

Abstract—Particle swarm optimization is used for the training

of the action network and critic network of the adaptive dynamic
programming approach. The typical structures of the adaptive
dynamic programming and particle swarm optimization are
adopted for comparison to other learning algorithms such as
gradient descent method. Besides simulation on the balancing of a
cart pole plant, a more complex plant pendulum robot (pendubot)
is tested for the learning performance. Compared to traditional
adaptive dynamic programming approaches, the proposed
evolutionary learning strategy is verified as faster convergence
and higher efficiency. Furthermore, the structure becomes simple
because the plant model does not need to be identified beforehand.

Index Terms—adaptive dynamic programming, particle swarm
optimization, pendubot, pole balancing

I. INTRODUCTION

daptive dynamic programming designed from the
combination of dynamic programming and neural network

has appeared in recent years and has received more and more
research and application attention.

Dynamic programming with Bellman equation provides an
optimal control strategy for nonlinear systems. It has been
widely applied in many application fields of engineering,
economics, and so on. But it also suffers from a crucial problem
of computational cost called “curse of dimensionality”.
Therefore, the application of the approach is often limited to
low dimensional problems.

Artificial neural networks are verified to approximate any
nonlinear function with a high accuracy. It is adopted to
estimate the cost-to-go in the dynamic programming to solve
the above-mentioned problem. Extensive applications of the
dynamic programming could become possible and a new field
of adaptive dynamic programming is constructed. Early
contributions are from [1-3], and more attention comes from

This work was supported in part by NSFC Projects (No. 60475030, No.
60575047 and No. 60621001), National 973 Project (No. 2006CB705500), and
the International Cooperative Project on Intelligence and Security Informatics
by Chinese Academy of Sciences, China.

Dongbin Zhao and Jianqiang Yi are with the Key Lab of Complex Systems
and Intelligence Science, Institute of Automation, Chinese Academy of
Sciences, Beijing 100080, P.R. China. (phone/fax: 8610 6265-8815; e-mail:
dongbin.zhao@ia.ac.cn, jianqiang.yi@mail.ia.ac.cn).

Derong Liu is with the Department of Electrical and Computer Engineering,
University of Illinois at Chicago, Chicago, IL 60607. (phone: 312-355-4475,
fax: 312-996-6465; e-mail: dliu@ece.uic.edu.)

different aspects [4-9].
Based on the learning or training of the neural networks with

gradient descent method, the adaptive dynamic programming is
often classified into three categories: 1) heuristic dynamic
programming (HDP); 2) dual heuristic dynamic programming
(DHP); 3) globalized heuristic dynamic programming (GDHP).
The first category calculates training signal with the
approximate cost function J, the second with the derivative of J,
and the third with both J and its derivative. The infrastructure
of the adaptive dynamic programming is often composed of
model network, action network, and critic network. If the
action output is also considered as one input to the critic
network, the approach turns to an action dependent (AD)
version. It can also be divided into two classes: model free or
model dependent without or with neural network model for the
plant. However, to make the error backpropagation learning
process feasible, the model is necessary for DHP and GDHP
approaches.

Evolutionary computation is inspired from the evolution of
natural species, and is designed to mimic the natural
intelligence. Different kinds of species are considered in the
study and many famous algorithms or fields are formed, such as
genetic algorithm, ant colony optimization, artificial immune
system, particle swarm optimization, and so on. The algorithms
usually depend on the heuristic searching principle in the
solution process. They have gained successful applications in
the fields of function regression, scheduling, robotics, and so
on. Some of the algorithms are verified as efficient approaches
in the network training compared to gradient descent method.
On the other hand, without error backpropagation in the
evolutionary learning process, the differential computation
difficulties in DHP and GDHP disappear. Therefore, the plant
model is not necessary to be identified beforehand.

This paper emphasizes on the application of the evolutionary
algorithm, especially the particle swarm optimization, to the
learning of the neural networks of the adaptive dynamic
programming approach. Section II introduces the structure of
the adaptive dynamic programming adopted in this paper.
Section III describes the particle swarm optimization used for
the training of the neural networks. Section IV and Section V
provide the case studies of balancing the cart-pole plant, and a
more difficult pendulum robot benchmark plant. Section VI
presents some discussions of the proposed algorithm.
Conclusions are derived in the end.

Particle Swarm Optimized Adaptive Dynamic
Programming

Dongbin Zhao, Member, IEEE, Jianqiang Yi, Member, IEEE, Derong Liu, Fellow, IEEE

A

32

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

1-4244-0706-0/07/$20.00 ©2007 IEEE

II. ADAPTIVE DYNAMIC PROGRAMMING

An action dependent heuristic dynamic programming
(ADHDP) is adopted here. The scheme is shown in Fig. 1.

The inputs to the critic network are the system states x(t) and
the control action u(t). The output is defined to estimate the
cost-to-go J(t) in the Bellman equation. To train the network,
an error ec(t) and the object function Ec(t) to be minimized in
the critic network are defined as

)(
2
1)(

)()1()()(

2 tetE

trtJtJte

cc

c

=

+−−= α
 (1)

where α (0< α <1) is a discount factor for finite horizon
problems, and α=0.95 is implemented in the following case
studies. r is the reinforcement signal or utility function.

The objective of training the critic network is to make the
error ec(t) close to zero, then following equation could be
derived

∞

+=

−−=
1

1)()(
tk

tk krtJ α . (2)

The above equation is exactly the form as that defined in the
Bellman equation. Meanwhile, the action network is trained by
the definition of the error ea(t) and the object function Ea(t) as

)(
2
1)(

)()(

2 tetE

tJte

aa

a

=

=
. (3)

The training is often conducted with gradient descent
method. The whole training process is described as follows.
Given random numbers for the weights wa(t) and wc(t) of both
action and critic networks, an action signal u(t) will be derived

with the action network. Together with system states x(t), the
cost-to-go J(t) is calculated by the critic network. With the
association or memory of J(t-1) and the reinforcement signal r(t)
evaluating the action, ec(t) could be calculated.

Then wc(t+1) is modified with Ec(t) by the backpropagation
algorithm. The critic network training stops when some
criterion is met. Afterwards, wa(t+1) is modified with Ea(t) and
the new updated wc(t+1) through the critic and action network
backpropagation. The states x(t+1) at the next time is also
generated from the plant with the action u(t) at the current time.
Then, the states and weights of the action and critic neural
networks at the next time are obtained, the iteration process
proceeds for the next time cycle.

The above action dependent heuristic dynamic programming
is also called direct neural dynamic programming (DNDP) [5].
Instead of gradient descent method to train the neural networks,
other learning algorithms, such as evolutionary computation
algorithms, could be also implemented. The following section
presents a particle swarm optimized direct neural dynamic
programming (PSDNDP).

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Eberhart and
Kennedy in 1995, inspired by social behavior of bird flocking
or fish schooling [10]. PSO is characterized as few parameters
to adjust and easy to implement, compared to genetic algorithm
(GA). So, it has been successfully applied in many areas:
function optimization, artificial neural network training, fuzzy
system control, and so on.

The principle for simulating the bird flocking behavior of
PSO is illustrated as follows. A group of birds are randomly
positioned in an area where there is only one piece of food to be
searched. The exact position of the food is not known as prior
to all birds, but they are clear how far the food is. Then an
effective way to search the food is to follow the bird, that is the
nearest to the food. In PSO, birds, called particles representing
potential solutions, fly through the search space by following
the current optimum particles. Each particle is characterized by
two parameters: position and velocity. As shown in the pseudo
code of the procedure, the position is evaluated by a fitness

Action

Critic

Plant

Z-1

x(t)

u(t)

x(t+1)

J(t)

+

+
r(x(t),u(t))

_

Fig. 1. A typical scheme of an action dependent adaptive dynamic
programming.

PSEUDO CODE OF PSO

Initialize particles
Do
 Calculate fitness value for each particle
 Set the best fitness value pid of each particle
 Set the global best fitness value pgd of all particles
 Calculate particle velocity according to (4)

Update particle position according to (5)
New generation of particles is updated

While maximum iterations or error criteria is not attained

33

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

value to be optimized.
By comparison, two "best" values are derived. The first one,

called pid, is the best solution each particle has achieved so far.
The other "best" value, called pgd, is a global best solution all
particles of the population have achieved so far. If some local
particles are used to arrive at the best solution of the population,
then pgd is replaced with the local best value pld. After finding
the two best values, the particle updates its velocity vid and
positions xid according to (4) and (5):

() ()idgdidididid xprcxprcvv −+−+= 2211ω (4)

ididid vxx += (5)

where vid is the particle velocity, xid is the position of the current
particle (solution). Each particle is treated as a point in a D
dimensional space. pid and pgd are defined as before. r1 and r2

are random numbers between (0,1). c1 and c2 are learning
factors.

The influences of parameters such as vmax, w, c1 and c2, on the
performance of PSO have been clearly clarified in [11-12].

A particle's velocity is an important parameter because it
determines the resolution about the solution regions. If vmax is
too high, particles might fly past good solutions. If vmax is too
small, on the other hand, particles may not explore sufficiently
beyond locally good regions. In fact, they could become
trapped in local optima, unable to move far enough to reach a
better position in the problem space. The acceleration constants
c1 and c2 represent the weighting of the stochastic acceleration
terms that pull each particle toward pid and pgb positions. The
use of the inertia weight w has provided improved performance
in a number of applications.

Experiences with particle swarm optimization arrive at a
conclusion that the acceleration constants c1 and c2 could be set
equal to 2.0 for almost all applications. vmax is thus the only
parameter to be adjusted, and it is usually set at about 10% of
the dynamic range of the variable in each dimension. The initial
weight ω often is decreased linearly from about 0.9 to 0.4
during a whole iteration process as follows:

()minmaxmaxmin / ωωωω −+= iteriter (6)

where iter represents the step of the iteration process.
As to the training of the neural networks, the weights to be

determined are taken as the particle positions, and the error
signal is considered in the definition of the fitness for the
weights. Because the error is always positive, to prevent a large
value, the following transformation is adopted

)exp(efitness −= . (7)

Then the fitness value is limited within the range of (0,1).
The training problem is also transferred into a fitness maximum
optimization problem. In the following simulation sections, the
PSDNDP is adopted to learn the weights of the neural networks
and apply optimal control of the following case studies.

IV. PERFORMANCE EVALUATION OF CASE STUDY ONE

A. The Cart Pole Balancing Problem
To verify the feasibility and performance of the particle

swarm optimized adaptive dynamic programming, a widely
adopted benchmark plant of cart-pole system is taken in our
first simulation experiment. The system description could be
also found in [2], [5], repeated as follows:

2
2

2 2

sin cos [sin sgn()]

4 cos
3

p
c

c

g F ml xd ml
d t ml

m m

μ θ
θ θ θ θ μθ

θ

+ − − + −
=

−
+

 (8)

mm
xmlF

td
xd

c

c

+
−−+

=
)sgn(]cossin[2

2

2 μθθθθ (9)

where
g 9.8 m/s2, acceleration due to gravity;
mc 1.0 kg, mass of the cart;
m 0.1 kg, mass of the pole;
l 0.5 m, half-pole length;
μc 0.0005, coefficient of friction of the cart on track;
μp 0.000 002, coefficient of friction of the pole on the cart;
F ±10 N, force applied to the cart’s center of mass;

<−
=
>

=
0if1
0if0
0if1

)sgn(
x
x
x

x

Fourth-order Runge-Kutta method is applied to solve the
above nonlinear functions. The position of the cart on the track
x and the angle θ of the pole with respect to the vertical position,
and their derivatives are taken as the states { }xx,,,θθ .

The control objective is to balance the pole about the vertical
equilibrium position for as long as possible. If the system goes
beyond the link angle range or the cart position range, it is
thought as fallen and the learning process stops. The
reinforcement signal is defined by:

−
°<<°−°<<°−

=
Otherwise.1

,4.24.2and1212If0 x
r

θ
 (10)

B. Simulation Results
The adaptive dynamic programming is verified as an

efficient algorithm for the cart-pole balancing problem with the
trained gradient descent method [5]. For comparison of the
learning efficiency between DNDP with gradient descent
method and PSDNDP, the same parameters are adopted.

The structure of the action and critic neural networks uses
feedforward network with one hidden layer. The number of the
hidden neurons Nh is 6. There are 4 states taken as the input to
the action network, further normalized by the scope
{ }5.1,4.2,180/*120,180/*12 ππ . The output of the action

34

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

network is continuous, served as the input to the critic network
together with the states. However, a bang-bang control strategy
is adopted to transfer the continuous action output to a signed
constant force F on the plant system.

The internal cycle of critic network Nc and action network Na

are 50 and 100, respectively. The internal training error
threshold for the critic network Tc and action network Ta are
0.05 and 0.005, respectively.

A total 100 runs have been carried out to calculate the
success rate. Each run consists of 1000 trials. If the last trial of
the run has lasted 6000 time steps, the control process is
thought of as successful. The sampling step is 0.02s.

For gradient descent method, the learning rates of the critic
network and action network are the same, initialized as 0.3, and
decreased by 0.05 every five time steps until they reach 0.005
and stay there. The parameters of particle swarm optimization
are as described in the above section. Besides, the population
size is 20.

The comparison results are tabulated in Table I. The
simulation results with uniform state sensor noise implemented
through θ = θ *(1+random(-noise percentage, noise
percentage)) are recorded in the table. Each run is initialized
with random normalized weights of the neural networks. All
the runs are successful for the cart-pole balancing problem.
Moreover, the average trial numbers with particle swarm
optimization are reduced to a rather small value. This assures
the PSDNDP a faster convergence rate. Another phenomenon
shows that the average trial number does not increase with the
problem complexity, but maintains a small value. More
experiments with uniform 20% sensor noise are also conducted,
and the result shows that the average trial number is 3.4.

V. PERFORMANCE EVALUATION OF CASE STUDY TWO

A. The Pendubot Balancing Problem
The pendubot (pendulum robot) is a typical structure of two

link under-actuated robotic system, which is featured as simple
structure but complex system dynamics. About ten years ago,
the Mechatronic Systems Incorporation developed a laboratory
experimental system penbuotTM[16], which is widely adopted
to test performance of different controllers [13-15].

The schematic diagram of the pendubot system is shown in
Fig. 2. The pendubot system is with only one external torque
actuated on the first joint, while another joint is passive.
Suppose that there is no friction, the system dynamics
equations are depicted by

)(),()(qGqqqCqqD ++=τ (11)

where τ = [τ1 0]]Τ is the external torque, q = [q1, q2] represents
the angles of the two links. D, C and G represent the inertial,
coriolis, and gravity terms of the system, respectively, which
could be described by five paramerters },,,,{ 54321 θθθθθ as

+
+++

=
2232

2322321

cos
coscos2

)(
θθθ

θθθθθ
q

qq
qD ,

+−−
=

0sin
sin)(sin

),(
213

2123223

qq
qqqqq

qqC
θ

θθ
,

+−
+−−

=
)sin(

)sin(sin
)(

215

21514

qqg
qqgqg

qG
θ

θθ
,

where },,,,{ 54321 θθθθθ are denoted by

1
2

12
2

11 1
Ilmlm c ++=θ ,

2
2

22 2
Ilm c +=θ ,

2123 cllm=θ ,

1214 1
lmlm c +=θ ,

225 clm=θ .

The solutions (q1 q2) of (11) represent four equilibriums of
the system, of which the commonly reachable two are as
follows
(0, 0): Top position for both links, ggEE top 54 θθ +==

(, 0): Low position for both links, ggEE low 54 θθ −−==
The top position is an unstable equilibrium. The balance

objective is to maintain the system about the equilibrium.
The lower position is a stable equilibrium. Another upswing

objective is to control the system from the stable equilibrium to
the unstable top equilibrium, which is a more difficult task.

For comparison, the system parameters are adopted the same

τ1

q 2

x

y

m 1

m 2

l 1

l 2

q 1

Fig. 2. Scheme of pendubot.

TABLE I
COMPARISON OF TWO LEARNING ALGOTIHMS FOR ADPATIVE DYNAMIC

PROGRAMMING FOR THE CART-POLE BALANCING PROBRLEM

DNDP [5] PSDNDP
Noise type

Success
rate

of
trials

Success
rate

of
trials

Uniform 5% sensor 100% 32 100% 3.5
Uniform 10% sensor 100% 54 100% 3.2

35

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

as that in [15]:

0630.0
2087.0
0095.0
0306.0
0308.0

5

4

3

2

1

=
=
=
=
=

θ
θ
θ
θ
θ

The control objective is to balance the pendubot system
about its vertical equilibrium position. A reinforcement signal
will be generated while the system is out of the pre-defined
region.

−
°<<°−°<<°−

=
Otherwise.1

,1212and4040If0 21 qq
r (12)

The bang-bang control strategy is applied to the system, with
a constant torque of 0.5 Nm in clockwise or counter-clockwise
direction on the first joint. The input to the critic network is also
continuous. The states are defined as the angles and angular
velocities of the two links },,,{ 2211 qqqqx = .

B. Simulation Results
In the pendubot balancing problem, a run consists of a

maximum of 1000 consecutive trials. Similar to the cart-pole
balancing problem, it is considered successful if the trial has
lasted 6000 time steps. However, the sampling step time is 0.01
seconds instead of 0.02 seconds as in the cart-pole balancing
problem.

The network structure, internal training error threshold, and
internal cycle are the same as those defined in the case study of
the cart-pole balancing problem. The states input to the action
network are normalized by the scope { } 180/*360,12,360,40 π .

10 runs are performed to calculate the success rate and the
average trials, and the results are listed in Table II. Each run is
initialized with random normalized weights of the neural
networks. For the DNDP with gradient descent method, the
success rate to balance the pendubot system is only 30%.
However, the success rate with PSDNDP is 90%. The number
of trials is also small, noting that the failure trials of DNDP with
gradient descent method are not used in the statistical results of
the average trials. It is no doubt PSDNDP outperforms DNDP
with gradient descent method as faster convergence rate and
higher successful percentage. Compared to [15] with adaptive
heuristic critic, it cost about 60-70 seconds to balance the
system, while it take about 2 seconds with PSDNDP. A typical
control result with the achieved action network is also shown in
Fig. 3.

VI. DISCUSSIONS

Through experiments, the PSDNDP is verified as an
effective algorithm for the learning of the adaptive dynamic
programming. It will guarantee faster convergence rate of the
neural networks than DNDP with gradient descent method.

This is crucial especially for a difficult control problem or a
plant with complex dynamics. The PSDNDP usually has a high
success rate in achieving an optimal or sub-optimal solution,
while the DNDP with gradient descent method may often fail.

As mentioned above, to find the optimal solution of the
weights of the neural networks with evolutionary algorithms,
the calculation of the error differential is no longer needed. An
important change to the adaptive dynamic programming is that
modeling for the plant is not required for any categories. This
merit will facilitate the use of all the three branches of adaptive
dynamic programming described in the introduction section,
and benefit extensive engineering applications.

There are lots of evolutionary computation branches, such as
genetic algorithm, ant colony optimization, artificial immune
system, and so on. They could be also thought as the neural

TABLE II
COMPARISON OF TWO LEARNING ALGOTIHMS FOR ADPATIVE DYNAMIC

PROGRAMMING FOR THE BALANCING PROBRLEM OF THE PENDUBOT

 success rate # of trials

DNDP with gradient descent method 30% 240.3
PSDNDP 90% 203.6

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-50

-40

-30

-20

-10

0

10

Time steps
A

ng
le

 1
 (D

eg
re

es
)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
-15

-10

-5

0

5

10

15

Time steps

A
ng

le
 2

 (D
eg

re
es

)

Fig. 3. A typical control result with the learned action network for the
balancing problem of the pendubot system: angle 1 and angle 2.

36

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

network training methods. Particle swarm optimization is
adopted in this paper, because it is simple, involved with only
two equations, but quite efficient. There have been many
validations on the faster convergence rate with particle swarm
optimization than that with gradient descent method for neural
network training. The convergence proof of particle swarm
optimization is under investigation, and will be utilized for the
optimal solution achievement of the adaptive dynamic
programming.

VII. CONCLUSIONS

This paper provides the feasibility of particle swarm
optimization applied in the training of the adaptive dynamic
programming. A typical case study of the cart-pole balancing
problem is first investigated, to validate the particle swarm
optimization algorithm outperform gradient descent method
with faster convergence rate to train the critic and action
networks. A pendulum robot (pendubot) system is
characterized as structure simple but dynamics complex. The
system is taken as a more complex case study. Simulation
results on balancing the pendubot indicate that the particle
swarm optimization has both merits on higher success
percentage and faster convergence rate than traditional gradient
descent method for the learning of adaptive dynamic
programming.

As to the limit of our knowledge, the upswing problem has
not been resolved successfully with the reinforcement learning
approach, leaving much blank to fill.

Moreover, the proposed approach possesses other merits,
including model free for the adaptive dynamic programming,
and so on.

ACKNOWLEDGMENT

The authors would like to thank Jennie Si for the Matlab
code of the cart-pole balancing problem trained with gradient
descent method.

REFERENCES

[1] P. J. Werbos, Neural Networks for Control, Chapter A Menu of Designs
for Reinforcement Learning over Time. MIT Press, Cambridge, 1990.

[2] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike elements that
can solve difficult learning control problems,” IEEE Trans. Syst., Man,
Cybern., vol. SMC-13, pp. 835-846, 1983.

[3] C. Watkins and P.Dayan, “Q-learning,” Machine Learning, vol. 8, pp.
279-292, 1992.

[4] G. N. Saridis and F.Y. Wang, “Suboptimal control of nonlinear stochastic
systems,” Control Theory and Advanced Technology, vol.10, no. 4, pp.
847-871, 1994.

[5] J. Si and Y. T. Wang, “On-line learning control by association and
reinforcement,” IEEE Trans. on Neural Networks, vol.12, no.2, pp.
264-276, 2001.

[6] D. B. Prokhorov and D. C. Wunsch, “Adaptive critic design,” IEEE Trans.
on Neural Networks, vol.8, no.5, pp. 997-1007, 1997.

[7] J. J. Murray, C. J. Cox, G. G. Lendaris, and R. Saeks, “Adaptive Dynamic
Programming,” IEEE Trans. Syst., Man, Cybern. part C, vol. 32, no.2, pp.
140-152, 2002.

[8] D. Liu, X. Xiong, and Y. Zhang, “Action-dependent adaptive critic
designs,” in Proc. of the 2001 IEEE Int. Joint Conf. on Neural Networks,
vol. 2, 2001, pp.990-995.

[9] J. Si, A. Barto, W. Powell, and D. Wunsch, Handbook of Learning and
Approximate Dynamic Programming. IEEE Press, John Wiley & Sons,
Inc. 2004.

[10] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc. of
the 1995 IEEE Int. Conf. on Neural Networks. Australia, 1995, pp.1942
-1948.

[11] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer,” in
IEEE World Congress on Computational Intelligence, 1998. pp.69-73

[12] ------, “Parameter selection in particle swarm optimization,” Evolutionary
Programming VII: Proc. EP 98, 1998, pp.591-600.

[13] M. J. Zhang and T. J. Tarn, “Hybrid control of the pendubot,”
IEEE/ASME Trans. on Mechatronics. vol. 7, pp.79-86, 2002.

[14] I. Fantoni, R. Lozano and M. W. Spong, “Energy based control of the
Pendubot,” IEEE Trans. on Automatic Control, vol.45, pp.725-729, 2000.

[15] M. A. Perez-Cisneros, R. Leal-Ascencio, and P. A. Cook, “Reinforcement
learning neurocontroller applied to a 2-dof manipulator,” in Proc. of the
IEEE Int. Sym. On Intelligent Control. Mexico, 2001, pp.56-61.

[16] M. W. Spong and D. J. Block, Pendubot Installation and User Guide.
Mechatronic System Inc. 1997.

37

Proceedings of the 2007 IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007)

