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Abstract — In this paper, a fuzzy coordination method based
on Interaction Prediction Principle (IPP) and Reinforcement
Learning is presented for the optimal control of robot
manipulators with three degrees-of-freedom. For this purpose,
the robot manipulator is considered as a two-level large-scale
system where in the first level, the robot manipulator is
decomposed into several subsystems. In the second level, a fuzzy
interaction prediction system is introduced for coordination of the
overall system where a critic vector is also used for evaluating its
performance. The simulation results on using the proposed novel
approach ,for optimal control of robot manipulators show its
effectiveness and superiority in comparison with the centralized
optimization methods.

I. INTRUDUCTION

The optimal control is one of the most important topics in
control theory and optimization of large-scale systems. The
problems such as complexity, high dimensionality of variables,
geographical separation of subsystems, etc., usually are the
burdens for solving the overall problem in a centralized
fashion. That is way during past three decades, many
approaches such as coordination strategies in multi-level
systems and decentralized schemes have been proposed by
researchers.

In decentralized methods, the system is decomposed into
several subsystems where their optimization only depends on
local variables while the effects and interactions of other
subsystems are either ignored, or considered resulting in robust
decentralized sub-optimal control schemes.

In the coordination methods, similar to the decentralized
approaches, the system is first decomposed into several
subsystems, while the effects among them are compensated
through a coordinator. In this approach, the control of large-
scale systems is done by using the hierarchical multi-level
control scheme. So hierarchical multi-level control is a
common approach that has been presented as an important and
efficient method in control of large scale systems.

The basic principle of hierarchical control is decomposition
of a given large-scale system into several smaller scale systems
and then coordination of the resulted sub-systems to reach the
optimum solution. In an attempt for improving this strategy,
Mesarovic et al. presented one of the earliest formal
quantitative treatments of hierarchical systems by postulating
two coordination principles; Interaction Prediction Principle
(IPP) and Interaction Balance Principle (IBP) [1],[2], where

1-4244-0706-0/07/$20.00 ©2007 IEEE

20

Mohammad Mollaie Emamzadeh

Intelligent Systems Laboratory
Electrical Engineering Department
Sharif University of Technology
Tehran, Iran

molaie @ee.sharif.edu

the coordination of large-scale systems are mainly based on
these two principles.

In [3]-[6], using these two principles (IPP & IBP), two new
gradient based coordination schemes are introduced that have
much faster convergence rates than the classical methods. In
[7],[8], two new neuro-fuzzy reinforcement strategies are
introduced for intelligent coordination of large-scale systems
based on IPP and IBP, where critic vectors are used for
evaluation of their performances. In [9]-[11], using the new
gradient based coordination schemes, the optimal control of
robot manipulators have also been considered. In this paper, by
using the novel strategy [7], the optimal control of robot
manipulators is investigated. The simulation results are also
presented.

In section II, the problem formulation and control problems
are defined. In section III, the dynamic model of a robot arm
with three degrees-of-freedom has been formulated. In section
IV, decomposition of the overall problem, into m sub-
problems and modeling the corresponding subsystems is done.
In section V, the optimization of the first level subsystems are
done using the gradient method. In section VI, the proposed
fuzzy system is introduced to predict the change of interactions
while a critic vector is used to evaluate its performance. In
section VII, the proposed coordination approach based on the
proposed fuzzy interaction prediction system has been applied
to optimal control of the robot manipulator and the obtained
results are compared with the centralized optimal control
approach. Finally, in section VIII, some concluding remarks
are briefly discussed.

II. STATEMENT OF THE PROBLEM

Let there be given an overall process P: XxU — Y and a
performance function G:UxY—V with U as a set of controls,
X as a set of states, ¥ as a set of outputs and V as a set of
performance values. Let also g be defined on U by the
following equation
¢v) = 6lu. Pv)] (1)
The goal of the overall control problem which is denoted by
D, is to find a control action U which minimizes g over U .
Such a control action will be referred to as the overall
optimum.

Let v=Ux---xU Y =Y XX

the i-th

Y,

m>o

subsystem

and X =X,x---xX,, . For

m

each is given by

i=1,2,---,m,
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P:U;xZ; —>Y;, where z, is the set of interactions of the other

subsystems. Now the i-th infimal control problem can be
formulated in terms of an objective function g;, given on

U;xZ; , in terms of the i-th subsystem. Also a performance
function G;:U;xz;xY;—»V can be given by the following

equation
&ilU;.z) = ¢lu;. 7, PU; . 7)) (2)
Let z, in zZ=2zx--xZ, be the predicted input for

interference subsystems that is formulated by 7, =P,z p[);
1<i<m. Then for each Zz,in Zz, the infimal control

problem D; (Z pi) is to find a control U, in U; such that
gi(ﬁisZpi):n?/ingi(Ui’Zpi) 3)
and the minimization is only over the set U; of local controls.

Let z, = (Zpl ,-~~,me) be the predicted interference inputs and
let z=(z,-.z,) be the actual interference inputs occurring
when the sub-optimal control Z}(Zp):[ﬁl(zpl),---,l}m(zl,m)] is
implemented. The overall optimum is then achieved if the
predicted interface inputs are correct (i.e. ¢ =0 where
e, =2;-Z, and 1<i<m). Alternatively, if ¢; can not be made
to be zero, the supremal control problem can be defined as
minimization of an appropriate function of the errors
er,e, e, in the second level.

In Fig. 1, the block diagram of the coordination of two
subsystems using the interaction prediction principle is shown.
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Fig. 1. Coordination of two subsystems using
the interaction prediction principle.

III. ROBOT MODELING

The dynamic model of the robot arm with three degrees-of-
freedom is shown in Fig. 2.
The dynamic model of the robot arm can be obtained by the
Lagrangian method as follows
M(q)i+H(q.4)+G(q (4a)

where ¢;is the angle of joint i,M(q)is the symmetric and

)=+

positive definite inertia matrix, H(q,q) is the coriolis and
centrifugal vector, Glg) is the gravity vector and 7 is the
torque vector.

21

Fig. 2. the robot arm with three degrees-of-freedom.

Now using the following definitions
pi=1 +mllfl + mzllz + m3112 + m41]2 , ¢;1=cos (qi)
pz::12+m2132 +m3122 +m4122 , §;1=sin (q,»)
p3::I3+m3lcz3+m4l32 s c,/-::cos(q[+qj)
Dyi= [mzl{.2 +msly + m412]ll :=sin (‘Ii + qj)
ps:=msles + ms 1,

Pe :=lmales +myls ]l

w

.
> Cijk 32005(‘11' +4q; +qk)
s Sk t=sin (‘]i +q; +11k)
s hyi=psss

s hyi=pysy + pesa;

s h3i=pss3 + pesas

(4b)

pri= [mll(.] +myly + mly + m41|]g
Py i=lmaley + maly +myly ] g
po 1=[msls +myls ]

the parameters of equation (4a) can be written in the following
forms

9 4l Gy | | prer+ pgcin + Pocing
q:=|q2| , T:=|T2| , G=| Gy |=| pscia + Pocin3

9 73 Gy | [ Pocins

- hz(‘hz + 2‘?1‘-12)* Iy (%2 +241g3 + 24.2‘-73)
. T o
g —m\g3 + 24,95 + 232’13
.2 . .
Ingi + h](‘l% +2¢,9;

Mll M12 M|3
M(q):=| My My My |, H=
My Mz My

(40)

M= py+ Py + Py +2p4cy +2pscy +2psCay » Moy = py+ p3 +2pscs
» My =Mz =p3+ pscs

» M33=p;

My =My = py+ p3+ pacy +2psC3 + Peca3
M3=M3; = p3+ psc3 + peca3

IV. DECOMOSITION OF THE ROBOT MODEL

For the purpose of decomposition, here the system of robot
arm with three degrees-of-freedom is decomposed into three
subsystems where each joint is assumed as one subsystem.
This is given below

XI Ul Zl
X=|X,| ,U=|U,y| ,Z=|2,
X3 U3 ZS

X;[k +1]= Fi(Xi[k]’Ui[k]’Zi[k])
{X,[0]=X.o i=1.23

(5a)

and F, is continuously double differential analytical function
of the i-th subsystem, and X;, U, andZ; ;i=1,2,3 are defined
as follows

x.[k]{j;ﬁﬂ:[g{’;ﬂ . Ulk=uld= g ]
&ll[k X21[k] 2[’<
il il | (5b)
2slk]| | xpilk] slk]
2= = ]| ]
<15[k] ”2["] Tz[k]
261k uslk] 5k]
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=l 2H ] v-l-sl
Zzl[k] Xn[k] ‘Il[k]
zzz{k} ’CIZ% } ql[[k]] (SC)
23lk X3k 31k
2| 2 el 7]
Zzs[k] ”1["] Tl[k]
~25[k] “z[k] Tz[k]
xﬂ[k z[k]
=] <) - == s
m[k Xu[] 1[]
21 el i Gd)
qx[k] '\‘21[1‘] z[k]
2= | ol |k
asle]] | wlk]| | alk]
welk]] [ wlk]| |zl

V. OPTIMIZATION WITH THE GRADIANT METHOD

Let us assume that we have a general nonlinear dynamic
system described as follows
{x[kn]: F(x Lok 6)
X [0]: Xo
where X is the state vector, U is the control action and F is
continuously double differential analytical function. Also the
initial state X, is assumed to be known.

Now, the control problem is to find U which minimizes the
cost function given by the following equation

xbLul]) %)

By decomposition of the overall system into m subsystems,
each subsystem can be described by non-linear state space
equation of the following form

J(X,U)= G (x[n+1])+ ZGk

frlel=rixklukl ) ®
x;[o]= x,o 1<i<m

The cost function can also be decomposed as follows
J(x.U)= %J,-(X,-,U,-,Z,-) %a)
where
1(X0)=G; oy (411,20 +11)+ 36, 4 (Xl [l 2, [k]) (9b)

Now, the necessary conditions for optimality of each
subsystem can be written in terms of the Lagrangian 1,, which

is in the following form

L (L) =Gy (X[ + I]vzz["Jr'])*léoGi k (Xi[k]vur[k]’zi[k]) (10)
S S RECARRARRANEAY
So the first order necessary conditions become
%}—X[kﬂ] kL0 Z ) =0 (11
i=1,...m , k=0,..,n
A () _ G (*Xi[n+1],2,fn+1]) -
{ax ok ] tAkl=0 (12)

i=1,...m

HISEATEA) BIAR

+ Ak 71]7[” X; k]

]
X, [k] x, k] ax k]

BL[(.)_ 3G, , (x;[x].u;k]. z[k])
= o]
i=1,...,m , k=1,..,n

(13)

L, () _ 36, (x,kLukl.z,[k]) (ar(x:lklo k] z kDY 1
{an[k]_ U, [k] 7[ U k] ] Ailk]=0 (14)
i=1, ..m k=0,.,n

Now for each subsystem, the control problem U, which
minimizes the Lagrangian Z,, can be obtained by the following
updating rule

U; [k] U’ l[k] ﬂm (15)

VI. Fuzzy PREDICTION

The prediction of the change of interactions will be done
using a fuzzy system. For evaluating its performance, a critic
vector is used as shown in Fig. 3, to develop a method of
training for this fuzzy system. The proposed training approach
is based on minimizing the energy of the critic vector. In this
reinforcement approach, the error of prediction and its rate of
changes are used in such a way that they increase the speed of
convergence of the algorithm.

'

E Critic Vector

Fuzzy predictor

Zp A -

_ e
The predicted Feal interaction
of each subsystem (27 [+

itteraction for
Fig. 3. The block diagram of fuzzy interaction prediction system.

each subsystern

A. Designing the Critic Vector
The critic vector is defined in the following forms

nlkl=Rek]. dk]) 5 1<i<m 0<k<n (16)
where

difk]:= dfk]= el [k]-¢~![k] (17
@[[k]= Z; [k]'ZP[ [k] (18)
Z=[Zl ez Zm]T’Zfz[Z[[l] Zi[k] Zz[”]] (19)

also z; is the real interactions and Z,, is the predicted value

given by the coordinator. Now, the critic vector is assumed to
be formulated as follows

ilkl:=R (e k], dilk])=¢;[k]*+ 4 d;[k]?
where 4 is a positive constant parameter (i.e. 0<A<1).

(20)

B. Designing the Fuzzy Prediction System

The predicted values for the interactions are assumed to be
updated in the following form
Zpi=Zp +AZp, (21)
To predict the change of interactions, a fuzzy system based on
fuzzy inference is used that denotes the variation of the
predicted values as follows
Az k] = si[k] = 5 (efk] . afk]) (22)
where S is a fuzzy system based on the Takagi-Sugeno-Kang
(TSK) model, that also has been used extensively in fuzzy

22
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modeling, and in this case, is defined by the following fuzzy
sets and rules
if elklisA and a[klisB, then s,=a,- ¢fk]+b - dk]+c
; (23)
if e)[klis Ay and d,[k]is By then sy =ay - e;[k]+by - d;[k]+cy
In this paper, «; and b, are assumed to be zero. So the fuzzy

sets and rules can be obtained easily, in the following forms
if el-[k]is A, and di[k]is By then s =¢,
; (24)
if ei[k]is Ay and di[k]is By then sy =cy

where 4 A; and uB; are the membership functions of A; and

B; , respectively. Also c; are the real constant parameters.

Now to summarize, the relation of s;[k] with ¢][k] and
d;[k] can be given by the following fuzzy inference

ime,-[k])wj(d,-[k]m

S[[k]:S (ei[k] . d; [k]): (25)

gl/—mj(ei[k])':qu(di[k])

C. Training the Fuzzy Predictor
The goal of training is to minimize the energy of a critic

vector related to the system parameters ; ¢ B where

E=L5 kT k] (26)
2 k=0

also

Ik =[nlk] nlk] - nl6]] @7

Now to update the parameters of the proposed fuzzy system,
the following updating rule can be used

n+l m nl
ch:ﬂ,a_E:, 4 orlk]” k)= - 4 ank] K]
xlk 0 a

28
2, nE %, (28)

where 77 is a step size which has an effect on the rate of

training and convergence of the fuzzy system parameters,
during learning. Now, by using the chain rule, we have
k] _ anlk] defk]  onlk] adi[k]
e, oelk] Toc, " aafk] o,

J
To calculate the right side of this equation, we need to

(29)

calculate; 9nlk] | dalk] | ] and 2. Now using (20), we
de; oc; i ac;

can write

A [k] Anlk]

=2¢k] =2 1d,[K] (30)

e, [k od,[k

Moreover, the gradient of the prediction errors related to the

system parameters can be given by

Be[[k] _ Be[[k] . ZP[[k] _ ae[[k] . OAZp,; [k] __O0AZy, [k] .
ac;  Zplk] dc; MZp k] ac; T d;

- = Tz:,j[k] (3 1)
. 7, ;[k], using (22) and (25), we have
T, lk]:=- BA?C’I [l ”AI [k] -18,(d;[k])
! E/’AI ei[k] - 1B, di[k]

Now, in order to calculate 7;

(32)

Also from (17) and (31), we can formulate ad’—[k] as follows
Cj

ad;[k] _ od;[k] e [k] ad;[k]  del'[k]

de; o] o, o k] o,
So the training of the fuzzy predictor can be formulated in the
following form

=7, [k]-1"[k] (33)

c;” :cj[k]+ Ac; (34a)

where

pe, == 35 Al e 35 k] g (34b)
! i= lk 0 9 i=1 k=0 aC

) ofe) 1! )2 20, - 755 (340)

Cj

VII. SIMULATION RESULTS

The proposed method is used to obtain the optimal control
of a 3DOF robot manipulator. The parameters of the robot
model are assumed to have the following values [12]

Table 1. The parameters of the robot manipulator.

Mass Length Moment of Inertia
(mi,Kg) | (li,m) | (li,m) (I, Kg.m’)
Joint 1 1.2 0.5 0.25 4333 * 107
Joint 2 1.5 0.4 0.2 25.08 * 107
Joint 3 3.0 0.3 0.15 32.68 * 107
Mypaa =my=0 Kg , g=9.8 N/Kg

Now using (9), the cost function can be written as

Gi ()= kf; ([Xn [1+1]-X, 4 [+1]]2+ 42 [Xiz [r+1]-x;, 4 ["+1”2) (35)

G,-]‘ (‘):L([Xil [k]_

— X o W12 X ]l X o D442 0, kF)

where k,,,, k, and k, are the parameters of the cost function

and defined by the conditions and limitations of the problem.
In the simulation presented in this paper, they are defined to be

Table 2. The parameters of the cost function.

ke | Ky ki=[ kur k2 ki3] T fo tr n
1 | 1072|715 3 12]x107 or [0 0 0]]0.01S] 0S |0.55| 50
In critic vector, A 1is assumed to be 02. The fuzzy

membership functions of #A; or uB; are experimentally
defined by three triangular membership functions as shown in
Figure 4. By this number of membership functions, the fuzzy
system has N =32 =9 rules.

Hix
1“ ()M1

X E] A3 X >
Fig. 4. The triangular fuzzy membership functions.

The values of x,, x,, and x; are shown in Fig. 4. These
values are not equal for different inputs (the input of fuzzy
membership functions; x, can be one of the three following
forms; e, or d, for predicted angles, e, or d, for predicted
velocities, and e, or d, for predicted control actions.). These
are defined as follows
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forx=ezil_ or dZi/ (Z,-qu] orq, orq3) 3 =-0.1, x,=0, x3=0.1

(36)

Jorx=ez or dy, (z,j:ql orqzor%);xl:fl L X =0, x3= 1

for)c:ezu or dz,, Zj =17 or‘rzor’r3) ;x=-50, x, =0, x3=50

The proposed approach is applied to the robot manipulator
to minimize the cost function defined by (9) and (35), where
the desired target trajectories are assumed to be in three
sinosoeid forms and the initial conditions are assumed to be
zero [12].

The simulations are performed for two values; k, =0 and

k,=[1.5 3 12]x107, after 70 iterations of coordination, where

in each iteration the optimization of each subsystem is
performed using the gradient method in 200 steps. For %, =0,

the goal of minimization of cost function defined by (9) and
(35) is only minimization of an energy function of tracking
errors, so there are no limitations on the norm of the input
actions. But for k,=[1.5 3 12]x107, the goal of minimization

of cost function is minimization of both energy functions of
tracking errors and input actions.
In Fig. 5, the calculated optimal control actions are

presented for both values; k,=0 and &, =[1.5 3 12]x107. As

shown in this figure, for k,=[1.5 3 12]x107, the obtained

control actions have smaller values (norm) than the obtained
control actions corresponding to k,=0. Also in Fig. 6, the

obtained optimal trajectories of all joint angles are shown
where for &, =0, the optimized trajectories of all joint angles

have tracked the target trajectories with acceptable tracking
errors. In contrast to obtained results using k,=0, the

optimized trajectories of joint angles using k, =[1.5 3 12]x107

have not be able to track the target trajectories with acceptable
tracking errors.

In Figs. 7, 8 and 9, respectively, the sum-squared
interaction prediction errors of control
actions [g[k] [k] k], joint angles [¢[k] ¢.[k] ¢sk]], and the
joint angular velocities [¢,[k] ¢.[k] ¢;k]] ; 1<k <50 are shown.

These figures present the convergence of the interactions
predicted by fuzzy system in 50 iterations of coordination.

The simulation results of both methods; the centralized
optimization approach (in this approach, the whole problem is
solved in one shot, using a typical gradient optimization
method), and the proposed strategy, are plotted together in
Figs. 10 and 11. The centralized gradient based optimization is
performed in 10000 steps for optimization of 150
variables; U[1],---,U[50], U,[1],-, U,[50] and w©;[1].---, U5[50].
In the proposed strategy, the coordination is done in 50
iterations and in each iteration, the optimization of each
subsystem is performed in 200 steps, where each subsystem
has 50 variables; v,[1]--- U,[50] ; i=1,2,3. As is shown in Figs.
10 and 11, the proposed approach has faster convergence rate
rater than the centralized optimization approach.
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The optimal input of L4
" —Optimized with K, =0
----Optimized with <, =[1.6 3 12]):10’3

200F -7 T =
~400 , L L L I L 1 L L |
0.05 0.1 015 0.2 0.25 0.3 0.35 0.9 0.45 0.5
=L j - - =TT The optimal input of Lz j j
ol
=t} , L L L I L L L
0.05 0.1 (] 025 0.3 0.35 0.3 0.45 0.5

The aptimal input of Ug

(=] 025
time (53

(aKs}5) T8 055 04 045 05

Fig. 5. The optimal trajectories of control actions obtained using
fuzzy coordination scheme.

+ Reference trajectony
___Optimized with k<, =N |
___Optimized with K, =[15 3 12]x10

The optimal angle of q,

u}

£z

D.I2 D.|25 D.IB
The optimal angle of g

01

1 | 1
0.z 0.25 0.3
The optirmal angle of g

0.3 035 [R+]

L 1
0.25 0.4 0.45
tirme (s)

Fig. 6. The optimal trajectories of the joint angles obtained using
fuzzy coordination scheme.

The sum-square interaction prediction errors
! prediction srmrs of U fork =0
. prediction ermrs of U fark = [1.6 3 12]x107°

A0

e
35

prediction errors of U, fork, =0

prediction errars of U, fork, =[1.53 12]:(10'3

oy
o
o
m]

L
S 10

L -kli-- el
20 25 30 35
prediction errors of U fork =0
- prediction erors of U_fork =[1.6312]x10%

o .‘ . e T T e i
5 10 15 20 25 @ 36 40 45 &0
iteration
Fig. 7. The sum-squares of the interaction prediction errors of the joint
torques.

The sum-square interaction prediction errors
" [— prediction ermrs of < =q, for k,=0
. prediction errors of x for k= [1.6 8 12]x107°

11 =9

o 5 101§ 20 55 35 A0 A5 El
0.8F T —— — —
N pred!ct!on ermors of x5, =q,fork =0 =
0.6 - prediction errors of X5y =0g fork =[1.5312]x10

L L -l

35 A0 a5 S0
O for ku:D =
for k,=[1.8 3 12x10

15 20 75 Ex]
— prediction ermors of x_, =
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_ prediction errors of gy =g

520 2% 35 40 a5 50
iteration

Fig. 8. The sum-squares of the interaction prediction errors of the joint
angles.
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um-square interaction prediction errars
—— prediction errars of « fork =0
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. 9. The sum-squares of the interaction prediction errors of the joint

angular velocities.

Cptimized cost function for ky =0

Centralized optimization
—— Coordination Using Fuzzy predictor

=0 35 A0 45 Exl

iterza?ic\n
Fig. 10. The optimized cost function with £, =0, using two approaches ;

the centralized optimization, and the proposed fuzzy coordination method.

Optimized cost function for k, = [1.5 3 12]<10S

Centralized optimization
—— Coordination Using Fuzzy predictor

L
30 s0

25
iteration

Fig. 11. The optimized cost function with  —[15 3 12]x10, using two

approaches; the centralized optimization, and the proposed fuzzy coordination
method.

VIII. CONCLUSION

In this paper, a new approach for optimal control of robot
manipulators, considered as two-level large-scale systems, is
presented. It is shown how the specific feature of intelligent
control including decision making, adaptation, planning and
other characteristics of fuzzy logic and classical optimization
methods, could help to design a unified hybrid approach for
intelligent control of robot manipulators.
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The fuzzy interaction prediction system is used to
coordinate the overall system and also resolve the weakness of
conventional coordination approaches in convergence. This
fuzzy coordinator uses a critic vector to evaluate its own
operation. The fuzzy coordinator learns its dynamics
(parameters) through the minimization of an energy function
relating to the critic vector. The minimization process, to train
the fuzzy coordinator, is done by using the gradient of the
energy function. The training of fuzzy predictor can be done in
an off-line or on-line manner. Here, the parameters of fuzzy
predictor are first calculated by an off-line manner and then,
they are updated in each iteration of coordination in an on-line
manner. It should be noted that in addition to the convergence
of prediction, both critic vector and also the fuzzy interaction
prediction system use the error and its variations, to predict the
change of interactions for coordination of the overall system.

The obtained results present the performance and
convergence of the proposed approach. By simulation of a
robot manipulator, the superiority of the proposed method in
comparison to the centralized method is shown.

The proposed approach could also be extended and used for
coordination and cooperation of multi-agent systems.
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