
Reinforcement-Learning-based
Magneto-hydrodynamic Control of Hypersonic Flows

Nilesh V. Kulkarni
QSS Group, Inc., NASA Ames Research Center, Moffett Field, CA-94035

Minh Q. Phan
Thayer School of Engineering, Dartmouth College, Hanover, NH – 03755

Abstract-In this work, we design a policy-iteration-
based Q-learning approach for on-line optimal control of
ionized hypersonic flow at the inlet of a scramjet engine.
Magneto-hydrodynamics (MHD) has been recently
proposed as a means for flow control in various aerospace
problems. This mechanism corresponds to applying
external magnetic fields to ionized flows towards achieving
desired flow behavior. The applications range from
external flow control for producing forces and moments on
the air-vehicle to internal flow control designs, which
compress and extract electrical energy from the flow. The
current work looks at the later problem of internal flow
control. The baseline controller and Q-function
parameterizations are derived from an off-line mixed
predictive-control and dynamic-programming-based
design. The nominal optimal neural network Q-function
and controller are updated on-line to handle modeling
errors in the off-line design. The on-line implementation
investigates key concerns regarding the conservativeness
of the update methods. Value-iteration-based update
methods have been shown to converge in a probabilistic
sense. However, simulations results illustrate that realistic
implementations of these methods face significant training
difficulties, often failing in learning the optimal controller
on-line. The present approach, therefore, uses a policy-
iteration-based update, which has time-based convergence
guarantees. Given the special finite-horizon nature of the
problem, three novel on-line update algorithms are
proposed. These algorithms incorporate different mix of
concepts, which include bootstrapping, and forward and
backward dynamic programming update rules. Simulation
results illustrate success of the proposed update algorithms
in re-optimizing the performance of the MHD generator
during system operation.

I. INTRODUCTION

 In recent years, possible application of magneto-
hydrodynamics (MHD) in high hypersonic systems has
generated a lot of excitement [1-6]. Using MHD as an integral
part of these systems has been suggested for various
applications. Magneto-hydrodynamics refers to the study of
ionized flows [7]. The dynamics of these flows is, therefore,
governed by fluid equations coupled with the electromagnetic
equations. For high Mach numbers, the system has enough

kinetic energy so that relatively small electromagnetic effects
can lead to big overall effects that can be used for engineering
benefits. Using external electromagnetic actuators provides
control authority over MHD systems, and their
implementation can be treated using control theory.

Fig. 1. MHD channel at the inlet of a scramjet engine (After Ref. [8])

 Figure 1 illustrates an MHD channel at the inlet of a
scramjet engine of a hypersonic vehicle. The current air-
breathing propulsion technology becomes inapplicable beyond
a certain Mach number. This device introduces an innovative
concept that can make hypersonic flight possible with an air-
breathing scramjet engine. As the air enters the inlet of the
engine, it is ionized using a chosen ionizing mechanism. An
external magnetic field is also applied perpendicular to the
flow direction. The ionized air flowing across the magnetic
field gives rise to an electromotive force (e.m.f) in a direction
perpendicular to both the air flow and the direction of the
applied magnetic field. By placing electrodes across the
channel, electrical energy can be collected. The MHD device,
thus, acts as a power generator. Part of the kinetic energy of
the flow is converted into electrical energy. As a result, the
flow slows down to low supersonic Mach numbers at which
scramjet combustion is possible. Due to the low static
temperature of these hypersonic flows, the applications rely on
an external source of ionization. High-energy electron beams
have been shown to be the most efficient ionizers [8-9] The
electron beam current profile can be varied along the
hypersonic channel to optimize the performance of the MHD
device. Electron beam current can, therefore, be treated as a
control input variable for the MHD system, and the resultant
optimization problem can be handled with optimal control
theory.

Ionizing mechanism (Control)

M agnetic FieldFlow In

Flow O ut
Electro

des

E x tra cte d P o wer

Ionizing mechanism (Control)

M agnetic FieldFlow In

Flow O ut
Electro

des

E x tra cte d P o wer

9

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

 Controlling the flow through the inlet in an optimal manner
is a critical element of the design for optimizing the
performance of the engine and, thereby, of the overall vehicle.
From an optimal control standpoint, this represents a
challenging application for several reasons. The dynamics of
the flow with the electro-magnetic interaction are highly non-
linear in nature. Further, there exist significant uncertainties in
the empirical modeling of these flows. A conservative design
approach, therefore, corresponds to using all the available
knowledge of the system in designing the off-line optimal
controller. This controller can then be updated on-line using
the observed system behavior for re-optimizing the system
performance. Reference [10] describes the off-line optimal
control design of this MHD device, which uses a mixed
predictive control and dynamic programming approach.
Various formulations of the on-line update algorithm are
possible depending on whether value functions or Q-functions
are used, and whether the derivative forms of these update
rules are used. These have been categorized as heuristic
dynamic programming (HDP), action-dependent heuristic
dynamic programming (ADHDP), dual heuristic programming
(DHP), and action-dependent dual heuristic programming
(ADDHP) in the adaptive critic literature [11-12]. Three forms
of these, viz. HDP, DHP, and ADDHP, need the system model
in their update laws. References [13-16} present different
implementations of these architectures. Given that the
motivation of the on-line update algorithm is in enhancing the
performance for modeling errors in the off-line design, the
model-free ADHDP or the Q-function-based formulation is
used in this application.
 The second critical issue in the choice of the update method
is the use of policy iteration or value iteration. Reference [17]
has shown the convergence of value-iteration-based updates
for all 4 updates discussed above. However, these
convergence results are probabilistic in nature. In practice,
value-iteration-based updates are often seen to fail in learning
the optimal functional form of the controller. Contrarily,
policy-iteration-based updates, though being slower, represent
a much conservative design. References [18-19] have
illustrated time-based convergence of the policy-iteration-
based Q-learning update to the true optimal gains of the linear
quadratic regulator. Given that conservativeness of the update
is more important than speed in a critical engineering system,
this application uses the policy-iteration-based Q-learning
paradigm.
 The rest of the paper is organized as follows. Section II
discusses the details of the modeling of this MHD system.
Section III defines the performance measure for the optimal
control problem. Section IV outlines the off-line optimal
control design, and extraction of the functional forms
necessary for the on-line design. Section V presents the on-
line optimal control design. Given the finite horizon nature of
the problem, the on-line implementation illustrates three novel
update algorithms. Section VI presents the simulation results
with the different update algorithms. Finally section VII
provides the conclusions of this study.

II. MODELING THE MHD POWER GENERATOR

 The detailed analysis of the MHD system would typically
consist of solving 3-dimensional, time-dependent MHD
equations with the electron beam current as an input to this
system. For the present work, we focus on steady state
behavior with dependence on the x-coordinate alone, along the
length of the channel. The system of partial differential
equations thereby reduces to a system of ordinary differential
equations with the position along the length of the channel as
the independent coordinate. In a supersonic flow perturbations
or inputs given to the flow are only felt downstream of the
flow. The x-coordinate along the flow therefore behaves like
the time-coordinate in the sense that any event occurring at
time t affects the system only for time greater than t. The x-
coordinate can therefore be thought of as being equivalent to
the time coordinate when we look at the simplified ordinary
differential equation system corresponding to the steady state
one-dimensional flow. In terms of this x-t equivalence, we can
now look at the performance optimization of the MHD
generator as a standard optimal control problem with the
independent variable x.
The system dynamics can be describe as:

[(), (),]
d

x x x
dx

=
w

f w u (1)

Here ()xu corresponds to the control which in this case is the
electron beam current, and x corresponds to the position
variable. ()xw corresponds to the state vector for the system
given as:

()
T

f f f efx v P nρ=w (2)

f
ρ (kg/m3) is the density of the flow,

f
v (m/s) is the velocity

of the fluid,
f

P (N/m2) is the static pressure of the fluid, and
ef

n (1/m3) is the electron number density along the channel.
Reference [20] describes in detail the geometry and the
governing dynamics of the flow along the MHD channel.

Fig. 2. Sensor and actuator placement of the MHD channel
 Figure 2 illustrates the implementation outline for the MHD
channel. It assumes 5 equally spaced sensors along the
channel, with the first one at the inlet, and the last at the
channel exit. These sensors divide the MHD generator into 4
sections. The generator has 4 controllers corresponding to the
first 4 sensors. Each controller uses the state information at the
corresponding sensor location to compute the e-beam profile
from that sensor location to the next sensor location. The

10

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

sensor at the exit is used to provide the exit flow variables for
evaluating the exit cost function terms such as exit Mach
number, exit pressure, exit temperature etc.

III. PERFORMANCE MEASURE DEFINITION

 Before discussing the details of the control architecture it is
important to outline the performance measure for this system,
which optimizes the e-beam current along the channel. Some
of the considerations for this definition are:
1) To minimize deviations from prescribed flow conditions at

the end of the channel. After going through the MHD
channel, the flow enters the combustion chamber of the
engine. There are therefore certain prescribed values of
flow variables such as temperature, Mach number that
need to be attained at the end of the channel.

2) To maximize the net energy extracted from the system that
corresponds to the difference between the energy extracted
from the flow and the energy spent on the e-beam
ionization.

3) To minimize the net usage of the e-beam current.
 There are several other beneficial flow characteristics that
can be incorporated in the cost function such as penalizing
adverse pressure profile or minimizing the net entropy rise in
the channel. These are given in more detail in Ref. [21].
Posing the optimization as a minimization problem, one
candidate cost function that implements the requirements
enumerated above is given as:

2

1

2 2 21
1

0

()

(1)
f

f f fe

x

f f f f f f f f bf
f f f

J p M x M

q Q A k k v B A r j dx
v A β σ

ρ

= −

+ − − +
 (3)

()f fM x is the flow Mach number at the channel exit
and feM is the prescribed exit Mach number. fQβ is the energy
deposited by the electron beams (J/m3). fA is the cross-
sectional area of the channel (m2). fk is the load factor, which
is a measure of the extracted energy converted to electrical
energy versus heat. fσ represents the conductivity of the fluid
[1/(Ohm*m)]). fB is the externally applied magnetic field
(Tesla). bfj is the electron beam current (Amperes). 1p , 1q ,
and 1r are the weighting elements of the individual terms of
the cost function. The terms on the first line correspond to the
end position cost, minimizing which ensures the exit Mach
number to be close to its prescribed value. The term on the
second line corresponds to the incremental cost function. The
first element of the integrand maximizes the net energy
extracted from the system. The second term in the integrand
penalizes excessive use of the electron beam current. An
appropriate choice of the weighting elements sets the relative
importance of the different terms in the cost function.

IV. Q-FUNCTION AND CONTROLLER INITIALIZATION
FROM THE OFF-LINE DESIGN

 The structure of the sensor and actuator placement, as
outlined in Figure 2, motivated a mixed predictive control and

dynamic-programming-based off-line optimal control design.
Reference [22] describes the general nature of this
parameterized predictive control design. The system states
between sensor locations are predicted using trained neural
network models. These are used in a dynamic-programming-
based architecture, which designs the 4 controllers, starting
with the last one first and moving upstream till the inlet
controller. The control design uses two groups of neural
networks. The first group is used to model the controller, and
the second group is used to model the cost-to-go function.
A. Neural Network Controller
 The optimal controller corresponds to a feedback function of
the sensed state, ()xw . There are only a discrete number of
sensors in the channel. Based on the sensed state at each
sensor location, the optimal controller, therefore, provides the
control inputs from that sensor location to the next sensor
location. The controller design is correspondingly broken
down into the design of 4 controllers, one each for the first 4
sensors. Each of the controllers is parameterized using neural
networks.
 The actuators for the MHD channel correspond to individual
electron beam windows that are assumed to be placed
continuously along the length of the channel. Each of these
windows can generate electron beams with different current
setting. The total number of outputs of each neural network
controller can, therefore, equal the number of electron beam
windows between two sensors. For the current geometry, the
width of the individual e-beam window is 0.5 cm. For the
assumed channel length of 3 meters, this corresponds to 600
electron beams. To simplify the control approach, the
windows are grouped so that each group of 6 windows
produces e-beams with the same current setting. The control
inputs to the flow, therefore, correspond to 100 e-beam current
values. The 4 neural network controllers are, therefore,
responsible for producing 25 values of electron beam current
each between two sensor locations.
 The geometry of the MHD channel in the actual
implementation can differ from the one assumed in the current
study. If the channel is longer, then more electron beam
windows would need to be grouped together that produce the
same output current. This, however, can reduce the resolution
of the control action on the flow. One way to make the
controller design independent of the channel geometry is
through the use of basis functions. The control inputs between
two sensor locations can be given as:

1
(,) () (), 1 , ... ,

N

sensor j sensor j
j

i i i rα φ
=

= =u w w (4)

 Equation (4) parameterizes the control, u, in terms of basis
functions jφ , j = 1,…, N. r is the total number of resulting
control values. The coefficients of the basis functions, jα , are
now expressed as functions of the sensed flow variables at the
corresponding sensor location. The choice and the number of
basis functions that need to be used is dependant on how
nonlinear the true optimal control trajectory is, and what

11

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

functional form it takes. However, this is not known apriori.
The standard approach is to use trial and error to choose the
functional form, as well as the number of basis functions.
Several basis functions were analyzed for the current MHD
implementation. Gaussian functions were chosen as they gave
us the best results.
 In terms of a neural network, this controller structure can be
implemented by designing the neural network controller with
3 layers. For a sensed state, sensorw , the first two layers, a
sigmoid and a linear layer now output the values of the
coefficients jα . The third layer is chosen as a linear layer,
with the connection weights between the second and third
layer given by,

() , 1 , ... , ; 1 , ... , ij jw i i r j Nφ= = = (5)

The size of the third layer therefore equals the total number of
control values given by the controller, r. While training the
neural network controller, these weights are kept fixed. Only
the weights corresponding to the first two layers are updated.

B. Neural Network Cost-to-go Function Estimator

 The cost-to-go function, (), (,),c c f cV x x x xw u , is defined
as:

2

1

2 2 21
1

(), (,), ()

(1)
f

c

c c f c f f fe

x

f f f f f f f f bf
f f fx

V x x x x p M x M

q Q A k k v B A r j dx
v A β σ

ρ

= −

+ − − +

w u
(6)

(,)c fx xu denotes the control profile from the position cx to
the end-position fx . Contrary to the cost function, J [Eq. (18-
19)], (), (,),c c f cV x x x xw u is defined for every state ()xw ,
at all positions. Minimizing the cost-to-go function, therefore,
provides a feedback controller, which gives the optimal
control profile as a function of the system state ()xw . Given
that the access to the state is available only at the five sensor
locations, the cost-to-go function networks are designed for
the first four sensor locations.
 Optimizing the controller in the off-line design provides the
optimal cost-to-go function from each sensor location to the
end of the channel, []()sensorV i∗ w . This is now used to
compute the optimal off-line Q-function. This optimal off-line
Q-function, [](), (,)sensor sensorQ i i∗ w w , for any given state-
control pair, [](), (,)sensor sensori iw w , is given as:

[] [] [](), (,) (), (,) (1)sensor sensor sensor sensor sensorQ i i U i i V i∗ ∗= + +w w w w w
 (7)

Here the control variable corresponds to the vector of
coefficients, which defines the control between the ith sensor
and (i+1) th sensor location. A two-layer network is now
trained to be the optimal off-line Q-function network for each
sensor location. The inputs of this network are the state-
control pair [](), (,)sensor sensori iw w . For supervising the
training, the desired value is computed using Eq. (7). The

utility function, [](), (,)sensor sensorU i iw w , is computed using
the system models. Figure 3 illustrates the Q-function network
for a given sensor location i.

Fig. 3. Q-function and controller parameterization for a sensor i.

 The on-line optimal control design corresponds to providing
update equations for the 4 Q-functions and the 4 controllers.
Given the nature of the problem, the design of update
equations for these Q-functions and controllers presents
interesting possibilities. The early literature treated
reinforcement learning problems as episodic in nature. The
solution procedure starts at a randomly picked state in the
state-space, and takes decisions till it reaches the stipulated
end of the decision making process. This corresponds to an
episode, where the solution procedure learns costs associated
with decisions taken in that episode. The knowledge gathered
during the episode is used to update the estimates of the value
or the Q-functions, and the solution procedure is initialized
with a new starting state. Episodic updates are, therefore, off-
line in nature since the experiment can be repeated. The on-
line forward dynamic programming algorithms with infinite
decision steps are, instead, inherently non-episodic in nature.
The finite decision-step on-line MHD performance
optimization problem can, however, be cast as episodic in
nature.
 The actual physical system is governed by equations that
have both time and space dependence. At hypersonic Mach
numbers, the response time for the flow to go through the
channel is of the order of milliseconds, while, depending on
the flight trajectory, the channel inlet conditions vary on the
order of seconds. It is, therefore, assumed that the flow
reaches steady-state for a given inlet condition and the applied
control, before the inlet condition changes. With this
assumption, the problem of optimization becomes episodic in
nature. Two different time indices are considered: Tk , on the
order of seconds, and tk , on the order of milliseconds. At
every Tk , the channel sees a starting state based on the flow
conditions at the channel inlet.Correspondingly, at tk = 1, the
controller 1 gives the control profile from the channel-inlet to
the location of sensor-2. At tk = 2, sensor-2 observes the flow
steady-state conditions at its location, and gives the control
profile upto the location of sensor-3. Similarly at time indices,

tk = 3 and tk = 4, controllers 3 and 4 give the control inputs
in the subsequent sections of the channel. At tk = 5, the final
sensor senses the state variables at the channel exit. These
control profiles are held constant till the next time index Tk ,
when the inlet sees new flow conditions, and the index tk is

Baseline
Optimal

Q-function
Network

Baseline
Optimal

Controller
Coefficient
Network 1i

ji

[]sensor (),Q iw

sensor ()iw

12

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

re-initialized to 1. The time index Tk , therefore, corresponds
to an episode. Consequently, the current problem, as an
exception, is on-line episodic in nature due to these inner and
the outer loops defined by the time indices Tk and tk .

V. POLICY-ITERATION-BASED Q-LEARNING UPDATE EQUATIONS
FOR THE MHD CHANNEL

 In the following discussion, 3 different implementations of
the Q-learning algorithm are presented. The first
implementation evaluates all 4 Q-functions and controllers at
every time index Tk . In this case, after sensing the flow state
and giving control inputs, each of the 4 Q-functions are
updated using the observed performance. This policy
evaluation is carried out for a stipulated number of episodes,
after which, the policy is improved by updating all the 4
controllers. This policy evaluation and improvement is
implemented till all 4 sensor Q-functions and controllers get
optimized. The second implementation presents a one-sensor-
at-a-time update algorithm. In this case, the update follows the
classical backward dynamic programming method where the
Q-function for sensor-4 is first evaluated and then the
controller-4 for sensor-4 is optimized. This is followed by the
evaluation and improvement of the sensor-3 Q-function and
controller, then the sensor-2 Q-function and controller, and
finally the sensor-1 Q-function and controller. The third
implementation presents a mixed Monte Carlo-bootstrapped
update algorithm for evaluating and improving the Q-
functions and the controllers. The backward one-sensor-at-a-
time implementation in the second case uses only the observed
performance to evaluate the Q-functions. This is a Monte
Carlo update method. The bootstrapped update method, on the
other hand, uses an estimate of the value function from the
next sensor location to the end of the channel in updating the
Q-function for the present sensor location. In the second
implementation, for example, once the Q-function for sensor-
4, for example, has been optimized, the sensor-3 Q-function
update equations can use this optimal sensor-4 Q-function in
its update. So the third implementation uses the observed
performance along with the existing downstream optimal Q-
functions to design a mixed update method.
A. Simultaneous all-sensor Q-learning update for the MHD channel
 The update equations for the Q-functions and controllers are
given as follows:
At every time index Tk ,

• One of the four sections of the channel is given control
input that is exploratory in nature. To choose the section that
gets the exploratory input, a set, πΔ , is defined as:

() () () (){ }1 , 2 , 3 , 4π δ δ δ δΔ = (8)

One of the elements of the set is set to 1, and the rest of the
elements set to zero. Each of the elements has equal
probability to be set to 1.
• For sensor 1 through 4tk i= =

 o The state sensorw is sensed at the sensor location at the
corresponding time index tk .
 o Based on this sensed value, the electron beam current
control profile from that sensor location to the next sensor
location is given as:

()

()
()

() () ()

sensor sensor sensor sensor

NN sensor NN PI sensor

sensor sensor

sensor 1 2

(,) ,

, ,
,

,1

b

p

i i

i i
i

i diag ones pδ ε ε ε

= Φ

=
+ ∗ ∗

u w w

f w W
w

 (9)

1ε through pε are random numbers chosen from a prescribed
range. The term (),1ones p refers to a column vector with p
elements, all set to the value one. Eq. (9) provides the
capability of exploring the -space for each sensor.
Depending on the element of the set πΔ that equals 1, the
corresponding section is given an exploratory control input,
while the remaining sections are given control input based on
the current policy.
• The Q-function, by definition, is specific to a particular
policy. This implies that the control parameters, in evaluating
the Q-function at the given sensor location, can assume any
arbitrary value, but the control input in all the following
sections has to be based on the current policy. Thus, the Q-
function at the given sensor location cannot be computed if an
exploratory input, non-conformal with the policy, is given at
any proceeding section. The Q-function update is
correspondingly skipped for all sections preceding the section
with the exploratory control input. For the sections thus
selected, the Q-function error is added to the existing Q-
function composite error, to get the new composite error.

() []

(){ }
sensor

sensor

sensor

NN sensor
2

NN sensor NN sensor sensor sensor

4

1 sensor NN sensor NN PI sensor
1

()

, , (),
1

(), , ,

i

Q

Q Q
p

ii
i i

E i

i U i

p U i f i i=
= +

=

−

+

f w W w

w w W

 (10)

• The derivative of this composite error for each sensor with
respect to its Q-function parameter vector, ()NN sensor

Q iW , is
computed. The parameter vector is subsequently updated
using a gradient-based update method to reduce the Q-
function composite error. This outlines the policy evaluation
step.
 The policy is improved after this evaluation step as:

()
()

(){ }
NN PI sensor

NN PI sensor sensor NN sensor NN PI sensor
,

sensor sensor

1, argmin , , ,

 for all ,
i i

i i Q i i

i

+ =
uW

W w f w W

w
 (11)

The steepest descent approach for improving the policy is
given as:

13

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

() ()
(){ }

()

NN PI sensor NN PI sensor

sensor NN sensor NN PI sensor

controller
1 NN PI sensor

1, ,

, , ,

,

p

i

i i i i

Q i i

i i
α

=

+ ←

∂
−

∂

W W

w f w W

W
 (12)

where controllerα represents the controller learning rate. These
policy evaluation and policy improvement steps are iterated to
enhance the performance of the MHD generator.
B. One-sensor-at-a-time backward Q-learning implementation for the MHD
channel
 The policy that defines the Q-function at a given sensor
location is given by the control parameters from the next
sensor location to the last sensor location. These dependencies
are given as:
• ()sensorQ i

W
 for sensor 1i = is defined for

() () () ()NN PI NN PI NN PI1 , 2 ,3 , 4i i i=W W W W (13)

• ()sensorQ i
W

 for sensor 2i = is defined for

() () ()NN PI NN PI2 ,3 , 4i i=W W W (14)

• ()sensorQ i
W

 for sensor 3i = is defined for

() ()NN PI3 , 4i=W W (15)

• Finally ()sensorQ i
W

 for sensor 4i = is a policy free Q-function
 The dependencies outlined by Eqs. (13-15) suggest a
sequential Q-function update method consistent with dynamic
programming. The Q-function for sensor-4 can be fully
evaluated before any other preceding sections. After
evaluating and optimizing the sensor-4 Q-function, the sensor-
3 Q-function can be evaluated and optimized. This backward
procedure is inherent in the dynamic programming based
update method outlined in Ref. [10]. The current
implementation corresponds to the on-line sequential version
as compared to the off-line batch method of Ref. [10].
C. .Mixed Monte Carlo-Bootstrapped Q-learning implementation for the
MHD channel
 The evaluation of the Q-function for both the simultaneous-
all-sensor, and one-sensor-at-a-time implementations are
based on observed performance values corresponding to a
Monte Carlo update. For example, the desired value of the Q-
function for a state-control pair at the sensor-1 location is
computed by giving the policy specific control inputs from
section 2 to the end of the channel, and summing all the
observed individual sectional performances. A bootstrapped
update rule, instead, uses a function approximator to estimate
the cost-to-go function. The Monte Carlo update is more
accurate than the bootstrapped update as it uses the actual
value rather than the estimated value of the Q-function for
computing the desired signal. This update, however, has to
wait for the system to go through the episode to provide data
for using in its update rule. If a Q-function approximator can

provide accurate estimates of the cost-to-go function, then,
using this information along with actual data from the system
can substantially accelerate the learning process. This hints to
a mixed Monte Carlo-bootstrapped update algorithm that can
be designed for the MHD generator. This procedure is
formalized as follows.
At every time index Tk ,

• For sensor 1 through 4tk i= =
The control parameters are given by Eq. (9). If the Q-function
is being evaluated for the sensor location sensori , then

()sensor 1iδ = , else ()sensor 0iδ =
• The control parameters, ()sensor sensor, iw , and the sensed
states ()sensor sensoriw are stored in the existing tuple data-set

() () () ()sensor sensor sensor sensor sensor sensor
sensor

, , , , , 1,

, 1 T

i i i i i i
T i

i k

+
=

=

w w w

 (16)

• The Q-function error is computed only for the section
whose Q-function is being evaluated. This error is added to the
existing Q-function composite error for the section, to get the
new composite error.

() []

(){ }
sensor

sensor

sensor

NN sensor
2

NN sensor sensor NN sensor sensor sensor

4

1 sensor NN sensor NN PI sensor
1

()

(,), , (,), ()
1

(,), (,), ,

i

Q

Q Q
p

ii
j i

E i

i i i U i i i

p U j i f j i i i=
= +

=

−

+

f w W w

w w W

() []

() ()
sensor

sensor

2

NN sensor NN sensor sensor sensor

sensor sensor
1 NN sensor sensor NN NN sensor

NN sensor

, , (,), ()
1

(1,),
(1,), ,

, 1

i

Q Q

q

Q Q
ii

i U i i i

i iq i i f i
i

=

−

+ +
+ +

∗ +

f w W w

w
f w W

W

 (17)

 The first summation computes the part of the composite
error given by the observed system data. The second
summation corresponds to the Q-function error that uses the
elements of the tuple data-set, ()sensorT i , to provide additional
data points. For example, when the sensor-4 Q-function is
being evaluated and improved, the tuple data-set, ()3T , for
the third sensor location gets populated. The sensor-4 Q-
function and controller, once optimized, can be used to
provide the estimated optimal cost-to-go function value for the
sensor-4 states stored in ()3T . The error computation for the
case of ()3T is given as:

() () () (){ }sensor sensor sensor 33 3, , ,3, , 4, , 1T i i i i p= =w w w

() (){ } () ()sensor sensor NN sensor sensor

3

3, , ,3, 3, , ,3, ,

 1

QQ i i i i

i p

=

=

w w f w w

14

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

() (){ }
()

() (){ }

sensor sensor desired

sensor sensor

NN sensor NN sensor NN NN 3

3, , ,3,

(3,), ,3,

(4,), (4,), 4 , 4 , 1Q Q

Q i i

U i i

i f i i p
∗ ∗ ∗ ∗

=

+ =

w w

w w

f w w W W

()
() (){ }

() (){ }

2

sensor sensor

(3) 3
sensor sensor desired

3, , ,3,
, 1

3, , ,3,
T

Q i i
e i i p

Q i i
= =

−

w w

w w

 (18)

This bootstrapped error, summed for all the
sensor 3ip = data

points of ()3T , represents the second summation in Eq. (18).
Since this error requires the optimal sensor-4 Q-function and
controller, its computation is carried out immediately after the
sensor-4 Q-function and controller are optimized. In a similar
manner, the bootstrapped errors for sensor-2 and sensor-1 are
computed immediately after sensor-3 Q-function and
controller, and sensor-2 Q-function and controller, are
optimized respectively.
• The derivative of this composite error with respect to its Q-
function parameter vector, ()NN sensor

Q iW , is computed, and the
parameter vector is updated using a chosen gradient update
method.
 A big advantage of this update rule is the substantial
acceleration in the update rate. For example, the sensor-3 Q-
function evaluation using the Monte Carlo alone one-section-
at-a-time update rule given in the previous subsection initiates
after the sensor-4 Q-function and controller are optimized and
subsequent system data starts becoming available. For the
mixed Monte-Carlo bootstrapped update, after the sensor-4 Q-
function and controller are optimized and before the
subsequent data starts getting collected, the evaluation of the
sensor-3 Q-function can be initiated with the bootstrapped
error computed using ()3T . This advantage increases for the
sensor-2 and sensor-1 Q-functions as the data-sets, ()2T and

()1T , have a lot more data points available, which can be
used to start updating the Q-function using their respective
bootstrapped errors.

VI. SIMULATION RESULTS

 For an on-line scenario, the data distribution is attached to
the particular flight trajectory, which is given by free-stream
altitude and Mach number. These free-stream conditions
translate to flow variables at the channel inlet. For the current
implementation, the chosen flight trajectory represents an
arbitrary flight altitude within the prescribed limits, with the
vehicle accelerating from Mach 7.2 to Mach 8.8. This is
followed by another flight altitude, and the vehicle
decelerating from Mach 8.8 to 7.2. This sequence is then
repeated for the length of the test flight.
A. Verification criteria for MHD generator performance improvement:
 An important aspect of the proposed on-line design is
defining an appropriate performance metric for measuring the
success of the update methods. Improvement of the

performance of the MHD generator at any single altitude-
Mach number pair using the proposed algorithms, while
important, does not necessarily suggest the success of these
algorithms in general. The success of both the policy
evaluation and policy improvement steps needs to be
monitored. An average Q-function is, therefore, defined that
considers the averaged Q-function function value at each of
the sensor locations computed over a range of free-stream
altitudes and Mach numbers.

() []

()
sensor

4

sensor sensor
1

1 (, ,), (, ,)

 all ,

p

i i i i
i k i

i i

Q i U k h M k h M
p

h M
= =

=

∀

w
 (19)

sensor (1, ,)i ih Mw refers to the inlet system state for the
corresponding free stream Mach number, and

sensor (2, ,)i ih Mw , sensor (3, ,)i ih Mw , and sensor (4, ,)i ih Mw
correspond to the system states resulting with policy specific
control parameters. The altitudes and Mach numbers,
(),i ih M , are chosen as:

() () () () () ()
() () () () () ()
() () () () () ()

1 1 4 4 7 7

2 2 5 5 8 8

3 3 6 6 9 9

, 27km ,7.2 ; , 30km ,7.2 ; , 33km ,7.2
, 27km ,8.0 ; , 30km ,8.0 ; , 33km ,8.0
, 27km ,8.8 ; , 30km ,8.8 ; , 33km ,8.8

h M h M h M
h M h M h M
h M h M h M

= = =
= = =
= = =

 (20)

These numbers represent altitudes and Mach numbers that are
evenly spread across the space of free stream conditions. For
each of these inlet conditions, the performance of the MHD
generator is computed using the 4 controllers updated till that
point in the simulation. It should be noted that such
verification can only be carried out in a simulation mode,
where the actual behavior of the system is assumed to be
known so that the simulation is simultaneously carried out for
these chosen altitudes and free stream Mach numbers for
computing this average Q-function, while the system is
assumed to be operating at other conditions. In a real
experiment, the performance at these altitudes and Mach
numbers cannot be observed till the system operates at all of
them. One of the challenges of reinforcement learning
algorithms, as applied to this problem, lies in verification of
their performance in an on-line setting. For the present
discussion, however, the prescribed method is used in the
analysis of the performance. Table I lists the weighting
parameters chosen in the cost function

Table I
Weighting parameters chosen in Eq. (3)

p1 q1 r1 r2

20 0.00001 0.005 25

B. Case 1: Results using the all-sensor simultaneous update method
 This case illustrates the application of the policy iteration
algorithm, where the policy for each of the sensor location is
simultaneously evaluated and then improved. Fig. 4a through
4d monitor the performance of the update algorithm by
observing the behavior of the average Q-function for each

15

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

sensor location. The solid line represents the average Q-
function computed using Eq. (19) by running the simulation at
the operating conditions given in Eq. (20). The dashed line
represents the averaged output of the Q-function network for
the system states corresponding to these operating conditions
and the control input given by the current controller network.
The policies for each of the sensor location are evaluated by
training the Q-function network for 150 time steps and then
improved by updating the controller network. Levenberg-
Marquardt algorithm is used as the training algorithm in the
evaluation step, and an adaptive learning rate gradient descent
algorithm used in the improvement step.

Fig. 4. Comparison of the Actual Averaged Q-function with the Averaged-
function Network Output with the all-sensor simultaneous update

 The performance of both the policy evaluation and the
policy improvement steps can be assessed from these figures.
Successful policy evaluation corresponds to the dashed line
converging to the solid line during the 150 time-step period.
Successful policy improvement corresponds to the subsequent
lowering in value of the average Q-function of the actual
system denoted by the solid line. Fig. 4a illustrates the
behavior of the average Q-function for sensor-1, which also
corresponds to the overall performance of the MHD generator.
It can be noted that during every policy evaluation period of
150 time steps, the average Q-function output of the neural
network gets closer to the average Q-function output of the
actual system. This indicates success of the policy evaluation
step carried out using the semi-batch training given by Eqs.
(10-12). The discontinuous nature of the graph results from
the fact that these observations are taken every 30 time steps.
It is also important to note that it takes around 150 time-step
updates for learning the policy. If the policy were to be
updated without complete evaluation in fewer updates, then
there is no guarantee that this incompletely evaluated policy
will provide the correct gradients for improving the policy.
This brings out the conservativeness of the policy iteration
based update versus the value iteration based update that asks
the policy to be updated at every time step. Regarding the
policy improvement results, it is observed that the actual

average Q-function increases slightly at the first policy
improvement step before decreasing for the subsequent 4
improvement steps. This was attributed to a big learning rate
for the controller at the first sensor location at the first
improvement step after which the rate gets adjusted
appropriately for the subsequent improvement steps, resulting
in a consistent decrease in value of the Q-function.

The policy evaluation and improvement results for the other
sensor locations (2 through 4) are portrayed in Figs. 4b
through 4d. The semi-batch Levenberg-Marquardt algorithm is
successful in correctly training the Q-function network after
every policy improvement step (every 150 time steps).
Regarding the effectiveness of the policy improvement, at the
first policy improvement step, the average Q-function for each
of these sensor locations decreases as expected for successful
policy improvement. For all the subsequent policy
improvement steps, however, the average Q-function shows a
slight increase. This was initially attributed to an incorrectly
tuned learning rate for the neural network controller.
However, any amount of tuning did not alter this general
behavior. Further investigation revealed that this is a natural
consequence of the dependence of the Q-function upon the
previous section controller. The average sensor-1 Q-function
is calculated for the chosen free stream conditions given by
Eq. (20). However, the average Q-function for sensor-2 is
computed for system states resulting based on the free stream
inlet conditions as well as the control applied in the first
section. Similarly the average sensor-3 Q-function is
computed for system states resulting from the free stream inlet
conditions and the control applied in the first two sections.
Now consider a particular operating point corresponding to a
particular free stream altitude and Mach number. After the
first policy improvement step, the electron beam current
applied in the first quarter section of the channel increases
from its previous value, as seen in subplot 2 of Fig. 5. This
reduces the Mach number at the sensor-2 location. A lower
Mach number at the beginning of section 2 implies that the
power extracted while going from this Mach number to the
prescribed exit Mach number decreases. Correspondingly, the
Q-function for these flow variables, which is defined with a
negative sign on the net power extracted, is higher than the Q-
function for the flow variables that were seen at this sensor
location before the policy improvement step. This observation
applies to the further sensor locations 3 and 4 as well. The
insight brings out the richness and complexity of this
reinforcement learning implementation for this finite horizon
problem that has multiple Q-functions and controllers with
dependencies versus infinite time optimal control problems
that have a single Q-function and controller.
 Fig. 5 illustrates the Mach number and electron beam current
input profile along the channel, before and after the update for
the free stream inlet conditions: () (), 30km ,8.0h M = . After
update, the Mach number gets closer to 1.5. The actual values
of the exit Mach number before and after the update are 1.81
and 1.47 respectively.

0 100 200 300 400 500 600 700
-10

-9

-8

-7

-6

-5

-4

update index

A
ve

ra
g

e
Q

-fu
nc

tio
n

 fo
r

se
ns

o
r 1

Average Q-function
output of the neural network
Average Q-function of the
actual system

0 100 200 300 400 500 600 700
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

update index

A
ve

ra
g

e
Q

-fu
nc

tio
n

 fo
r

se
ns

o
r 2

Average Q-function
output of the neural network
Average Q-function of the
actual system

0 100 200 300 400 500 600 700
-6

-5

-4

-3

-2

-1

0

update index

A
ve

ra
g

e
 Q

-fu
nc

tio
n

 fo
r s

en
so

r
3

Average Q-function
output of the neural network
Average Q-function of the
actual system

0 100 200 300 400 500 600 700
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

update index

A
ve

ra
ge

 Q
-fu

n
ct

io
n

 fo
r s

e
ns

or
 4

Average Q-function
output of the neural network
Average Q-function of the
actual system

(a) (b)

(c) (d)

16

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Fig. 5. Mach number and electron beam current input for

() (), 30km ,8.0h M = , before and after update.

C. Case 2: Results using sequential one-sensor-at-a-time backward update

Fig. 6. Comparison of the Actual Averaged Q-function with the Averaged-
function Network Output with the one-sensor-at-a-time backward update

 In this case, the Q-function and the controller for section 4
are optimized first, followed by the section 3, section 2 and
section 1 Q-function and controller respectively. The policy
evaluation, as in the previous case, is carried out for 150 time
steps and two policy improvements are carried out for each
sensor location. This case, therefore, requires a much longer
update time (1200 time steps) compared to the previous case
(750 time steps). Fig. 6a illustrates the policy evaluation and
improvement for sensor-4 location. The semi-batch based
Levenberg-Marquardt algorithm is successful in learning the
policy. After two policy improvements, the average Q-
function reaches a value that is comparable to the one
achieved in the previous case. The Q-function and the
controller network are thereafter frozen, and the policy
evaluation and improvement is initiated for the sensor-3
location. The sensor-3 Q-function and controller neural
networks also go through two policy evaluations and
improvements. In both the sensor-3 and sensor-4 policy
improvements, the Q-function decreases in the second policy
improvement step as compared to the previous case shown in
Figs. 4c and 4d. This is again due to the fact that when the

sensor-4 policy is being evaluated and improved, the policies
of all the previous sensor locations are fixed. So the Q-
function average is computed for the same flow variables.
However, after two policy improvement steps, when the
sensor-4 policy is frozen, the average sensor-4 Q-function for
the actual system starts increasing slightly as the average is
now computed for flow variables that are influenced by the
sensor-3 controller. At the same time, the output of the sensor-
4 Q-function network prediction starts deteriorating as it has
never seen these flow variables as its input during its training
phase. While the same effect occurs in case 1, the sensor-4 Q-
function is getting re-evaluated and improved, and so the Q-
function network continues to predict the actual averaged
sensor-4 Q-function. Figs. 6c and 6d illustrate a similar
behavior for sensors 2 and 1 respectively.
 The policy evaluation, as in the previous case, is carried out
for 150 time steps and two policy improvements are carried
out for each sensor location. This case, therefore, requires a
much longer update time (1200 time steps) compared to the
previous case (750 time steps). Fig. 6a illustrates the policy
evaluation and improvement for sensor-4 location. The semi-
batch based Levenberg-Marquardt algorithm is successful in
learning the policy. After two policy improvements, the
average Q-function reaches a value that is comparable to the
one achieved in the previous case. The Q-function and the
controller network are thereafter frozen and the policy
evaluation and improvement is initiated for the sensor-3
location. The sensor-3 Q-function and controller neural
networks also go through two policy evaluations and
improvements. In both the sensor-3 and sensor-4 policy
improvements, the Q-function decreases in the second policy
improvement step as compared to the previous case shown in
Figs. 4c and 4d. This is again due to the fact that when the
sensor-4 policy is being evaluated and improved, the policies
of all the previous sensor locations are fixed. So the Q-
function average is computed for the same flow variables.
Similarly when the sensor-3 policy is being evaluated and
improved, the policies of sensor-1 and sensor-2 are fixed, and
the Q-function average for the sensor-3 location is computed
for the same flow variables. However, after two policy
improvement steps, when the sensor-4 policy is frozen, the
average sensor-4 Q-function for the actual system starts
increasing slightly as the average is now computed for flow
variables that are influenced by the sensor-3 controller. At the
same time, the output of the sensor-4 Q-function network
prediction starts deteriorating as it has never seen these flow
variables as its input during its training phase. While the same
effect occurs in case 1, the sensor-4 Q-function is getting re-
evaluated and improved, and so the Q-function network
continues to predict the actual averaged sensor-4 Q-function.
Figs. 6c and 6d illustrate a similar behavior for sensors 2 and 1
respectively.
 The sequential sensor-by-sensor update based on the
dynamic programming principle, therefore, suffers from two
major disadvantages when applied in an on-line setting. Firstly
the update is slower as each sensor is evaluated and improved
individually. Secondly when the previous sensor locations

0 200 400 600 800 1000 1200
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

update index

A
ve

ra
ge

 Q
-f

un
ct

io
n

fo
r s

en
so

r
4

Average Q-function
output of the neural network
Average Q-function of the
actual system

0 200 400 600 800 1000 1200
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

update index

A
ve

ra
ge

 Q
-f

un
ct

io
n

fo
r s

en
so

r
3

Average Q-function
output of the neural network
Average Q-function of the
actual system

0 150 300 450 600 750 900 1050 1200
-8

-7

-6

-5

-4

-3

-2

update index

A
ve

ra
ge

 Q
-fu

nc
tio

n
fo

r s
en

so
r 2

Average Q-function
output of the
neural network
Average Q-function
of the
actual system

0 150 300 450 600 750 900 1050 1200
-10

-8

-6

-4

-2

0

2

update index

A
ve

ra
ge

 Q
-fu

nc
tio

n
fo

r s
en

so
r 1

Average Q-function
output of the neural network
Average Q-function of the
actual system

(a) (b)

(c) (d)

0 0.75 1.5 2.25 3
0

10

20

30

position along the channel (m)
E

le
ct

ro
n

be
am

cu
rr

en
t

in
pu

t
(A

/m
2)

0 0.75 1.5 2.25 3
1

2

3

4

5

6

position along the channel (m)

M
ac

h
nu

m
be

r

before
update

after
update

after
update

before
update

17

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

start getting evaluated and improved, the frozen downstream
sensor Q-function and controller see new flow variables that
they have not been exposed to, and consequently their
prediction quality is poor.

Fig. 7. Mach number and electron beam current input for

() (), 30km ,8.0h M = , before and after update.

 Fig. 7 illustrates the Mach number and electron beam current
input profile along the channel before and after the update for
the free stream inlet conditions: () (), 30km ,8.0h M = . Before
the update the exit Mach number is 1.81. After the update it is
1.44. It is interesting to note the similarities in the general
features of the improved Mach number profiles and the
electron beam current input profiles obtained with the
simultaneous all-sensor-at-at-time and the current
implementation (Fig. 5 and Fig. 7). This is particularly
encouraging because the resulting optimal solutions are
similar regardless of the method used.
D. Case 3: Results using one-sensor-at-a-time update with bootstrapping
 This case is similar to the sequential backward dynamic
programming case, but it removes the various inefficiencies
inherent in that implementation by using bootstrapping.
Specifically, there are three main differences between the two
implementations (Case 3 vs. Case 2). The sensor-4 Q-function
network and controller training remains exactly the same in
both the implementations. For the bootstrapped update,
however, while the sensor-4 policy is being evaluated and
improved, the states and the control inputs at the previous
sensor locations are stored. After two policy improvements of
the sensor-4 networks, the sensor-3 policy evaluation and
improvement is initiated. This update uses the previously
stored sensor-3 states and control inputs and the resulting
sensor-4 state to compute the desired values of the sensor-3 Q-
function using the improved sensor-4 Q-function and
controller network as outlined by Eq. (18). These training
points along with the training data, which are collected after
the sensor-4 improvement, are used to train the sensor-3 Q-
function network. This represents the first main difference
corresponding to the use of this novel mixed Monte Carlo and
bootstrapped update.
 The second difference with the previous sequential
backward implementation corresponds to the evaluation of the
downstream Q-functions even after their policies are frozen
after two policy improvement steps. In the previous
implementation when the sensor-4 Q-function and controller
networks are trained, they remain frozen while the previous

sensor policies get improved. This leads to the separation of
the averaged Q-function evaluated for the actual system and
that computed by the neural network. This is the result of the
network seeing new states as its inputs, after the previous
sensor controller networks get trained. This issue, while not
having much impact on the sequential update, is critical for the
bootstrapped update since the bootstrapped update uses the
downstream Q-functions for updating the upstream Q-
functions. Evaluating the frozen policy for the new states seen
by the downstream Q-functions provides an effective fix for
this problem. Figs. 8a through 8d illustrate all these effects.
For example, in Figs. 8a and 8b, the output of the neural
network keeps tracking the Q-function for the actual system
while in Figs. 6a and 6b, it separates. The semi-batch based
Levenberg-Marquardt algorithm is successful every time in
evaluating the new policy after the old policy is improved for
all sensors.
 The third difference with the previous sequential update
algorithm can be noted by looking at the total update indices
of the two cases. One of the issues with the previous
sequential update algorithm is that the final update takes too
long. For the bootstrapped update case, the two policy
evaluations for the sensor-4 update require 150 training points
each. However, the sensor-3 update has these 150 training
points available as soon it starts its training. So the two policy
evaluations for the sensor-3 Q-function are carried out using
125 and 100 updates respectively. Similarly after the sensor-3
policy is frozen, and the sensor-2 Q-function starts getting
evaluated, it already has 525 training points available. The
sensor-2 policy evaluations are therefore carried out only for
90 and 60 updates respectively. Finally the two sensor-1
policy evaluations are carried out for 50 updates each. The
total updates therefore equal 775 versus 1200 for the previous
case.

Fig. 8. Comparison of the Actual Averaged Q-function with the Averaged-
function Network Output with the one-sensor-at-a-time backward update with

bootstrapping.

0 100 200 300 400 500 600 700 800
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

update index

A
ve

ra
ge

 Q
-f

un
ct

io
n

fo
r s

en
so

r
4

Average Q-function
output of the neural network
Average Q-function of the
actual system

0 100 200 300 400 500 600 700 800
-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

update index

A
ve

ra
ge

 Q
-fu

nc
tio

n
fo

r
se

n
so

r 3

Average Q-function
output of the neural
 network
Average Q-function
 of the
actual system

0 100 200 300 400 500 600 700 800
-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

update index

A
ve

ra
ge

 Q
-f

un
ct

io
n

fo
r s

en
so

r
2 Average Q-function

output of the neural network
Average Q-function of the
actual system

0 100 200 300 400 500 600 700 800
-10

-9

-8

-7

-6

-5

-4

update index

A
ve

ra
ge

 Q
-f

un
ct

io
n

fo
r s

en
so

r
1 Average Q-function

output of the neural network
Average Q-function of the
actual system

(a) (b)

(c) (d)

0 0.75 1.5 2.25 3
1

2

3

4

5

6

position along the channel (m)

M
ac

h
nu

m
be

r

0 0.75 1.5 2.25 3
0

10

20

30

position along the channel (m)

E
le

ct
ro

n
be

am

cu
rr

en
t

in
pu

t
(A

/m
2)

before
update

after
update

before
update

after
update

18

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

Fig. 9 shows the Mach number and electron beam current
input profile along the channel before and after the update for
the free stream inlet conditions () (), 30km ,8.0h M = . Before
the update the exit Mach number is 1.81, while after update it
reaches 1.51.

Fig. 9. Mach number and electron beam current input for

() (), 30km ,8.0h M = , before and after update.

VII. CONCLUSIONS

 This paper illustrates how the off-line optimal controllers for
the hypersonic MHD channel, designed in Ref. [10], can be
updated on-line with the conservative policy-iteration-based
Q-learning as the selected choice of the reinforcement learning
algorithm. Due to the finite horizon nature of this optimal
control problem, there is an interesting range of possible
implementations of the basic policy-iteration-based Q-learning
algorithm. Consequently, the paper proposes three different
update rules involving a combination of concepts from Monte
Carlo update to bootstrapped update, as well as sequential
backward to simultaneous update of all the controllers in this
MHD system. A semi-batch Levenberg-Marquardt algorithm
is used in the policy evaluation step of learning the Q-function
for all the update rules. The adaptive-learning-rate gradient
descent algorithm is used to train the controllers in the policy
improvement step. The MHD application provides rich and
interesting insights into the dynamics of these update rules.
The simulation results gauge the efficacy of each of the
proposed update algorithms by examining the behavior of the
Q-function network output and the actual Q-function averaged
over a range of operating conditions. The results stress the
importance of using the conservative policy-iteration-based
learning versus its value iteration counterpart.

Acknowledgments

 This work was funded by ANSER Corporation through a
grant from the National Science Foundation. The authors wish
to thank Ray Chase and Paul Werbos for this funding support.
Prof. Richard Miles at Princeton University and his applied
physics group, especially Mikhail Shneyder, provided the
MHD modeling support. The authors also wish to thank Prof.
Robert Stengel at Princeton University and Kalmanje
Krishnakumar at NASA Ames Research Center for their
support.

References:

[1] Chase, R.L., Mehta, U.B., Bogdanoff, D.W., Park, C., Lawrence, S.,
Aftosmis, M., Macheret, S.O., and Schneider, M.N., “Comments on a MHD-
Bypass Spaceliner Performance,” AIAA Paper 99-4965, Nov. 1999.
[2] Fraishtadt, V.L., Kuranov, A.L., and Sheikin, E.G., “Use of MHD Systems
in Hypersonic Aircraft,” Technical Physics, Vol. 43, No.11, 1998, p.1309.
[3] Gurijanov, E. P., and Harsha, P. T., “AJAX: New Directions in
Hypersonic Technology,” 7th AIAA International Spaceplanes and
Hypersonic Technologies Conference, Norfolk, VA, Nov. 1996; also AIAA
Paper 96-4609, 1996.
[4] Bityurin, V.A., Lineberry, J.T., Potebnia, V.G., Alferov, V.I., Kuranov,
A.L., and Sheikin, E.G., “Assessment of Hypersonic MHD Concepts,” AIAA
Paper 97-2323, 1997.
[5] Bityurin, V. A., Lineberry, J. T., Potebnia, V. G., Alferov, V. I., Kuranov,
A. L., and Sheikin, E. G., “Assessment of HypersonicMHDConcepts,” 28th

AIAA Plasmadynamics and Lasers Conference, Atlanta, 23–25 June 1997;
also AIAA Paper 97-2393, 1997.
[6] Brichkin, D. I., Kuranov, A. L., and Sheikin, E. G., “MHD Technology for
Scramjet Control,” 8th AIAA International Spaceplanes and Hypersonic
Technologies Conference, Norfolk, VA, 27–30 April 1998; also AIAA Paper
98-1642, 1998.
[7] Rosa, R. J., “Magnetohydrodynamic Energy Conversion,” Hemisphere
Publications, Washington, 1967.
[8] Macheret, S. O., Shneider, M. N., and Miles, R. B., “MHD Power
Extraction from Cold Hypersonic Air Flows with External Ionizers,” Journal
of Propulsion and Power, Vol. 18, No. 2, March-April 2002, pp. 424-431
[9] Macheret, S.O., Schneider, M.N., Miles, R.B., and Lipinski, R. J.,
“Electron Beam Generated Plasmas in Hypersonic Magnetohydrodynamic
Channels,” AIAA Journal, Vol. 39, No. 6, 2001, pp. 1127-1138.
[10] Kulkarni, N.V. and Phan, M.Q., “Optimal Feedback Control of the
Magneto-Hydrodynamic Generator for a Hypersonic Vehicle,” AIAA
Guidance, Navigation and Control Conference, Austin, TX, August 2003,
AIAA Paper 2003-5497.
[11] Werbos, P. J., “Approximate Dynamic Programming for Real Time
Control and Neuro-modeling,” Handbook of Intelligent Control, D.A. White
and D.A. Sofge, (editors), Van Nostrand Reinhold, New York, 1992, pp 493 -
525
[12] Prokhorov, D. and Wunsch, D.C., “Adaptive Critic Designs,” IEEE
Transactions on Neural Networks, Vol. 8, No. 5, 1997, pp. 997-1007.
[13] Balakrishnan, S.N. and Biega, V., “Adaptive Critic Based Neural
Networks for Aircraft Optimal Control,” Journal of Guidance, Control and
Dynamics, Vol. 19, No. 4, August 1996.
[14] Neidhoefer, J. and Krishnakumar, K., “Immunized Adaptive Critic for an
Autonomous Aircraft Control Application, Artificial Immune System and
Their Applications, 1999.
[15] Enns, R. and Si, J., “Neuro-dynamic Programming Applied to Helicopter
Flight Control,” AIAA Guidance, Navigation, and Control Conference and
Exhibit, Denver, CO, 2000, AIAA Paper 2000-4280.
[16] Ferrari, S. and Stengel, R. F. "An Adaptive Critic Global Controller,"
Proceedings of the American Control Conference, Anchorage, AK, May
2002.
[17] Landelius, T., and Knutsson, H., “Greedy Adaptive Critics for LQR
Problems: Convergence Proofs,” (Tech. Rep. No. LiTH-ISY-R-1896).
Linkoping, Sweden: Computer Vision Laboratory (available at
http://www.isy.liu.se/cvl/ScOut/TechRep/PaperInfo/lk96b.html)
[18] Bradtke, S. J., “Reinforcement learning applied to linear quadratic
regulation,” Advances in Neural Information Processing Systems, volume 5,
pages 295-302. Morgan Kaufmann, San Mateo, CA, 1993
[19] Bradtke, S. J., Ydstie, B. E., Barto, A. G., “Adaptive linear quadratic
control using policy iteration,” Proceedings of the American. Control
Conference, Baltimore, MD, June 1994, pp. 3475-3479.
[20] Kulkarni, N. V., and Phan, M. Q., “Data-Based Adaptive Predictive
Control with Application to In-Flight MHD Power Generation,” AIAA-2004-
6221, Proceedings of the 1st AIAA Intelligent Systems Technical Conference,
Chicago, Illinois, September 2004.
[21] Kulkarni, N.V. and Phan, M.Q., “Performance Optimization of a
Magnetohydrodynamic Generator at the Scramjet Inlet,” Journal of Propulsion
and Power, Vol. 21, No. 3, 2005, pp. 822-830.
[22] Kulkarni, N.V. and Phan, M.Q., “Neural Networks Based Design of
Optimal Controllers for Nonlinear Systems,” Journal of Guidance, Control,
and Dynamics, vol. 27 no. 5, September 2004.

0 0.75 1.5 2.25 3
1

2

3

4

5

6

position along the channel (m)

M
ac

h
nu

m
be

r

0 0.75 1.5 2.25 3
0

5

10

15

20

25

position along the channel (m)

E
le

ct
ro

n
be

am

 c
ur

re
nt

 in
pu

t
(A

/m
2)

before
update

after
update

before
update

after
update

19

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

