by running 1000
episodes from randomly chosen starting states. (150 sampled episodes)

episodes started from a randomly chosen state from the set
{(θ1, θ2, θ̇1, θ̇2)| θ1 ∈ [−π, π], θ2 = θ̇1 = θ̇2 = 0}.

The figures 12-13 show the performance of ten averaged
runs of the fitted Q iteration algorithm.

In Table I, a summary is given about the sampling process
during the six iterations of the main loop. The second column
gives the (cumulated) number of sampled episodes and the
third column gives the number of sampled state transitions.
The A-CMAC samples less transition instances, since the

Architecture # Episodes # State Transitions

CMAC 100 27250
CMAC 300 97658
CMAC 600 123304

A-CMAC 100 27075
A-CMAC 300 49111
A-CMAC 600 63230

AE-CMAC 100 26340
AE-CMAC 300 79333
AE-CMAC 600 157861

TABLE I

SAMPLING PROCESS

learning process quickly stabilizes on a policy that always
reaches the goal state. Since every episode is terminated in
a goal state, relatively few state transitions are collected.

Similar to the mountain car benchmark, the bellman residual
diverged for the original CMAC but converged for the averager
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Fig. 9. Success rate. The success rate gives the percentage of episodes
reaching a goal state. (150 sampled episodes)
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CMACs. We omitted figures due to space constraints. Again,
we made an additional experiment for the original CMAC with
a larger number of sampled transition instances. The figures
14-15 show an experiment in which every run of the algorithm
consists of three iterations of the main loop. During every
iteration of the main loop, 500 episodes are sampled and 500
iterations of the inference loop are performed. Thus, the total
number of sampled episodes is 1500. The average number
of sampled transition instances was 242720. Obviously, the
performance of the original CMAC is much better compared
with the first experiment. In this setting, the A-CMAC is able
to learn a policy which reaches a goal state after 55 steps (a
figure is omitted).

Another possibility to increase the performance of the
original CMAC is to reset the weights of the CMAC to the
initial values after each iteration of the inference loop. Thus,
for every Q iteration, we take a new CMAC. By implementing
this procedure we prevent the weights of the CMAC from
diverging to infinity. For a comparison of the A-CMAC with
the original CMAC with weight reset, we made an additional
experiment (with a setup equal to the first experiment) shown
in Fig. 16. The figure shows that the original CMAC now
clearly outperforms the A-CMAC.

V. SUMMARY AND CONCLUSION

The fitted Q iteration algorithm is designed to learn a Q-
function on the basis of a small set of sampled state transitions.
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Fig. 12. Steps to the goal. The learned policies were tested by running 1000
episodes from randomly chosen starting states. All episodes have a maximal
length of 1000 steps

To make efficient use of the gathered data, it is desirable to
combine this algorithm with powerful function approximators.
We empirically showed that the CMAC approximator performs
well in combination with the fitted Q iteration algorithm.
Indeed, there is no guarantee that the CMAC will converge for
an arbitrary chosen problem, especially if only less transition
instances are available. In case of divergence, it is possible
to switch to a variant of the CMAC called A-CMAC, which
builds a weighted average of the output values. We showed
that the A-CMAC is guaranteed to converge to a unique
approximation of the Q-function. Compared to the original
CMAC, using the A-CMAC may result in a loss of perfor-
mance. Nevertheless, the A-CMAC inherits some basic ideas
of the CMAC architecture. One of these is the layout of the
feature space, another is the way of weighting the updates. We
showed that non-equally weighting the updates of individual
training patterns is better suited for coarse representations of
the state (action) space than equally weighting the updates.
We conclude that the A-CMAC is a valuable alternative to
the original CMAC as long as there are no further theoretical
results concerning the convergence of the CMAC.
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