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Abstract-In this work, we design a policy-iteration-
based Q-learning approach for on-line optimal control of 
ionized hypersonic flow at the inlet of a scramjet engine. 
Magneto-hydrodynamics (MHD) has been recently 
proposed as a means for flow control in various aerospace 
problems. This mechanism corresponds to applying 
external magnetic fields to ionized flows towards achieving 
desired flow behavior. The applications range from 
external flow control for producing forces and moments on 
the air-vehicle to internal flow control designs, which 
compress and extract electrical energy from the flow.  The 
current work looks at the later problem of internal flow 
control. The baseline controller and Q-function 
parameterizations are derived from an off-line mixed 
predictive-control and dynamic-programming-based 
design. The nominal optimal neural network Q-function 
and controller are updated on-line to handle modeling 
errors in the off-line design. The on-line implementation 
investigates key concerns regarding the conservativeness 
of the update methods. Value-iteration-based update 
methods have been shown to converge in a probabilistic 
sense. However, simulations results illustrate that realistic 
implementations of these methods face significant training 
difficulties, often failing in learning the optimal controller 
on-line. The present approach, therefore, uses a policy-
iteration-based update, which has time-based convergence 
guarantees.  Given the special finite-horizon nature of the 
problem, three novel on-line update algorithms are 
proposed. These algorithms incorporate different mix of 
concepts, which include bootstrapping, and forward and 
backward dynamic programming update rules. Simulation 
results illustrate success of the proposed update algorithms 
in re-optimizing the performance of the MHD generator 
during system operation. 

I. INTRODUCTION 

 In recent years, possible application of magneto-
hydrodynamics (MHD) in high hypersonic systems has 
generated a lot of excitement [1-6]. Using MHD as an integral 
part of these systems has been suggested for various 
applications. Magneto-hydrodynamics refers to the study of 
ionized flows [7]. The dynamics of these flows is, therefore, 
governed by fluid equations coupled with the electromagnetic 
equations. For high Mach numbers, the system has enough 

kinetic energy so that relatively small electromagnetic effects 
can lead to big overall effects that can be used for engineering 
benefits. Using external electromagnetic actuators provides 
control authority over MHD systems, and their 
implementation can be treated using control theory.  

Fig. 1. MHD channel at the inlet of a scramjet engine (After Ref. [8]) 

 Figure 1 illustrates an MHD channel at the inlet of a 
scramjet engine of a hypersonic vehicle. The current air-
breathing propulsion technology becomes inapplicable beyond 
a certain Mach number. This device introduces an innovative 
concept that can make hypersonic flight possible with an air-
breathing scramjet engine. As the air enters the inlet of the 
engine, it is ionized using a chosen ionizing mechanism. An 
external magnetic field is also applied perpendicular to the 
flow direction. The ionized air flowing across the magnetic 
field gives rise to an electromotive force (e.m.f) in a direction 
perpendicular to both the air flow and the direction of the 
applied magnetic field. By placing electrodes across the 
channel, electrical energy can be collected. The MHD device, 
thus, acts as a power generator. Part of the kinetic energy of 
the flow is converted into electrical energy. As a result, the 
flow slows down to low supersonic Mach numbers at which 
scramjet combustion is possible. Due to the low static 
temperature of these hypersonic flows, the applications rely on 
an external source of ionization. High-energy electron beams 
have been shown to be the most efficient ionizers [8-9] The 
electron beam current profile can be varied along the 
hypersonic channel to optimize the performance of the MHD 
device. Electron beam current can, therefore, be treated as a 
control input variable for the MHD system, and the resultant 
optimization problem can be handled with optimal control 
theory. 
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 Controlling the flow through the inlet in an optimal manner 
is a critical element of the design for optimizing the 
performance of the engine and, thereby, of the overall vehicle. 
From an optimal control standpoint, this represents a 
challenging application for several reasons. The dynamics of 
the flow with the electro-magnetic interaction are highly non-
linear in nature. Further, there exist significant uncertainties in 
the empirical modeling of these flows. A conservative design 
approach, therefore, corresponds to using all the available 
knowledge of the system in designing the off-line optimal 
controller. This controller can then be updated on-line using 
the observed system behavior for re-optimizing the system 
performance. Reference [10] describes the off-line optimal 
control design of this MHD device, which uses a mixed 
predictive control and dynamic programming approach. 
Various formulations of the on-line update algorithm are 
possible depending on whether value functions or Q-functions 
are used, and whether the derivative forms of these update 
rules are used. These have been categorized as heuristic 
dynamic programming (HDP), action-dependent heuristic 
dynamic programming (ADHDP), dual heuristic programming 
(DHP), and action-dependent dual heuristic programming 
(ADDHP) in the adaptive critic literature [11-12]. Three forms 
of these, viz. HDP, DHP, and ADDHP, need the system model 
in their update laws. References [13-16} present different 
implementations of these architectures. Given that the 
motivation of the on-line update algorithm is in enhancing the 
performance for modeling errors in the off-line design, the 
model-free ADHDP or the Q-function-based formulation is 
used in this application.  
 The second critical issue in the choice of the update method 
is the use of policy iteration or value iteration. Reference [17] 
has shown the convergence of value-iteration-based updates 
for all 4 updates discussed above. However, these 
convergence results are probabilistic in nature. In practice, 
value-iteration-based updates are often seen to fail in learning 
the optimal functional form of the controller. Contrarily, 
policy-iteration-based updates, though being slower, represent 
a much conservative design. References [18-19] have 
illustrated time-based convergence of the policy-iteration-
based Q-learning update to the true optimal gains of the linear 
quadratic regulator. Given that conservativeness of the update 
is more important than speed in a critical engineering system, 
this application uses the policy-iteration-based Q-learning 
paradigm. 
 The rest of the paper is organized as follows. Section II 
discusses the details of the modeling of this MHD system. 
Section III defines the performance measure for the optimal 
control problem. Section IV outlines the off-line optimal 
control design, and extraction of the functional forms 
necessary for the on-line design. Section V presents the on-
line optimal control design. Given the finite horizon nature of 
the problem, the on-line implementation illustrates three novel 
update algorithms. Section VI presents the simulation results 
with the different update algorithms. Finally section VII 
provides the conclusions of this study. 

II. MODELING THE MHD POWER GENERATOR  

 The detailed analysis of the MHD system would typically 
consist of solving 3-dimensional, time-dependent MHD 
equations with the electron beam current as an input to this 
system. For the present work, we focus on steady state 
behavior with dependence on the x-coordinate alone, along the 
length of the channel. The system of partial differential 
equations thereby reduces to a system of ordinary differential 
equations with the position along the length of the channel as 
the independent coordinate. In a supersonic flow perturbations 
or inputs given to the flow are only felt downstream of the 
flow.  The x-coordinate along the flow therefore behaves like 
the time-coordinate in the sense that any event occurring at 
time t affects the system only for time greater than t.  The x-
coordinate can therefore be thought of as being equivalent to 
the time coordinate when we look at the simplified ordinary 
differential equation system corresponding to the steady state 
one-dimensional flow. In terms of this x-t equivalence, we can 
now look at the performance optimization of the MHD 
generator as a standard optimal control problem with the 
independent variable x.   
The system dynamics can be describe as: 

[ ( ), ( ), ]
d

x x x
dx

=
w

f w u  (1) 

Here ( )xu corresponds to the control which in this case is the 
electron beam current, and x corresponds to the position 
variable. ( )xw corresponds to the state vector for the system 
given as: 

( )
T

f f f efx v P nρ=w  (2) 

f
ρ  (kg/m3) is the density of the flow, 

f
v (m/s) is the velocity 

of the fluid, 
f

P  (N/m2) is the static pressure of the fluid, and 
ef

n  (1/m3) is the electron number density along the channel. 
Reference [20] describes in detail the geometry and the 
governing dynamics of the flow along the MHD channel. 

Fig. 2. Sensor and actuator placement of the MHD channel 
 Figure 2 illustrates the implementation outline for the MHD 
channel. It assumes 5 equally spaced sensors along the 
channel, with the first one at the inlet, and the last at the 
channel exit. These sensors divide the MHD generator into 4 
sections. The generator has 4 controllers corresponding to the 
first 4 sensors. Each controller uses the state information at the 
corresponding sensor location to compute the e-beam profile 
from that sensor location to the next sensor location. The 
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sensor at the exit is used to provide the exit flow variables for 
evaluating the exit cost function terms such as exit Mach 
number, exit pressure, exit temperature etc.  

III. PERFORMANCE MEASURE DEFINITION 

 Before discussing the details of the control architecture it is 
important to outline the performance measure for this system, 
which optimizes the e-beam current along the channel. Some 
of the considerations for this definition are: 
1) To minimize deviations from prescribed flow conditions at 

the end of the channel. After going through the MHD 
channel, the flow enters the combustion chamber of the 
engine. There are therefore certain prescribed values of 
flow variables such as temperature, Mach number that 
need to be attained at the end of the channel. 

2) To maximize the net energy extracted from the system that 
corresponds to the difference between the energy extracted 
from the flow and the energy spent on the e-beam 
ionization. 

3) To minimize the net usage of the e-beam current. 
 There are several other beneficial flow characteristics that 
can be incorporated in the cost function such as penalizing 
adverse pressure profile or minimizing the net entropy rise in 
the channel. These are given in more detail in Ref. [21]. 
Posing the optimization as a minimization problem, one 
candidate cost function that implements the requirements 
enumerated above is given as: 

2

1

2 2 21
1

0

( )

(1 )
f

f f fe

x

f f f f f f f f bf
f f f

J p M x M

q Q A k k v B A r j dx
v A β σ

ρ

= −

+ − − +
 (3)    

( )f fM x  is the flow Mach number at the channel exit 
and feM is the prescribed exit Mach number. fQβ is the energy 
deposited by the electron beams (J/m3). fA   is the cross- 
sectional area of the channel (m2). fk is the  load factor, which 
is a measure of the extracted energy converted to electrical 
energy versus heat. fσ  represents the conductivity of the fluid 
[1/(Ohm*m)]). fB is the externally applied magnetic field 
(Tesla). bfj is the electron beam current (Amperes). 1p , 1q ,
and 1r  are the weighting elements of the individual terms of 
the cost function.  The terms on the first line correspond to the 
end position cost, minimizing which ensures the exit Mach 
number to be close to its prescribed value. The term on the 
second line corresponds to the incremental cost function. The 
first element of the integrand maximizes the net energy 
extracted from the system. The second term in the integrand 
penalizes excessive use of the electron beam current. An 
appropriate choice of the weighting elements sets the relative 
importance of the different terms in the cost function. 

IV. Q-FUNCTION AND CONTROLLER INITIALIZATION 
FROM THE OFF-LINE DESIGN

 The structure of the sensor and actuator placement, as 
outlined in Figure 2, motivated a mixed predictive control and 

dynamic-programming-based off-line optimal control design. 
Reference [22] describes the general nature of this 
parameterized predictive control design. The system states 
between sensor locations are predicted using trained neural 
network models. These are used in a dynamic-programming-
based architecture, which designs the 4 controllers, starting 
with the last one first and moving upstream till the inlet 
controller. The control design uses two groups of neural 
networks. The first group is used to model the controller, and 
the second group is used to model the cost-to-go function.   
A. Neural Network Controller 
 The optimal controller corresponds to a feedback function of 
the sensed state, ( )xw . There are only a discrete number of 
sensors in the channel. Based on the sensed state at each 
sensor location, the optimal controller, therefore, provides the 
control inputs from that sensor location to the next sensor 
location. The controller design is correspondingly broken 
down into the design of 4 controllers, one each for the first 4 
sensors. Each of the controllers is parameterized using neural 
networks.  
 The actuators for the MHD channel correspond to individual 
electron beam windows that are assumed to be placed 
continuously along the length of the channel. Each of these 
windows can generate electron beams with different current 
setting. The total number of outputs of each neural network 
controller can, therefore, equal the number of electron beam 
windows between two sensors. For the current geometry, the 
width of the individual e-beam window is 0.5 cm. For the 
assumed channel length of 3 meters, this corresponds to 600 
electron beams. To simplify the control approach, the 
windows are grouped so that each group of 6 windows 
produces e-beams with the same current setting. The control 
inputs to the flow, therefore, correspond to 100 e-beam current 
values. The 4 neural network controllers are, therefore, 
responsible for producing 25 values of electron beam current 
each between two sensor locations.  
 The geometry of the MHD channel in the actual 
implementation can differ from the one assumed in the current 
study. If the channel is longer, then more electron beam 
windows would need to be grouped together that produce the 
same output current. This, however, can reduce the resolution 
of the control action on the flow. One way to make the 
controller design independent of the channel geometry is 
through the use of basis functions. The control inputs between 
two sensor locations can be given as: 

1
( , ) ( ) ( ),  1 , ... , 

N

sensor j sensor j
j

i i i rα φ
=

= =u w w  (4) 

 Equation (4) parameterizes the control, u, in terms of basis 
functions jφ , j = 1,…, N. r is the total number of resulting 
control values. The coefficients of the basis functions, jα , are 
now expressed as functions of the sensed flow variables at the 
corresponding sensor location. The choice and the number of 
basis functions that need to be used is dependant on how 
nonlinear the true optimal control trajectory is, and what 
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functional form it takes. However, this is not known apriori. 
The standard approach is to use trial and error to choose the 
functional form, as well as the number of basis functions. 
Several basis functions were analyzed for the current MHD 
implementation. Gaussian functions were chosen as they gave 
us the best results. 
 In terms of a neural network, this controller structure can be 
implemented by designing the neural network controller with 
3 layers. For a sensed state, sensorw , the first two layers, a 
sigmoid and a linear layer now output the values of the 
coefficients jα . The third layer is chosen as a linear layer, 
with the connection weights between the second and third 
layer given by, 

( )  ,  1 , ... , ;     1 , ... , ij jw i i r j Nφ= = =  (5) 

The size of the third layer therefore equals the total number of 
control values given by the controller, r. While training the 
neural network controller, these weights are kept fixed. Only 
the weights corresponding to the first two layers are updated.  

B. Neural Network Cost-to-go Function Estimator 

 The cost-to-go function, ( ), ( , ),c c f cV x x x xw u , is defined 
as: 

    

2

1

2 2 21
1

( ), ( , ), ( )

(1 )
f

c

c c f c f f fe

x

f f f f f f f f bf
f f fx

V x x x x p M x M

q Q A k k v B A r j dx
v A β σ

ρ

= −

+ − − +

w u
(6)

( , )c fx xu  denotes the control profile from the position cx  to 
the end-position fx . Contrary to the cost function, J [Eq. (18-
19)], ( ), ( , ),c c f cV x x x xw u  is defined for every state ( )xw ,
at all positions. Minimizing the cost-to-go function, therefore, 
provides a feedback controller, which gives the optimal 
control profile as a function of the system state ( )xw . Given 
that the access to the state is available only at the five sensor 
locations, the cost-to-go function networks are designed for 
the first four sensor locations.  
 Optimizing the controller in the off-line design provides the 
optimal cost-to-go function from each sensor location to the 
end of the channel, [ ]( )sensorV i∗ w . This is now used to 
compute the optimal off-line Q-function. This optimal off-line 
Q-function, [ ]( ), ( , )sensor sensorQ i i∗ w w , for any given state-
control pair, [ ]( ), ( , )sensor sensori iw w , is given as: 

[ ] [ ] [ ]( ), ( , ) ( ), ( , ) ( 1)sensor sensor sensor sensor sensorQ i i U i i V i∗ ∗= + +w w w w w
  (7) 

Here the control variable corresponds to the vector of 
coefficients, which defines the control between the ith sensor 
and (i+1) th sensor location. A two-layer network is now 
trained to be the optimal off-line Q-function network for each 
sensor location. The inputs of this network are the state-
control pair [ ]( ), ( , )sensor sensori iw w . For supervising the 
training, the desired value is computed using Eq. (7). The 

utility function, [ ]( ), ( , )sensor sensorU i iw w , is computed using 
the system models. Figure 3 illustrates the Q-function network 
for a given sensor location i.

Fig. 3.  Q-function and controller parameterization for a sensor i.

 The on-line optimal control design corresponds to providing 
update equations for the 4 Q-functions and the 4 controllers. 
Given the nature of the problem, the design of update 
equations for these Q-functions and controllers presents 
interesting possibilities. The early literature treated 
reinforcement learning problems as episodic in nature. The 
solution procedure starts at a randomly picked state in the 
state-space, and takes decisions till it reaches the stipulated 
end of the decision making process. This corresponds to an 
episode, where the solution procedure learns costs associated 
with decisions taken in that episode. The knowledge gathered 
during the episode is used to update the estimates of the value 
or the Q-functions, and the solution procedure is initialized 
with a new starting state. Episodic updates are, therefore, off-
line in nature since the experiment can be repeated. The on-
line forward dynamic programming algorithms with infinite 
decision steps are, instead, inherently non-episodic in nature.  
The finite decision-step on-line MHD performance 
optimization problem can, however, be cast as episodic in 
nature. 
 The actual physical system is governed by equations that 
have both time and space dependence. At hypersonic Mach 
numbers, the response time for the flow to go through the 
channel is of the order of milliseconds, while, depending on 
the flight trajectory, the channel inlet conditions vary on the 
order of seconds. It is, therefore, assumed that the flow 
reaches steady-state for a given inlet condition and the applied 
control, before the inlet condition changes. With this 
assumption, the problem of optimization becomes episodic in 
nature. Two different time indices are considered: Tk , on the 
order of seconds, and tk , on the order of milliseconds. At 
every Tk , the channel sees a starting state based on the flow 
conditions at the channel inlet.Correspondingly, at tk  = 1, the 
controller 1 gives the control profile from the channel-inlet to 
the location of sensor-2. At tk  = 2, sensor-2 observes the flow 
steady-state conditions at its location, and gives the control 
profile upto the location of sensor-3. Similarly at time indices, 

tk  = 3 and tk  = 4, controllers 3 and 4 give the control inputs 
in the subsequent sections of the channel. At tk  = 5, the final 
sensor senses the state variables at the channel exit. These 
control profiles are held constant till the next time index Tk ,
when the inlet sees new flow conditions, and the index tk  is 
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re-initialized to 1. The time index Tk , therefore, corresponds 
to an episode. Consequently, the current problem, as an 
exception, is on-line episodic in nature due to these inner and 
the outer loops defined by the time indices Tk  and tk .

V. POLICY-ITERATION-BASED Q-LEARNING UPDATE EQUATIONS 
FOR THE MHD CHANNEL 

 In the following discussion, 3 different implementations of 
the Q-learning algorithm are presented. The first 
implementation evaluates all 4 Q-functions and controllers at 
every time index Tk . In this case, after sensing the flow state 
and giving control inputs, each of the 4 Q-functions are 
updated using the observed performance. This policy 
evaluation is carried out for a stipulated number of episodes, 
after which, the policy is improved by updating all the 4 
controllers. This policy evaluation and improvement is 
implemented till all 4 sensor Q-functions and controllers get 
optimized. The second implementation presents a one-sensor-
at-a-time update algorithm. In this case, the update follows the 
classical backward dynamic programming method where the 
Q-function for sensor-4 is first evaluated and then the 
controller-4 for sensor-4 is optimized. This is followed by the 
evaluation and improvement of the sensor-3 Q-function and 
controller, then the sensor-2 Q-function and controller, and 
finally the sensor-1 Q-function and controller. The third 
implementation presents a mixed Monte Carlo-bootstrapped 
update algorithm for evaluating and improving the Q-
functions and the controllers. The backward one-sensor-at-a-
time implementation in the second case uses only the observed 
performance to evaluate the Q-functions. This is a Monte 
Carlo update method. The bootstrapped update method, on the 
other hand, uses an estimate of the value function from the 
next sensor location to the end of the channel in updating the 
Q-function for the present sensor location. In the second 
implementation, for example, once the Q-function for sensor-
4, for example, has been optimized, the sensor-3 Q-function 
update equations can use this optimal sensor-4 Q-function in 
its update. So the third implementation uses the observed 
performance along with the existing downstream optimal Q-
functions to design a mixed update method. 
A. Simultaneous all-sensor Q-learning update for the MHD channel 
 The update equations for the Q-functions and controllers are 
given as follows:  
At every time index Tk ,

•  One of the four sections of the channel is given control 
input that is exploratory in nature. To choose the section that 
gets the exploratory input, a set,  πΔ , is defined as:  

( ) ( ) ( ) ( ){ }1 , 2 , 3 , 4π δ δ δ δΔ =  (8) 

One of the elements of the set is set to 1, and the rest of the 
elements set to zero. Each of the elements has equal 
probability to be set to 1. 
•  For  sensor 1 through 4tk i= =

 o The state sensorw   is sensed at the sensor location at the 
corresponding time index tk  .  
 o Based on this sensed value, the electron beam current 
control profile from that sensor location to the next sensor 
location is given as: 

( )

( )
( )

( ) ( ) ( )

sensor sensor sensor sensor

NN sensor NN PI sensor

sensor sensor

sensor 1 2

( , ) ,

, ,
,

,1

b

p

i i

i i
i

i diag ones pδ ε ε ε

= Φ

=
+ ∗ ∗

u w w

f w W
w

  (9) 

1ε through pε  are random numbers chosen from a prescribed 
range. The term ( ),1ones p   refers to a column vector with p 
elements, all set to the value one. Eq. (9) provides the 
capability of exploring the -space for each sensor. 
Depending on the element of the set πΔ   that equals 1, the 
corresponding section is given an exploratory control input, 
while the remaining sections are given control input based on 
the current policy.  
•  The Q-function, by definition, is specific to a particular 
policy. This implies that the control parameters, in evaluating 
the Q-function at the given sensor location, can assume any 
arbitrary value, but the control input in all the following 
sections has to be based on the current policy. Thus, the Q-
function at the given sensor location cannot be computed if an 
exploratory input, non-conformal with the policy, is given at 
any proceeding section. The Q-function update is 
correspondingly skipped for all sections preceding the section 
with the exploratory control input. For the sections thus 
selected, the Q-function error is added to the existing Q-
function composite error, to get the new composite error. 

( ) [ ]

( ){ }
sensor

sensor

sensor

NN sensor
2

NN sensor NN sensor sensor sensor

4

1 sensor NN sensor NN PI sensor
1

( )

, , ( ),
1

( ), , ,

i

Q

Q Q
p

ii
i i

E i

i U i

p U i f i i=
= +

=

−

+

f w W w

w w W

 (10) 

•  The derivative of this composite error for each sensor with 
respect to its Q-function parameter vector, ( )NN sensor

Q iW , is 
computed. The parameter vector is subsequently updated 
using a gradient-based update method to reduce the Q-
function composite error. This outlines the policy evaluation 
step.  
 The policy is improved after this evaluation step as: 

( )
( )

( ){ }
NN PI sensor

NN PI sensor sensor NN sensor NN PI sensor
,

sensor sensor

1, argmin , , ,     

                                 for all ,
i i

i i Q i i

i

+ =
uW

W w f w W

w
  (11) 

The steepest descent approach for improving the policy is 
given as: 
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( ) ( )
( ){ }

( )

NN PI sensor NN PI sensor

sensor NN sensor NN PI sensor

controller
1 NN PI sensor

1, ,

, , ,

,

p

i

i i i i

Q i i

i i
α

=

+ ←

∂
−

∂

W W

w f w W

W
  (12) 

where controllerα   represents the controller learning rate. These 
policy evaluation and policy improvement steps are iterated to 
enhance the performance of the MHD generator.  
B. One-sensor-at-a-time backward Q-learning implementation for the MHD 
channel 
 The policy that defines the Q-function at a given sensor 
location is given by the control parameters from the next 
sensor location to the last sensor location. These dependencies 
are given as: 
• ( )sensorQ i

W
 for sensor 1i =  is defined for  

( ) ( ) ( ) ( )NN PI NN PI NN PI1 , 2 ,3 , 4i i i=W W W W  (13) 

• ( )sensorQ i
W

 for sensor 2i =  is defined for  

( ) ( ) ( )NN PI NN PI2 ,3 , 4i i=W W W  (14) 

• ( )sensorQ i
W

 for sensor 3i =  is defined for  

( ) ( )NN PI3 , 4i=W W  (15) 

•  Finally ( )sensorQ i
W

 for sensor 4i =  is a policy free Q-function 
 The dependencies outlined by Eqs. (13-15) suggest a 
sequential Q-function update method consistent with dynamic 
programming. The Q-function for sensor-4 can be fully 
evaluated before any other preceding sections. After 
evaluating and optimizing the sensor-4 Q-function, the sensor-
3 Q-function can be evaluated and optimized. This backward 
procedure is inherent in the dynamic programming based 
update method outlined in Ref. [10]. The current 
implementation corresponds to the on-line sequential version 
as compared to the off-line batch method of Ref. [10].  
C. .Mixed Monte Carlo-Bootstrapped Q-learning implementation for the 
MHD channel 
 The evaluation of the Q-function for both the simultaneous-
all-sensor, and one-sensor-at-a-time implementations are 
based on observed performance values corresponding to a 
Monte Carlo update. For example, the desired value of the Q-
function for a state-control pair at the sensor-1 location is 
computed by giving the policy specific control inputs from 
section 2 to the end of the channel, and summing all the 
observed individual sectional performances. A bootstrapped 
update rule, instead, uses a function approximator to estimate 
the cost-to-go function. The Monte Carlo update is more 
accurate than the bootstrapped update as it uses the actual 
value rather than the estimated value of the Q-function for 
computing the desired signal. This update, however, has to 
wait for the system to go through the episode to provide data 
for using in its update rule. If a Q-function approximator can 

provide accurate estimates of the cost-to-go function, then, 
using this information along with actual data from the system 
can substantially accelerate the learning process. This hints to 
a mixed Monte Carlo-bootstrapped update algorithm that can 
be designed for the MHD generator. This procedure is 
formalized as follows. 
At every time index Tk ,

•  For sensor 1 through 4tk i= =
The control parameters are given by Eq. (9). If the Q-function 
is being evaluated for the sensor location sensori , then 

( )sensor 1iδ = , else ( )sensor 0iδ =
•  The control parameters, ( )sensor sensor, iw , and the sensed 
states ( )sensor sensoriw   are stored in the existing tuple data-set 

           

( ) ( ) ( ) ( )sensor sensor sensor sensor sensor sensor
sensor

, , , , , 1,

, 1 T

i i i i i i
T i

i k

+
=

=

w w w

  (16) 

•  The Q-function error is computed only for the section 
whose Q-function is being evaluated. This error is added to the 
existing Q-function composite error for the section, to get the 
new composite error. 
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  (17) 

 The first summation computes the part of the composite 
error given by the observed system data. The second 
summation corresponds to the Q-function error that uses the 
elements of the tuple data-set, ( )sensorT i , to provide additional 
data points. For example, when the sensor-4 Q-function is 
being evaluated and improved, the tuple data-set, ( )3T , for 
the third sensor location gets populated. The sensor-4 Q-
function and controller, once optimized, can be used to 
provide the estimated optimal cost-to-go function value for the 
sensor-4 states stored in ( )3T .  The error computation for the 
case of ( )3T  is given as: 

( ) ( ) ( ) ( ){ }sensor sensor sensor 33 3, , ,3, , 4, , 1T i i i i p= =w w w

( ) ( ){ } ( ) ( )sensor sensor NN sensor sensor

3

3, , ,3, 3, , ,3, ,

                                                                                 1

QQ i i i i

i p

=

=

w w f w w
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  (18) 

This bootstrapped error, summed for all the 
sensor 3ip =  data 

points of ( )3T , represents the second summation in Eq. (18). 
Since this error requires the optimal sensor-4 Q-function and 
controller, its computation is carried out immediately after the 
sensor-4 Q-function and controller are optimized. In a similar 
manner, the bootstrapped errors for sensor-2 and sensor-1 are 
computed immediately after sensor-3 Q-function and 
controller, and sensor-2 Q-function and controller, are 
optimized respectively. 
•  The derivative of this composite error with respect to its Q-
function parameter vector, ( )NN sensor

Q iW , is computed, and the 
parameter vector is updated using a chosen gradient update 
method.  
 A big advantage of this update rule is the substantial 
acceleration in the update rate. For example, the sensor-3  Q-
function evaluation using the Monte Carlo alone one-section-
at-a-time update rule given in the previous subsection initiates 
after the sensor-4 Q-function and controller are optimized and 
subsequent system data starts becoming available. For the 
mixed Monte-Carlo bootstrapped update, after the sensor-4 Q-
function and controller are optimized and before the 
subsequent data starts getting collected, the evaluation of the 
sensor-3 Q-function can be initiated with the bootstrapped 
error computed using ( )3T . This advantage increases for the 
sensor-2 and sensor-1 Q-functions as the data-sets, ( )2T  and 

( )1T , have a lot more data points available, which can be 
used to start updating the Q-function using their respective 
bootstrapped errors.  

VI. SIMULATION RESULTS 

 For an on-line scenario, the data distribution is attached to 
the particular flight trajectory, which is given by free-stream 
altitude and Mach number. These free-stream conditions 
translate to flow variables at the channel inlet. For the current 
implementation, the chosen flight trajectory represents an 
arbitrary flight altitude within the prescribed limits, with the 
vehicle accelerating from Mach 7.2 to Mach 8.8. This is 
followed by another flight altitude, and the vehicle 
decelerating from Mach 8.8 to 7.2. This sequence is then 
repeated for the length of the test flight. 
A. Verification criteria for MHD generator performance improvement: 
 An important aspect of the proposed on-line design is 
defining an appropriate performance metric for measuring the 
success of the update methods.  Improvement of the 

performance of the MHD generator at any single altitude-
Mach number pair using the proposed algorithms, while 
important, does not necessarily suggest the success of these 
algorithms in general. The success of both the policy 
evaluation and policy improvement steps needs to be 
monitored. An average Q-function is, therefore, defined that 
considers the averaged Q-function function value at each of 
the sensor locations computed over a range of free-stream 
altitudes and Mach numbers.  

( ) [ ]

( )
sensor

4

sensor sensor
1

1 ( , , ), ( , , )  

                all ,

p

i i i i
i k i

i i

Q i U k h M k h M
p

h M
= =

=

∀

w
 (19)  

sensor (1, , )i ih Mw refers to the inlet system state for the 
corresponding free stream Mach number, and 

sensor (2, , )i ih Mw , sensor (3, , )i ih Mw , and sensor (4, , )i ih Mw
correspond to the system states resulting with policy specific 
control parameters. The altitudes and Mach numbers, 
( ),i ih M , are chosen as:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 1 4 4 7 7

2 2 5 5 8 8

3 3 6 6 9 9

, 27km ,7.2 ; , 30km ,7.2 ; , 33km ,7.2
, 27km ,8.0 ; , 30km ,8.0 ; , 33km ,8.0
, 27km ,8.8 ; , 30km ,8.8 ; , 33km ,8.8

h M h M h M
h M h M h M
h M h M h M

= = =
= = =
= = =

  (20) 

These numbers represent altitudes and Mach numbers that are 
evenly spread across the space of free stream conditions. For 
each of these inlet conditions, the performance of the MHD 
generator is computed using the 4 controllers updated till that 
point in the simulation. It should be noted that such 
verification can only be carried out in a simulation mode, 
where the actual behavior of the system is assumed to be 
known so that the simulation is simultaneously carried out for 
these chosen altitudes and free stream Mach numbers for 
computing this average Q-function, while the system is 
assumed to be operating at other conditions. In a real 
experiment, the performance at these altitudes and Mach 
numbers cannot be observed till the system operates at all of 
them. One of the challenges of reinforcement learning 
algorithms, as applied to this problem, lies in verification of 
their performance in an on-line setting. For the present 
discussion, however, the prescribed method is used in the 
analysis of the performance. Table I lists the weighting 
parameters chosen in the cost function 

Table I 
Weighting parameters chosen in Eq. (3) 

p1 q1 r1 r2

20 0.00001 0.005 25

B. Case 1: Results using the all-sensor simultaneous update method 
 This case illustrates the application of the policy iteration 
algorithm, where the policy for each of the sensor location is 
simultaneously evaluated and then improved. Fig. 4a through 
4d monitor the performance of the update algorithm by 
observing the behavior of the average Q-function for each 
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sensor location. The solid line represents the average Q-
function computed using Eq. (19) by running the simulation at 
the operating conditions given in Eq. (20). The dashed line 
represents the averaged output of the Q-function network for 
the system states corresponding to these operating conditions 
and the control input given by the current controller network. 
The policies for each of the sensor location are evaluated by 
training the Q-function network for 150 time steps and then 
improved by updating the controller network. Levenberg-
Marquardt algorithm is used as the training algorithm in the 
evaluation step, and an adaptive learning rate gradient descent 
algorithm used in the improvement step. 

Fig. 4. Comparison of the Actual Averaged Q-function with the Averaged-
function Network Output with the all-sensor simultaneous update 

 The performance of both the policy evaluation and the 
policy improvement steps can be assessed from these figures. 
Successful policy evaluation corresponds to the dashed line 
converging to the solid line during the 150 time-step period. 
Successful policy improvement corresponds to the subsequent 
lowering in value of the average Q-function of the actual 
system denoted by the solid line. Fig. 4a illustrates the 
behavior of the average Q-function for sensor-1, which also 
corresponds to the overall performance of the MHD generator. 
It can be noted that during every policy evaluation period of 
150 time steps, the average Q-function output of the neural 
network gets closer to the average Q-function output of the 
actual system. This indicates success of the policy evaluation 
step carried out using the semi-batch training given by Eqs. 
(10-12). The discontinuous nature of the graph results from 
the fact that these observations are taken every 30 time steps. 
It is also important to note that it takes around 150 time-step 
updates for learning the policy. If the policy were to be 
updated without complete evaluation in fewer updates, then 
there is no guarantee that this incompletely evaluated policy 
will provide the correct gradients for improving the policy. 
This brings out the conservativeness of the policy iteration 
based update versus the value iteration based update that asks 
the policy to be updated at every time step. Regarding the 
policy improvement results, it is observed that the actual 

average Q-function increases slightly at the first policy 
improvement step before decreasing for the subsequent 4 
improvement steps. This was attributed to a big learning rate 
for the controller at the first sensor location at the first 
improvement step after which the rate gets adjusted 
appropriately for the subsequent improvement steps, resulting 
in a consistent decrease in value of the Q-function.  

The policy evaluation and improvement results for the other 
sensor locations (2 through 4) are portrayed in Figs. 4b 
through 4d. The semi-batch Levenberg-Marquardt algorithm is 
successful in correctly training the Q-function network after 
every policy improvement step (every 150 time steps). 
Regarding the effectiveness of the policy improvement, at the 
first policy improvement step, the average Q-function for each 
of these sensor locations decreases as expected for successful 
policy improvement. For all the subsequent policy 
improvement steps, however, the average Q-function shows a 
slight increase. This was initially attributed to an incorrectly 
tuned learning rate for the neural network controller. 
However, any amount of tuning did not alter this general 
behavior. Further investigation revealed that this is a natural 
consequence of the dependence of the Q-function upon the 
previous section controller. The average sensor-1 Q-function 
is calculated for the chosen free stream conditions given by 
Eq. (20). However, the average Q-function for sensor-2 is 
computed for system states resulting based on the free stream 
inlet conditions as well as the control applied in the first 
section. Similarly the average sensor-3 Q-function is 
computed for system states resulting from the free stream inlet 
conditions and the control applied in the first two sections. 
Now consider a particular operating point corresponding to a 
particular free stream altitude and Mach number. After the 
first policy improvement step, the electron beam current 
applied in the first quarter section of the channel increases 
from its previous value, as seen in subplot 2 of Fig. 5. This 
reduces the Mach number at the sensor-2 location. A lower 
Mach number at the beginning of section 2 implies that the 
power extracted while going from this Mach number to the 
prescribed exit Mach number decreases. Correspondingly, the 
Q-function for these flow variables, which is defined with a 
negative sign on the net power extracted, is higher than the Q-
function for the flow variables that were seen at this sensor 
location before the policy improvement step. This observation 
applies to the further sensor locations 3 and 4 as well. The 
insight brings out the richness and complexity of this 
reinforcement learning implementation for this finite horizon 
problem that has multiple Q-functions and controllers with 
dependencies versus infinite time optimal control problems 
that have a single Q-function and controller. 
 Fig. 5 illustrates the Mach number and electron beam current 
input profile along the channel, before and after the update for 
the free stream inlet conditions: ( ) ( ), 30km ,8.0h M = . After 
update, the Mach number gets closer to 1.5. The actual values 
of the exit Mach number before and after the update are 1.81 
and 1.47 respectively. 
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Fig. 5. Mach number and electron beam current input for 

( ) ( ), 30km ,8.0h M = , before and after update. 

C.  Case 2: Results using sequential one-sensor-at-a-time backward update 

Fig. 6. Comparison of the Actual Averaged Q-function with the Averaged-
function Network Output with the one-sensor-at-a-time backward update 

 In this case, the Q-function and the controller for section 4 
are optimized first, followed by the section 3, section 2 and 
section 1 Q-function and controller respectively. The policy 
evaluation, as in the previous case, is carried out for 150 time 
steps and two policy improvements are carried out for each 
sensor location. This case, therefore, requires a much longer 
update time (1200 time steps) compared to the previous case 
(750 time steps). Fig. 6a illustrates the policy evaluation and 
improvement for sensor-4 location. The semi-batch based 
Levenberg-Marquardt algorithm is successful in learning the 
policy. After two policy improvements, the average Q-
function reaches a value that is comparable to the one 
achieved in the previous case. The Q-function and the 
controller network are thereafter frozen, and the policy 
evaluation and improvement is initiated for the sensor-3 
location. The sensor-3 Q-function and controller neural 
networks also go through two policy evaluations and 
improvements. In both the sensor-3 and sensor-4 policy 
improvements, the Q-function decreases in the second policy 
improvement step as compared to the previous case shown in 
Figs. 4c and 4d. This is again due to the fact that when the 

sensor-4 policy is being evaluated and improved, the policies 
of all the previous sensor locations are fixed. So the Q-
function average is computed for the same flow variables. 
However, after two policy improvement steps, when the 
sensor-4 policy is frozen, the average sensor-4 Q-function for 
the actual system starts increasing slightly as the average is 
now computed for flow variables that are influenced by the 
sensor-3 controller. At the same time, the output of the sensor-
4 Q-function network prediction starts deteriorating as it has 
never seen these flow variables as its input during its training 
phase. While the same effect occurs in case 1, the sensor-4 Q-
function is getting re-evaluated and improved, and so the Q-
function network continues to predict the actual averaged 
sensor-4 Q-function. Figs. 6c and 6d illustrate a similar 
behavior for sensors 2 and 1 respectively. 
 The policy evaluation, as in the previous case, is carried out 
for 150 time steps and two policy improvements are carried 
out for each sensor location. This case, therefore, requires a 
much longer update time (1200 time steps) compared to the 
previous case (750 time steps). Fig. 6a illustrates the policy 
evaluation and improvement for sensor-4 location. The semi-
batch based Levenberg-Marquardt algorithm is successful in 
learning the policy. After two policy improvements, the 
average Q-function reaches a value that is comparable to the 
one achieved in the previous case. The Q-function and the 
controller network are thereafter frozen and the policy 
evaluation and improvement is initiated for the sensor-3 
location. The sensor-3 Q-function and controller neural 
networks also go through two policy evaluations and 
improvements. In both the sensor-3 and sensor-4 policy 
improvements, the Q-function decreases in the second policy 
improvement step as compared to the previous case shown in 
Figs. 4c and 4d. This is again due to the fact that when the 
sensor-4 policy is being evaluated and improved, the policies 
of all the previous sensor locations are fixed. So the Q-
function average is computed for the same flow variables. 
Similarly when the sensor-3 policy is being evaluated and 
improved, the policies of sensor-1 and sensor-2 are fixed, and 
the Q-function average for the sensor-3 location is computed 
for the same flow variables. However, after two policy 
improvement steps, when the sensor-4 policy is frozen, the 
average sensor-4 Q-function for the actual system starts 
increasing slightly as the average is now computed for flow 
variables that are influenced by the sensor-3 controller. At the 
same time, the output of the sensor-4 Q-function network 
prediction starts deteriorating as it has never seen these flow 
variables as its input during its training phase. While the same 
effect occurs in case 1, the sensor-4 Q-function is getting re-
evaluated and improved, and so the Q-function network 
continues to predict the actual averaged sensor-4 Q-function. 
Figs. 6c and 6d illustrate a similar behavior for sensors 2 and 1 
respectively.  
 The sequential sensor-by-sensor update based on the 
dynamic programming principle, therefore, suffers from two 
major disadvantages when applied in an on-line setting. Firstly 
the update is slower as each sensor is evaluated and improved 
individually. Secondly when the previous sensor locations 
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start getting evaluated and improved, the frozen downstream 
sensor Q-function and controller see new flow variables that 
they have not been exposed to, and consequently their 
prediction quality is poor. 

Fig. 7. Mach number and electron beam current input for 

( ) ( ), 30km ,8.0h M = , before and after update. 

 Fig. 7 illustrates the Mach number and electron beam current 
input profile along the channel before and after the update for 
the free stream inlet conditions: ( ) ( ), 30km ,8.0h M = . Before 
the update the exit Mach number is 1.81. After the update it is 
1.44. It is interesting to note the similarities in the general 
features of the improved Mach number profiles and the 
electron beam current input profiles obtained with the 
simultaneous all-sensor-at-at-time and the current 
implementation (Fig. 5 and Fig. 7). This is particularly 
encouraging because the resulting optimal solutions are 
similar regardless of the method used. 
D. Case 3: Results using one-sensor-at-a-time update with bootstrapping 
 This case is similar to the sequential backward dynamic 
programming case, but it removes the various inefficiencies 
inherent in that implementation by using bootstrapping. 
Specifically, there are three main differences between the two 
implementations (Case 3 vs. Case 2). The sensor-4 Q-function 
network and controller training remains exactly the same in 
both the implementations. For the bootstrapped update, 
however, while the sensor-4 policy is being evaluated and 
improved, the states and the control inputs at the previous 
sensor locations are stored. After two policy improvements of 
the sensor-4 networks, the sensor-3 policy evaluation and 
improvement is initiated. This update uses the previously 
stored sensor-3 states and control inputs and the resulting 
sensor-4 state to compute the desired values of the sensor-3 Q-
function using the improved sensor-4 Q-function and 
controller network as outlined by Eq. (18). These training 
points along with the training data, which are collected after 
the sensor-4 improvement, are used to train the sensor-3 Q-
function network. This represents the first main difference 
corresponding to the use of this novel mixed Monte Carlo and 
bootstrapped update.  
 The second difference with the previous sequential 
backward implementation corresponds to the evaluation of the 
downstream Q-functions even after their policies are frozen 
after two policy improvement steps. In the previous 
implementation when the sensor-4 Q-function and controller 
networks are trained, they remain frozen while the previous 

sensor policies get improved. This leads to the separation of 
the averaged Q-function evaluated for the actual system and 
that computed by the neural network. This is the result of the 
network seeing new states as its inputs, after the previous 
sensor controller networks get trained. This issue, while not 
having much impact on the sequential update, is critical for the 
bootstrapped update since the bootstrapped update uses the 
downstream Q-functions for updating the upstream Q-
functions. Evaluating the frozen policy for the new states seen 
by the downstream Q-functions provides an effective fix for 
this problem. Figs. 8a through 8d illustrate all these effects. 
For example, in Figs. 8a and 8b, the output of the neural 
network keeps tracking the Q-function for the actual system 
while in Figs. 6a and 6b, it separates. The semi-batch based 
Levenberg-Marquardt algorithm is successful every time in 
evaluating the new policy after the old policy is improved for 
all sensors.  
 The third difference with the previous sequential update 
algorithm can be noted by looking at the total update indices 
of the two cases.  One of the issues with the previous 
sequential update algorithm is that the final update takes too 
long. For the bootstrapped update case, the two policy 
evaluations for the sensor-4 update require 150 training points 
each. However, the sensor-3 update has these 150 training 
points available as soon it starts its training. So the two policy 
evaluations for the sensor-3 Q-function are carried out using 
125 and 100 updates respectively. Similarly after the sensor-3 
policy is frozen, and the sensor-2 Q-function starts getting 
evaluated, it already has 525 training points available. The 
sensor-2 policy evaluations are therefore carried out only for 
90 and 60 updates respectively. Finally the two sensor-1 
policy evaluations are carried out for 50 updates each. The 
total updates therefore equal 775 versus 1200 for the previous 
case. 

Fig. 8. Comparison of the Actual Averaged Q-function with the Averaged-
function Network Output with the one-sensor-at-a-time backward update with 

bootstrapping. 
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Fig. 9 shows the Mach number and electron beam current 
input profile along the channel before and after the update for 
the free stream inlet conditions ( ) ( ), 30km ,8.0h M = . Before 
the update the exit Mach number is 1.81, while after update it 
reaches 1.51. 

Fig. 9. Mach number and electron beam current input for 

( ) ( ), 30km ,8.0h M = , before and after update. 

VII. CONCLUSIONS 

 This paper illustrates how the off-line optimal controllers for 
the hypersonic MHD channel, designed in Ref. [10], can be 
updated on-line with the conservative policy-iteration-based 
Q-learning as the selected choice of the reinforcement learning 
algorithm. Due to the finite horizon nature of this optimal 
control problem, there is an interesting range of possible 
implementations of the basic policy-iteration-based Q-learning 
algorithm. Consequently, the paper proposes three different 
update rules involving a combination of concepts from Monte 
Carlo update to bootstrapped update, as well as sequential 
backward to simultaneous update of all the controllers in this 
MHD system. A semi-batch Levenberg-Marquardt algorithm 
is used in the policy evaluation step of learning the Q-function 
for all the update rules.  The adaptive-learning-rate gradient 
descent algorithm is used to train the controllers in the policy 
improvement step. The MHD application provides rich and 
interesting insights into the dynamics of these update rules. 
The simulation results gauge the efficacy of each of the 
proposed update algorithms by examining the behavior of the 
Q-function network output and the actual Q-function averaged 
over a range of operating conditions. The results stress the 
importance of using the conservative policy-iteration-based 
learning versus its value iteration counterpart.  
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