
 
Abstract—Particle swarm optimization is used for the training 

of the action network and critic network of the adaptive dynamic 
programming approach. The typical structures of the adaptive 
dynamic programming and particle swarm optimization are 
adopted for comparison to other learning algorithms such as 
gradient descent method. Besides simulation on the balancing of a 
cart pole plant, a more complex plant pendulum robot (pendubot) 
is tested for the learning performance. Compared to traditional 
adaptive dynamic programming approaches, the proposed 
evolutionary learning strategy is verified as faster convergence 
and higher efficiency. Furthermore, the structure becomes simple 
because the plant model does not need to be identified beforehand.  

Index Terms—adaptive dynamic programming, particle swarm 
optimization, pendubot, pole balancing  

I. INTRODUCTION

daptive dynamic programming designed from the 
combination of dynamic programming and neural network 

has appeared in recent years and has received more and more 
research and application attention.  

Dynamic programming with Bellman equation provides an 
optimal control strategy for nonlinear systems. It has been 
widely applied in many application fields of engineering, 
economics, and so on. But it also suffers from a crucial problem 
of computational cost called “curse of dimensionality”. 
Therefore, the application of the approach is often limited to 
low dimensional problems.  

Artificial neural networks are verified to approximate any 
nonlinear function with a high accuracy. It is adopted to 
estimate the cost-to-go in the dynamic programming to solve 
the above-mentioned problem. Extensive applications of the 
dynamic programming could become possible and a new field 
of adaptive dynamic programming is constructed. Early 
contributions are from [1-3], and more attention comes from 
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different aspects [4-9].  
Based on the learning or training of the neural networks with 

gradient descent method, the adaptive dynamic programming is 
often classified into three categories: 1) heuristic dynamic 
programming (HDP); 2) dual heuristic dynamic programming 
(DHP); 3) globalized heuristic dynamic programming (GDHP). 
The first category calculates training signal with the 
approximate cost function J, the second with the derivative of J,
and the third with both J and its derivative. The infrastructure 
of the adaptive dynamic programming is often composed of 
model network, action network, and critic network. If the 
action output is also considered as one input to the critic 
network, the approach turns to an action dependent (AD) 
version. It can also be divided into two classes: model free or 
model dependent without or with neural network model for the 
plant. However, to make the error backpropagation learning 
process feasible, the model is necessary for DHP and GDHP 
approaches.

Evolutionary computation is inspired from the evolution of 
natural species, and is designed to mimic the natural 
intelligence. Different kinds of species are considered in the 
study and many famous algorithms or fields are formed, such as 
genetic algorithm, ant colony optimization, artificial immune 
system, particle swarm optimization, and so on. The algorithms 
usually depend on the heuristic searching principle in the 
solution process. They have gained successful applications in 
the fields of function regression, scheduling, robotics, and so 
on. Some of the algorithms are verified as efficient approaches 
in the network training compared to gradient descent method. 
On the other hand, without error backpropagation in the 
evolutionary learning process, the differential computation 
difficulties in DHP and GDHP disappear. Therefore, the plant 
model is not necessary to be identified beforehand.  

This paper emphasizes on the application of the evolutionary 
algorithm, especially the particle swarm optimization, to the 
learning of the neural networks of the adaptive dynamic 
programming approach. Section II introduces the structure of 
the adaptive dynamic programming adopted in this paper. 
Section III describes the particle swarm optimization used for 
the training of the neural networks. Section IV and Section V 
provide the case studies of balancing the cart-pole plant, and a 
more difficult pendulum robot benchmark plant. Section VI 
presents some discussions of the proposed algorithm. 
Conclusions are derived in the end.   
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II. ADAPTIVE DYNAMIC PROGRAMMING

An action dependent heuristic dynamic programming 
(ADHDP) is adopted here. The scheme is shown in Fig. 1.  

The inputs to the critic network are the system states x(t) and 
the control action u(t). The output is defined to estimate the 
cost-to-go J(t) in the Bellman equation. To train the network, 
an error ec(t) and the object function Ec(t) to be minimized in 
the critic network are defined as 
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where α (0< α <1) is a discount factor for finite horizon 
problems, and α=0.95 is implemented in the following case 
studies. r is the reinforcement signal or utility function. 

The objective of training the critic network is to make the 
error ec(t) close to zero, then following equation could be 
derived 
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The above equation is exactly the form as that defined in the 
Bellman equation. Meanwhile, the action network is trained by 
the definition of the error ea(t) and the object function Ea(t) as
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The training is often conducted with gradient descent 
method. The whole training process is described as follows. 
Given random numbers for the weights wa(t) and wc(t) of both 
action and critic networks, an action signal u(t) will be derived 

with the action network. Together with system states x(t), the 
cost-to-go J(t) is calculated by the critic network. With the 
association or memory of J(t-1) and the reinforcement signal r(t)
evaluating the action, ec(t) could be calculated. 

Then wc(t+1) is modified with Ec(t) by the backpropagation 
algorithm. The critic network training stops when some 
criterion is met. Afterwards, wa(t+1) is modified with Ea(t) and 
the new updated wc(t+1) through the critic and action network 
backpropagation. The states x(t+1) at the next time is also 
generated from the plant with the action u(t) at the current time. 
Then, the states and weights of the action and critic neural 
networks at the next time are obtained, the iteration process 
proceeds for the next time cycle. 

The above action dependent heuristic dynamic programming 
is also called direct neural dynamic programming (DNDP) [5]. 
Instead of gradient descent method to train the neural networks, 
other learning algorithms, such as evolutionary computation 
algorithms, could be also implemented. The following section 
presents a particle swarm optimized direct neural dynamic 
programming (PSDNDP).

III. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is a population based 
stochastic optimization technique developed by Eberhart and 
Kennedy in 1995, inspired by social behavior of bird flocking 
or fish schooling [10]. PSO is characterized as few parameters 
to adjust and easy to implement, compared to genetic algorithm 
(GA). So, it has been successfully applied in many areas: 
function optimization, artificial neural network training, fuzzy 
system control, and so on. 

The principle for simulating the bird flocking behavior of 
PSO is illustrated as follows. A group of birds are randomly 
positioned in an area where there is only one piece of food to be 
searched. The exact position of the food is not known as prior 
to all birds, but they are clear how far the food is. Then an 
effective way to search the food is to follow the bird, that is the 
nearest to the food. In PSO, birds, called particles representing 
potential solutions, fly through the search space by following 
the current optimum particles. Each particle is characterized by 
two parameters: position and velocity. As shown in the pseudo 
code of the procedure, the position is evaluated by a fitness 
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Fig. 1. A typical scheme of an action dependent adaptive dynamic 
programming. 

PSEUDO CODE OF PSO 

Initialize particles 
Do
        Calculate fitness value for each particle 
        Set the best fitness value pid of each particle 
        Set the global best fitness value pgd of all particles  
        Calculate particle velocity according to (4) 

Update particle position according to (5) 
New generation of particles is updated 

While maximum iterations or error criteria is not attained
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value to be optimized.  
By comparison, two "best" values are derived. The first one, 

called pid, is the best solution each particle has achieved so far. 
The other "best" value, called pgd, is a global best solution all 
particles of the population have achieved so far. If some local 
particles are used to arrive at the best solution of the population, 
then pgd is replaced with the local best value pld. After finding 
the two best values, the particle updates its velocity vid and 
positions xid according to (4) and (5): 

( ) ( )idgdidididid xprcxprcvv −+−+= 2211ω  (4) 

ididid vxx +=  (5) 

where vid is the particle velocity, xid is the position of the current 
particle (solution). Each particle is treated as a point in a D
dimensional space. pid and pgd are defined as before. r1 and r2

are random numbers between (0,1). c1 and c2 are learning 
factors.

The influences of parameters such as vmax, w, c1 and c2, on the 
performance of PSO have been clearly clarified in [11-12].  

A particle's velocity is an important parameter because it 
determines the resolution about the solution regions. If vmax is 
too high, particles might fly past good solutions. If vmax is too 
small, on the other hand, particles may not explore sufficiently 
beyond locally good regions. In fact, they could become 
trapped in local optima, unable to move far enough to reach a 
better position in the problem space. The acceleration constants 
c1 and c2 represent the weighting of the stochastic acceleration 
terms that pull each particle toward pid and pgb positions. The 
use of the inertia weight w has provided improved performance 
in a number of applications.  

Experiences with particle swarm optimization arrive at a 
conclusion that the acceleration constants c1 and c2 could be set 
equal to 2.0 for almost all applications. vmax is thus the only 
parameter to be adjusted, and it is usually set at about 10% of 
the dynamic range of the variable in each dimension. The initial 
weight ω often is decreased linearly from about 0.9 to 0.4 
during a whole iteration process as follows: 

( )minmaxmaxmin / ωωωω −+= iteriter                                        (6) 

where iter represents the step of the iteration process.
As to the training of the neural networks, the weights to be 

determined are taken as the particle positions, and the error 
signal is considered in the definition of the fitness for the 
weights. Because the error is always positive, to prevent a large 
value, the following transformation is adopted 

)exp( efitness −= .                                                                   (7) 

Then the fitness value is limited within the range of (0,1). 
The training problem is also transferred into a fitness maximum 
optimization problem. In the following simulation sections, the 
PSDNDP is adopted to learn the weights of the neural networks 
and apply optimal control of the following case studies. 

IV. PERFORMANCE EVALUATION OF CASE STUDY ONE

A. The Cart Pole Balancing Problem 
To verify the feasibility and performance of the particle 

swarm optimized adaptive dynamic programming, a widely 
adopted benchmark plant of cart-pole system is taken in our 
first simulation experiment. The system description could be 
also found in [2], [5], repeated as follows:  
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where
g   9.8 m/s2, acceleration due to gravity; 
mc  1.0 kg, mass of the cart; 
m   0.1 kg, mass of the pole; 
l   0.5 m, half-pole length; 
μc   0.0005, coefficient of friction of the cart on track; 
μp  0.000 002, coefficient of friction of the pole on the cart; 
F ±10 N, force applied to the cart’s center of mass; 
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Fourth-order Runge-Kutta method is applied to solve the 
above nonlinear functions. The position of the cart on the track 
x and the angle θ of the pole with respect to the vertical position, 
and their derivatives are taken as the states { }xx,,,θθ .

The control objective is to balance the pole about the vertical 
equilibrium position for as long as possible. If the system goes 
beyond the link angle range or the cart position range, it is 
thought as fallen and the learning process stops. The 
reinforcement signal is defined by: 

−
°<<°−°<<°−

=
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,4.24.2and1212If0 x
r

θ
                  (10) 

B. Simulation Results 
The adaptive dynamic programming is verified as an 

efficient algorithm for the cart-pole balancing problem with the 
trained gradient descent method [5]. For comparison of the 
learning efficiency between DNDP with gradient descent 
method and PSDNDP, the same parameters are adopted.  

The structure of the action and critic neural networks uses 
feedforward network with one hidden layer. The number of the 
hidden neurons Nh is 6. There are 4 states taken as the input to 
the action network, further normalized by the scope 
{ }5.1,4.2,180/*120,180/*12 ππ . The output of the action 
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network is continuous, served as the input to the critic network 
together with the states. However, a bang-bang control strategy 
is adopted to transfer the continuous action output to a signed 
constant force F on the plant system.  

The internal cycle of critic network Nc and action network Na

are 50 and 100, respectively. The internal training error 
threshold for the critic network Tc and action network Ta are 
0.05 and 0.005, respectively.  

A total 100 runs have been carried out to calculate the 
success rate. Each run consists of 1000 trials. If the last trial of 
the run has lasted 6000 time steps, the control process is 
thought of as successful. The sampling step is 0.02s. 

For gradient descent method, the learning rates of the critic 
network and action network are the same, initialized as 0.3, and 
decreased by 0.05 every five time steps until they reach 0.005 
and stay there. The parameters of particle swarm optimization 
are as described in the above section. Besides, the population 
size is 20.

The comparison results are tabulated in Table I. The 
simulation results with uniform state sensor noise implemented 
through θ = θ *(1+random(-noise percentage, noise 
percentage)) are recorded in the table. Each run is initialized 
with random normalized weights of the neural networks. All 
the runs are successful for the cart-pole balancing problem. 
Moreover, the average trial numbers with particle swarm 
optimization are reduced to a rather small value. This assures 
the PSDNDP a faster convergence rate. Another phenomenon 
shows that the average trial number does not increase with the 
problem complexity, but maintains a small value. More 
experiments with uniform 20% sensor noise are also conducted, 
and the result shows that the average trial number is 3.4. 

V. PERFORMANCE EVALUATION OF CASE STUDY TWO

A. The Pendubot Balancing Problem 
The pendubot (pendulum robot) is a typical structure of two 

link under-actuated robotic system, which is featured as simple 
structure but complex system dynamics. About ten years ago, 
the Mechatronic Systems Incorporation developed a laboratory 
experimental system penbuotTM[16], which is widely adopted 
to test performance of different controllers [13-15].  

The schematic diagram of the pendubot system is shown in 
Fig. 2. The pendubot system is with only one external torque 
actuated on the first joint, while another joint is passive. 
Suppose that there is no friction, the system dynamics 
equations are depicted by 

)(),()( qGqqqCqqD ++=τ                                                  (11) 

where τ = [τ1 0]]Τ is the external torque, q = [q1, q2] represents 
the angles of the two links. D, C and G represent the inertial, 
coriolis, and gravity terms of the system, respectively, which 
could be described by five paramerters  },,,,{ 54321 θθθθθ as
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The solutions (q1 q2) of (11) represent four equilibriums of 
the system, of which the commonly reachable two are as 
follows
(0, 0): Top position for both links, ggEE top 54 θθ +==

( , 0): Low position for both links, ggEE low 54 θθ −−==
The top position is an unstable equilibrium. The balance 

objective is to maintain the system about the equilibrium.  
The lower position is a stable equilibrium. Another upswing 

objective is to control the system from the stable equilibrium to 
the unstable top equilibrium, which is a more difficult task.  

For comparison, the system parameters are adopted the same 

τ1

q 2
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l 1
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q 1

Fig. 2. Scheme of pendubot. 

TABLE I
COMPARISON OF TWO LEARNING ALGOTIHMS FOR ADPATIVE DYNAMIC 

PROGRAMMING FOR THE CART-POLE BALANCING PROBRLEM 

DNDP [5] PSDNDP 
Noise type 

Success
rate

# of 
trials

Success
rate

# of 
trials

Uniform 5% sensor 100% 32 100% 3.5 
Uniform 10% sensor 100% 54 100% 3.2 
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as that in [15]: 
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The control objective is to balance the pendubot system 
about its vertical equilibrium position. A reinforcement signal 
will be generated while the system is out of the pre-defined 
region.
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The bang-bang control strategy is applied to the system, with 
a constant torque of 0.5 Nm in clockwise or counter-clockwise 
direction on the first joint. The input to the critic network is also 
continuous. The states are defined as the angles and angular 
velocities of the two links },,,{ 2211 qqqqx = .

B. Simulation Results 
In the pendubot balancing problem, a run consists of a 

maximum of 1000 consecutive trials. Similar to the cart-pole 
balancing problem, it is considered successful if the trial has 
lasted 6000 time steps. However, the sampling step time is 0.01 
seconds instead of 0.02 seconds as in the cart-pole balancing 
problem.  

The network structure, internal training error threshold, and 
internal cycle are the same as those defined in the case study of 
the cart-pole balancing problem. The states input to the action 
network are normalized by the scope { } 180/*360,12,360,40 π .

10 runs are performed to calculate the success rate and the 
average trials, and the results are listed in Table II. Each run is 
initialized with random normalized weights of the neural 
networks. For the DNDP with gradient descent method, the 
success rate to balance the pendubot system is only 30%. 
However, the success rate with PSDNDP is 90%. The number 
of trials is also small, noting that the failure trials of DNDP with 
gradient descent method are not used in the statistical results of 
the average trials. It is no doubt PSDNDP outperforms DNDP 
with gradient descent method as faster convergence rate and 
higher successful percentage. Compared to [15] with adaptive 
heuristic critic, it cost about 60-70 seconds to balance the 
system, while it take about 2 seconds with PSDNDP. A typical 
control result with the achieved action network is also shown in 
Fig. 3. 

VI. DISCUSSIONS

Through experiments, the PSDNDP is verified as an 
effective algorithm for the learning of the adaptive dynamic 
programming. It will guarantee faster convergence rate of the 
neural networks than DNDP with gradient descent method. 

This is crucial especially for a difficult control problem or a 
plant with complex dynamics. The PSDNDP usually has a high 
success rate in achieving an optimal or sub-optimal solution, 
while the DNDP with gradient descent method may often fail.  

As mentioned above, to find the optimal solution of the 
weights of the neural networks with evolutionary algorithms, 
the calculation of the error differential is no longer needed. An 
important change to the adaptive dynamic programming is that 
modeling for the plant is not required for any categories. This 
merit will facilitate the use of all the three branches of adaptive 
dynamic programming described in the introduction section, 
and benefit extensive engineering applications.

There are lots of evolutionary computation branches, such as 
genetic algorithm, ant colony optimization, artificial immune 
system, and so on. They could be also thought as the neural 

TABLE II
COMPARISON OF TWO LEARNING ALGOTIHMS FOR ADPATIVE DYNAMIC 

PROGRAMMING FOR THE BALANCING PROBRLEM OF THE PENDUBOT

 success rate # of trials 

DNDP with gradient descent method 30% 240.3 
PSDNDP 90% 203.6 
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Fig. 3. A typical control result with the learned action network for the 
balancing problem of the pendubot system: angle 1 and angle 2.  
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network training methods. Particle swarm optimization is 
adopted in this paper, because it is simple, involved with only 
two equations, but quite efficient. There have been many 
validations on the faster convergence rate with particle swarm 
optimization than that with gradient descent method for neural 
network training. The convergence proof of particle swarm 
optimization is under investigation, and will be utilized for the 
optimal solution achievement of the adaptive dynamic 
programming.  

VII. CONCLUSIONS

This paper provides the feasibility of particle swarm 
optimization applied in the training of the adaptive dynamic 
programming. A typical case study of the cart-pole balancing 
problem is first investigated, to validate the particle swarm 
optimization algorithm outperform gradient descent method 
with faster convergence rate to train the critic and action 
networks. A pendulum robot (pendubot) system is 
characterized as structure simple but dynamics complex. The 
system is taken as a more complex case study. Simulation 
results on balancing the pendubot indicate that the particle 
swarm optimization has both merits on higher success 
percentage and faster convergence rate than traditional gradient 
descent method for the learning of adaptive dynamic 
programming.  

As to the limit of our knowledge, the upswing problem has 
not been resolved successfully with the reinforcement learning 
approach, leaving much blank to fill.  

Moreover, the proposed approach possesses other merits, 
including model free for the adaptive dynamic programming, 
and so on.
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