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      Abstract − In this paper, a fuzzy coordination method based 
on Interaction Prediction Principle (IPP) and Reinforcement 
Learning is presented for the optimal control of robot 
manipulators with three degrees-of-freedom. For this purpose, 
the robot manipulator is considered as a two-level large-scale 
system where in the first level, the robot manipulator is 
decomposed into several subsystems. In the second level, a fuzzy 
interaction prediction system is introduced for coordination of the 
overall system where a critic vector is also used for evaluating its 
performance. The simulation results on using the proposed novel 
approach ,for optimal control of robot manipulators show its 
effectiveness and superiority  in comparison with the centralized 
optimization methods.  

I. INTRUDUCTION 

     The optimal control is one of  the most important topics in 
control theory and optimization of large-scale systems. The 
problems such as complexity, high dimensionality of variables, 
geographical separation of subsystems, etc., usually are the 
burdens for solving the overall problem in a centralized 
fashion. That is way during past three decades, many 
approaches such as coordination strategies in multi-level 
systems and decentralized schemes have been proposed by 
researchers. 
    In decentralized methods, the system is decomposed into 
several subsystems where their optimization only depends on 
local variables while  the effects and interactions of other 
subsystems are either ignored, or considered resulting in robust 
decentralized sub-optimal control schemes.  
    In the coordination methods, similar to the decentralized 
approaches, the system is first decomposed into several 
subsystems, while the effects among them are compensated  
through a coordinator. In this approach, the control of large-
scale systems is done by using the hierarchical multi-level 
control scheme. So hierarchical multi-level control is a 
common approach that has been presented as an important and 
efficient  method in control of large scale systems. 
    The basic principle of hierarchical control is decomposition 
of a given large-scale system into several smaller scale systems 
and then coordination of the resulted sub-systems to reach the 
optimum solution. In an attempt for improving this strategy, 
Mesarovic et al. presented one of the earliest formal 
quantitative treatments of hierarchical systems by postulating 
two coordination principles; Interaction Prediction Principle 
(IPP) and Interaction Balance  Principle (IBP) [1],[2], where 

the coordination of large-scale systems are mainly based on 
these two principles. 
    In [3]-[6], using these two principles (IPP & IBP), two new 
gradient based coordination schemes are introduced that have 
much faster convergence rates than the classical methods. In 
[7],[8], two new neuro-fuzzy reinforcement strategies are 
introduced for intelligent coordination of large-scale systems 
based on IPP and IBP, where critic vectors are used for 
evaluation of their performances. In [9]-[11], using the new 
gradient based coordination schemes, the optimal control of 
robot manipulators have also been considered. In this paper, by 
using the novel strategy [7], the optimal control of robot 
manipulators is investigated. The simulation results are also 
presented. 
    In section II, the problem formulation and control problems 
are defined. In section III, the dynamic model of a robot arm 
with three degrees-of-freedom has been formulated. In section 
IV, decomposition of the overall problem, into m  sub-
problems and modeling the corresponding subsystems is done. 
In section V, the optimization of the first level subsystems are 
done using the gradient method. In section VI, the proposed 
fuzzy system is introduced to predict the change of interactions 
while a critic vector is used to evaluate its performance. In 
section VII, the proposed coordination approach based on the 
proposed fuzzy interaction prediction system has been applied 
to optimal control of the robot manipulator and the obtained 
results are compared with the centralized optimal control 
approach. Finally, in section VIII, some concluding remarks 
are briefly discussed. 

II. STATEMENT OF THE  PROBLEM 

    Let there be given an overall process YUP     X  :  →×  and a 
performance function VYUG        :  →×  with U  as a set of controls, 
X  as a set of states, Y  as a set of outputs and V  as a set of 

performance values. Let also g  be defined on U  by the 
following equation 

( ) ( )[ ] ,     UPUGUg =                                                                     (1) 
The goal of the overall control problem which is denoted by 
D , is to find a control action Û  which minimizes g  over U . 
Such a control action will be referred to as the overall 
optimum. 
    Let mUUU   1 ×⋅⋅⋅×= , mYYY   1 ×⋅⋅⋅×= , and mXXX   1 ×⋅⋅⋅×= . For 

each mi  ,  , 2 , 1= , the i -th subsystem is given by 
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iiii YZUP    : →× , where iZ  is the set of interactions of the other 

subsystems. Now the i -th infimal control problem can be 
formulated in terms of an objective function ig , given on 

ii ZU   × , in terms of the i -th subsystem. Also a performance 

function VYZUG iiii      : →××  can be given by the following 

equation  
( ) ( )[ ]iiiiiii ZUPZUZUg  ,  ,  , G     , =                                                    (2) 

Let pZ  in mZZZ       1 ×⋅⋅⋅×=  be the predicted input for 

interference subsystems that is formulated by ( )piiiiz ZUPP
P

,= ; 

mi ≤≤1 . Then for each pZ in Z , the infimal control 

problem ( )pii ZD  is to find a control iÛ  in iU  such that  

( ) ( )   , min   , ˆ
piii

U
piii ZUgZUg

i

=                                                        (3) 

and the minimization is only over the set iU  of local controls.  

   Let ( )pmpp ZZZ  ,  , 1 ⋅⋅⋅=  be the predicted interference inputs and 

let   ( )mZZZ  ,  , 1 ⋅⋅⋅=  be the actual interference inputs occurring 

when the sub-optimal control  ( ) ( ) ( )[ ]pmmpp ZUZUZU ˆ ,  ,  ˆˆ
11=  is 

implemented. The overall optimum is then achieved if the 
predicted interface inputs are correct (i.e. 0=ie  where 

piii ZZe −=:  and mi ≤≤1 ). Alternatively, if ie  can not be made 

to be zero, the supremal control problem can be defined as  
minimization of an appropriate function of the errors 

meee ,,, 11  in the second  level. 

     In Fig. 1, the block diagram of the coordination of two 
subsystems using the interaction prediction principle is shown.  
   

Fig. 1.  Coordination of two subsystems using 
the interaction prediction principle.  

III. ROBOT  MODELING 

   The dynamic model of the robot arm with three degrees-of-
freedom is shown in Fig. 2.  
     The dynamic model of the robot arm can be obtained by the 
Lagrangian method as follows 

( ) ( ) ( ) τ=++   ,      qGqqHqqM                                                (4a)

where iq is the angle of  joint i , ( )qM is the symmetric and 

positive definite inertia matrix, ( )qqH ,  is the coriolis and 
centrifugal vector, ( )qG  is the gravity vector and τ  is the 
torque vector. 

Fig. 2.  the robot arm with three degrees-of-freedom. 
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the parameters of equation (4a) can be written in the following 
forms 
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IV. DECOMOSITION OF  THE ROBOT MODEL 

    For the purpose of decomposition, here the system of robot 
arm with three degrees-of-freedom is decomposed into three 
subsystems where each joint is assumed as one subsystem. 
This is given below 
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and iF  is continuously double differential analytical function 

of the i-th subsystem, and ii UX    , 3 , 2 , 1  ;  and =iZi  are defined 

as follows 
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V. OPTIMIZATION WITH THE GRADIANT METHOD 

     Let us assume that we have a general nonlinear dynamic 
system described as follows 

[ ] [ ] [ ]( )
[ ]⎩

⎨
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=

=+

00

, 1

XX

kUkXFkX                                                                 (6) 

where X  is the state vector, U  is the control action and F  is 
continuously double differential analytical function. Also the 
initial state 0X  is assumed to be known. 

Now, the control problem is to find U  which minimizes the 
cost function given by the following equation 

( ) [ ]( ) [ ] [ ]( )∑
=

+ ++=
n

k
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0
1 ,  1,                                           (7) 

By decomposition of the overall system into m  subsystems, 
each subsystem can be described by  non-linear state space 
equation of the following form 
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     The cost function can also be decomposed as follows 
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where  
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    Now, the necessary conditions for optimality of each 
subsystem can be written in terms of the Lagrangian iL , which 

is in the following form 
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So the first order necessary conditions become  
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     Now for each subsystem, the control problem iU  which 

minimizes the Lagrangian iL , can be obtained by the following 

updating rule 

[ ] [ ] ( )
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L
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il
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l
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∂

∂
−= − .1 η                                                              (15) 

VI.  FUZZY PREDICTION 

    The prediction of the change of interactions will be done 
using a fuzzy system. For evaluating its performance, a critic 
vector is used as shown in Fig. 3, to develop a method of 
training for this fuzzy system. The proposed training approach 
is based on minimizing the energy of the critic vector. In this 
reinforcement approach, the error of prediction and its rate of 
changes are used in such a way that they increase the speed of  
convergence of the algorithm. 

Fig. 3.  The block diagram of  fuzzy interaction prediction system. 

A.   Designing the Critic Vector  

    The critic vector is defined in the following forms   
[ ] [ ] [ ]( )  ,  kdkeRkr iii =  ;   1 mi ≤≤   ,   0 nk ≤≤                           (16) 

where 
[ ] [ ] [ ] [ ]  - : 1 kekekdkd l

i
l
i

l
ii

−==                                                        (17) 

[ ] [ ] [ ]  - kZkZke iPii =                                                                 (18) 

[ ] T
mi ZZZZ 1= , [ ] [ ] [ ][ ]1 nZkZZZ iiii =          (19) 

also iZ  is the real interactions and PiZ is the predicted value 

given by the coordinator. Now, the critic vector is assumed to 
be  formulated as follows  

[ ] [ ] [ ]( ) [ ] [ ] 22     ,   : kdkekdkeRkr iiiii λ+==                                      (20) 

where λ  is a positive constant parameter ( ) 10   . . ≤≤ λei . 

B.   Designing the Fuzzy Prediction System 

      The predicted values for the interactions are assumed to be 
updated in the following form 

iP
l

iP
l

iP ZZZ 1 Δ+= −                                                                      (21) 

To predict the change of interactions, a fuzzy system based on 
fuzzy inference is used that denotes the variation of the 
predicted values as follows 

[ ] [ ] [ ] [ ]( )  ,   :   :  kdkeSkskZ iiii ==Δ                                                 (22) 

where S  is a fuzzy system based on the Takagi-Sugeno-Kang 
(TSK) model, that also has been used extensively in fuzzy 
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modeling, and in this case, is defined by the following fuzzy 
sets and rules 
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     In this paper, ia  and ib are assumed to be zero. So the fuzzy 

sets and rules can be obtained easily, in the following forms  
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where jAμ  and jBμ  are the membership functions of jA  and 

jB , respectively. Also jc  are the real constant parameters. 

     Now to summarize, the relation of  [ ]ksi  with [ ]kei  and 

[ ]kdi  can be given by the following fuzzy inference  
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C.   Training the Fuzzy Predictor  

    The goal of  training is to minimize the energy of a critic 
vector related to the system parameters ; jc , where  
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also 
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Now to update the parameters of the proposed fuzzy system, 
the following updating rule can be used 
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where η  is a step size which has an effect on the rate of 

training and convergence of the fuzzy system parameters, 
during learning. Now, by using the chain rule, we have 
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To calculate the right side of this equation, we need to 

calculate; [ ]
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Moreover, the gradient of the prediction errors related to the 
system parameters can be given by 
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Now, in order to calculate [ ]kT ji, , using (22) and (25), we have  
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Also from (17) and (31), we can formulate 
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So the training of the fuzzy predictor can be formulated in the 
following form 
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VII. SIMULATION RESULTS 

    The proposed method is used to obtain the optimal control 
of a 3DOF robot manipulator. The parameters of the robot 
model are assumed to have the following values [12]

Table  1.  The parameters of the robot manipulator.
Mass Length Moment of Inertia 

( mi , Kg ) ( li , m ) ( lci , m ) ( Ii , Kg.m2 ) 
Joint 1 1.2 0.5 0.25 43.33 * 10-3  
Joint 2 1.5 0.4 0.2 25.08 * 10-3

Joint 3 3.0 0.3 0.15 32.68 * 10-3

mload =m4=0 Kg   ,   g=9.8 N/Kg 

     Now using (9), the cost function can be written as 
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where 1+nk , uk  and vk are the parameters of the cost function 

and defined by the conditions and limitations of the problem. 
In the simulation presented in this paper, they are defined to be 

Table  2.  The parameters of the cost function. 
kn+1 kv ku=[ ku1   ku2  ku3] T t0 tf n 
1 10 -2 [1.5  3  12]×10 -3  or  [0  0  0] 0.01 S 0 S 0.5 S 50 

    In critic vector, λ  is assumed to be 2.0 . The fuzzy 

membership functions of jj BoA μμ r     are experimentally 

defined by three triangular membership functions as shown in 
Figure 4. By this number of membership functions, the fuzzy 
system has 932 ==N rules. 

Fig. 4.  The triangular fuzzy membership functions.

    The values of 321   ,  , xandxx  are shown in Fig. 4. These 

values are not equal for different inputs (the input of fuzzy 
membership functions; x , can be one of the three following 
forms; ZZ dore      for predicted angles, ZZ dore      for predicted 
velocities, and ZZ dore      for predicted control actions.). These 
are defined as follows 
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     The proposed approach is applied to the robot manipulator 
to minimize the cost function defined by (9) and (35), where 
the desired target trajectories are assumed to be in three 
sinosoeid forms and the initial conditions are assumed to be 
zero [12]. 
     The simulations are performed for two values; 0=uk  and 

[ ] 3101235.1 −×=uk , after 70 iterations of coordination, where 

in each iteration the optimization of each subsystem is 
performed using the gradient method in 200 steps. For 0=uk , 

the goal of minimization of cost function defined by (9) and 
(35) is only minimization of an energy function of tracking 
errors, so there are no limitations on the norm of the input 
actions. But for [ ] 3101235.1 −×=uk , the goal of minimization 

of cost function is minimization of both energy functions of 
tracking errors and input actions. 
     In Fig. 5, the calculated optimal control actions are 
presented for both values; 0=uk  and [ ] 3101235.1 −×=uk . As 

shown in this figure, for [ ] 3101235.1 −×=uk , the obtained 

control actions have smaller values (norm) than the obtained 
control actions corresponding to 0=uk . Also in Fig. 6, the 

obtained optimal trajectories of all joint angles are shown 
where for 0=uk , the optimized trajectories of all joint angles 

have tracked the target trajectories with acceptable tracking 
errors. In contrast to obtained results using 0=uk , the 

optimized trajectories of joint angles using [ ] 3101235.1 −×=uk

have not be able to track the target trajectories with acceptable 
tracking errors. 
     In Figs. 7, 8 and 9, respectively, the sum-squared 
interaction prediction errors of control 
actions [ ] [ ] [ ][ ]kkk 321 τττ , joint angles [ ] [ ] [ ][ ]kqkqkq 321 , and the 

joint angular velocities [ ] [ ] [ ][ ]kqkqkq 321 501  ; ≤≤ k  are shown. 

These figures present the convergence of the interactions 
predicted by fuzzy system in 50 iterations of coordination.
     The simulation results of both methods; the centralized 
optimization approach (in this approach, the whole problem is 
solved in one shot, using a typical gradient optimization 
method), and the proposed strategy, are plotted together in 
Figs. 10 and 11. The centralized gradient based optimization is 
performed in 10000 steps for optimization of 150 
variables; [ ] [ ]50 ,  , 1 11 UU , [ ] [ ]50  ,  , 1 22 UU  and [ ] [ ]50  ,  , 1 33 UU . 

In the proposed strategy, the coordination is done in 50 
iterations and in each iteration, the optimization of each 
subsystem is performed in 200 steps, where each subsystem 
has 50 variables; [ ] [ ]50    1 ii UU 3 , 2 , 1  ; =i . As is shown in Figs. 

10 and 11, the proposed approach has faster convergence rate 
rater than the centralized optimization approach.  

Fig. 5.  The optimal trajectories of  control actions obtained using 
 fuzzy coordination scheme. 

Fig. 6.  The optimal trajectories of the joint angles obtained using  
fuzzy coordination scheme.  

Fig. 7.  The sum-squares of the interaction prediction errors of the joint 
torques. 

Fig. 8.  The sum-squares of the interaction prediction errors of  the joint 
angles. 
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Fig. 9.  The sum-squares of the interaction prediction errors of  the joint 
angular velocities. 

Fig. 10.  The optimized cost function with 0=uk , using two approaches ;  

the centralized optimization, and the proposed fuzzy coordination method. 

Fig. 11.   The optimized cost function with [ ] 3101235.1 −×=uk , using two 

approaches; the centralized optimization, and the proposed fuzzy coordination 
method. 

VIII. CONCLUSION 

     In this paper, a new approach for optimal control of robot 
manipulators, considered as two-level large-scale systems, is 
presented. It is shown how the specific feature of intelligent 
control including decision making, adaptation, planning and 
other characteristics of fuzzy logic and classical optimization 
methods, could help to design a unified hybrid approach for 
intelligent control of robot manipulators. 

     The fuzzy interaction prediction system is used to 
coordinate the overall system and also resolve the weakness of 
conventional coordination approaches in convergence. This 
fuzzy coordinator uses a critic vector to evaluate its own 
operation. The fuzzy coordinator learns its dynamics 
(parameters) through the minimization of an energy function 
relating to the critic vector. The minimization process, to train 
the fuzzy coordinator, is done by using the gradient of the 
energy function. The training of fuzzy predictor can be done in 
an off-line or on-line manner. Here, the parameters of fuzzy 
predictor are first calculated by an off-line manner and then, 
they are updated in each iteration of coordination in an on-line 
manner. It should be noted that in addition to the convergence 
of prediction, both critic vector and also the fuzzy interaction 
prediction system use the error and its variations, to predict the 
change of interactions for coordination of the overall system. 
     The obtained results present the performance and 
convergence of the proposed approach. By simulation of a 
robot manipulator, the superiority of the proposed method in 
comparison to the centralized method is shown. 
     The proposed approach could also be extended and used for 
coordination and cooperation of multi-agent systems. 
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