
 

Abstract— In this paper, a greedy iteration scheme based on 
approximate dynamic programming (ADP), namely Heuristic 
Dynamic Programming (HDP), is used to solve for the value 
function of the Hamilton Jacobi Bellman equation (HJB) that 
appears in discrete-time (DT) nonlinear optimal control. Two 
neural networks are used- one to approximate the value 
function and one to approximate the optrimal control action.  
The importance of ADP is that it allows one to solve the HJB 
equation for general nonlinear discrete-time systems by using 
a neural network to approximate the value function.  The 
importance of this paper is that the proof of convergence of the 
HDP iteration scheme is provided using rigorous methods for 
general discrete-time nonlinear systems with continuous state 
and action spaces. Two examples are provided in this paper. 
The first example is a linear system, where ADP is found to 
converge to the correct solution of the Algebraic Riccati 
equation (ARE). The second example considers a nonlinear 
control system. 

Key words: Adaptive critics; Approximate dynamic 
programming; HJB, Policy iterations. 

I. INTRODUCTION

his paper is concerned with the application of 
approximate dynamic programming techniques (ADP) 

to find the value function of the DT HJB that appears in   
optimal control problems. ADP is an approach to solve 
dynamical programming problems utilizing function 
approximation. ADP was proposed by Werbos [12], Barto 
et. al. [7], Widrow et. al. [21], Howard [13], Watkins [10], 
Bertsekas and Tsitsiklis [17], and others as a way to solve 
optimal control problems forward-in-time. Therefore ADP 
combines adaptive critics, a reinforcement learning 
technique, with dynamic programming. 

Several approximate dynamic programming schemes 
appear in literature. Howard [13] proposed iterations in the 
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policy space in the framework of stochastic decision theory.  
In [1], Bradtke et al. implemented a Q-learning policy 
iteration method for discrete-time linear quadratic optimal 
control problems.  Hagen [5] discussed the relation between 
the Q-learning method and model-based adaptive control 
with system identification. Policy iteration methods for 
continuous-time optimal control were given in [19][20]. 

Werbos [14] classified approximate dynamic 
programming approaches into four main schemes: Heuristic 
Dynamic Programming (HDP), Dual Heuristic Dynamic 
Programming (DHP), Action Dependent Heuristic Dynamic 
Programming (ADHDP), also known as Q-learning [10], 
and Action Dependent Dual Heuristic Dynamic 
Programming (ADDHP).  In [16], Prokhorov and Wunsch 
developed new approximate dynamic programming 
schemes known as Globalized-DHP (GDHP) and 
ADGDHP. Landelius [8] applied HDP, DHP, ADHDP and 
ADDHP techniques to the discrete-time linear quadratic 
optimal control problem and discussed their convergence, 
showing that they are equivalent to iterating on the 
underlying Algebraic Riccati equation. In [30], policy 
iterations are implemented on a second order representation 
of the original DT HJB equation. In our previous work, we 
developed an ADP technique to solve the dynamic 
programming problems encountered in zero-sum games 
related to the H-infinity control problems of linear systems 
[2][3]. The current status of work on approximate dynamic 
programming is given in [4]. See also [17], [29], [27] and 
[28] for general adaptive critic methods. 

Solutions to the DT HJB equation with continuous state 
space and action space have appeared in [31] where a 
Taylor series expansion of the Value function is derived.  
Policy iteration schemes require an initially stable policy.  
In this paper, we use the greedy HDP iteration scheme, 
which does not require an initially stable policy. The greedy 
iteration ADP scheme presented in this paper is applied to 
solve the DT HJB of the optimal control problem for 
general nonlinear discrete –time systems. 

The importance of this paper is that we provide a 
rigorous proof of convergence of the HDP algorithm that 
solves for the value function of the DT HJB appearing in 
discrete-time nonlinear optimal control problems. Next in 
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the paper, neural network parametric structures are used to 
approximate the optimal policy and value function of the 
DT HJB.  As is known, this provides a procedure for 
implementing the HDP algorithm.  The paper ends with two 
examples that show the practical effectiveness of the ADP 
techniques. 

II. THE DISCRETE-TIME HJB EQUATION

 Consider an affine in input nonlinear dynamical-
system of the form  
  1 ( ) ( ) ( )k k k kx f x g x u x+ = +  (1) 

where nx ∈ ,  ( ) nf x ∈ , ( ) n mg x ×∈  and the input  
mu ∈ . Assume that the system (1) is stabilizable on 
nΩ ∈ .  It is desired to find  ( )ku x   which minimize the 

cost function given as  

  ( ) T T
k i i i ii k

V x x Qx u Ru
∞

=
= +∑  (2) 

 where  n nQ ×∈  and m mR ×∈  are positive definite, i.e. 

0 0T
k kx x Qx∀ ≠ > and 0 0Tx x Qx= ⇒ = . Hence, the class 

of controllers need to be stable and guarantee that (2) is 
finite,  i.e. admissible controls [20]. 
 Definition 1 Admissible Control. A control ( )u x  is 

defined to be admissible with respect to (2) on Ω  if ( )u x

is continuous on Ω , (0) 0u = , u  stabilizes (1) on Ω , and 

0 0 ( )x V x∀ ∈ Ω  is finite. 

Equation (2) can be written  as 

  1

1

( )

( )

T T T T
k k k k k i i i ii k

T T
k k k k k

V x x Qx u Ru x Qx u Ru

x Qx u Ru V x

∞

= +

+

= + + +

= + +

∑  (3) 

From Bellman optimality principle, the HJB equation 
comes out to be 

  1( ) min( ( ))
k

T T
k k k k k k

u
V x x Qx u Ru V x∗ ∗

+= + +  (4) 

 The optimal control u∗  satisfies the first order necessity 
condition for the gradient of right hand side of (4) with 
respect to u   

  1 1

1

( ) ( ) ( )
0

T T
k k k k k k k

k k k k

V x x Qx u Ru x V x

u u u x

∗ ∗
+ +

+

∂ ∂ + ∂ ∂
= + =

∂ ∂ ∂ ∂
 (5) 

and therefore 

  1 1

1

( )1
( ) ( )

2
T k

k k
k

V x
u x R g x

x

∗
∗ − +

+

∂
=

∂
 (6) 

Substituting (6) in (4) one obtains the DT HJB, where 

V ∗  is the value function of the optimal control u∗ . 

  
11 1

1
1 1

( )

( ) ( )1
( ) ( ) ( )

4

T
k k k

T
Tk k

k k k
k k

V x x Qx

V x V x
g x R g x V x

x x

∗

∗ ∗
− ∗+ +

+

+ +

= +

∂ ∂
+

 (7) 

In the next section we apply the HDP algorithm to solve 
the value function  V ∗  of the HJB equation (7) and present 

a convergence proof of this algorithm. 

III.    THE HDP ALGORTHIM  AND ITS CONVERGENCE 

This section is organized as follows. In the first 
subsection, the derivation of the HDP algorithm is given, 
then in the second subsection a proof of convergence of the 
HDP algorithm is presented for the first time, and finally 
the last subsection shows how to implement the HDP 
algorithm with parametric structures like neural networks. 

A. Derivation of the algorithm 

In the HDP algorithm, one starts with initial cost 
function 0 ( ) 0V x =  which is not necessary the value 

function, and then finds the control 0u  as follows 

  0 1( ) arg min( ( ))T T
o k k k k

u
u x x Qx u Ru V x += + +  (8) 

then one updates the cost as  

  1 0 0 0 0

0 0 0 1

( ) ( ) ( ( ) ( ) ( ))

( ) ( ) ( )

T T
k k k k k k k

T T
k k k k k

V x Qx u x Ru x V f x g x u x

x Qx u x Ru x V x +

= + + +

= + +
 (9) 

The HDP scheme therefore iterates between  
  1( ) arg min( ( ))T T

i k k k i k
u

u x x Qx u Ru V x += + +  (10) 

  
1 1min( ( ))

( ) ( ) ( ( ) ( ) ( ))

T T
i k k i k

u

T T
k k i k i k i k k i k

V x Qx u Ru V x

x Qx u x Ru x V f x g x u x

+ += + +

= + + +
(11) 

In Figure 1, the flow chart of the HDP iteration is shown. 

Updating the value function

Start of the  HDP

Initialization

Solving the  minimizing problem

Finish

0 0V =

1i iV V ε+ <−

Yes

No1+→ ii

1( ) min( ( ) ( ) ( ))T T
i k k k k i K

u
u x x Qx u x Ru x V x += + +

1

1

( ) ( ) ( ( ) ( ) ( ))

( ) ( ) ( )

T T
i k k i k i k i k k i k

T T
k k i k i k i k

V x Qx u x Ru x V f x g x u x

x Qx u x Ru x V x

+

+

= + + +

= + +
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Figure 1.  Flow chart shows the proposed algorithm 

B. Convergence of the iteration  

It has been shown that HDP iterations converge for linear 
systems [2][8]. In this subsection, the nonlinear case is 
considered as we present a proof of convergence of the 
iteration between (10) and (11) to iV V ∗⇒  and the control 

policy iu u∗⇒  as i ⇒ ∞ . 

 Lemma 1 Let  iμ  be any arbitrary sequence of control 

policies, and  iu  is the policies as in (10). Let  iV  be as in 

(11) and iΛ  as 

  1 1( ) ( )T
i k k k i i i kx x Qx R xμ μ+ +Λ = + + Λ . (12) 

If 0 0 0V = Λ = , then i iV ≤ Λ   i∀ . 

Proof :  It is straight forward  from the fact that 1iV +  is a 

result of  minimizing the right hand side of equation (10) 
with respect to the control input u , while iΛ  is a result of 

any arbitrary control input. É  

 Lemma 2 Let the sequence { }iV  be defined as in (11). If 

the system is controllable, then there is an upper bound  Y
such that  0 iV Y≤ ≤ i∀ . 

 Proof : Let  ( )kxη   be any stabilizing and admissible 

control input, and Let 0 0 0V Z= =  where iV  is updated as 

(11) and iZ  is updated as  

  1 1( ) ( ) ( ) ( )T
i k k k k k i kZ x x Qx x R x Z xη η+ += + + . (13) 

It follows that the difference 

  

1 1 1 1

1 2 2 2

2 3 3 3

1 0

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

.

.

.

( ) ( )

i k i k i k i k

i k i k

i k i k

k i k i

Z x Z x Z x Z x

Z x Z x

Z x Z x

Z x Z x

+ + − +

− + − +

− + − +

+ +

− = −

= −

= −

= −

 (14) 

Then (14) can be written as      
  1 1 0( ) ( ) ( ) ( ),i k i k k i k iZ x Z x Z x Z x+ + +− = −

Since 0 ( ) 0kZ x = , so one has    

  

1 1

1 1 1 1

1 1 1 1 1 2

1 1 1 1 2 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ....... ( )

i k k i i k

k i k i i k

k i k i k i i k

k i k i k i k

Z x Z x Z x

Z x Z x Z x

Z x Z x Z x Z x

Z x Z x Z x Z x

+ +

+ + − −

+ + − + − −

+ + − + −

= +

= + +

= + + +

= + + + +

 (15)   

so equation (15) can be written as  

  

1 10

0

0

( ) ( )

( ( ) ( ))

( ( ) ( ))

i

i k k jj

i T T
k j k j k j k jj

T T
k j k j k j k jj

Z x Z x

x Qx x R x

x Qx x R x

η η

η η

+ +=

+ + + +=

∞

+ + + +=

=

= +

≤ +

∑
∑
∑

 (16) 

Note that  the system is stable, i.e. 0kx →  as k → ∞ , as 

the control input ( )kxη  is stabilizable and admissible, then  

  1 10
: ( ) ( )i k k ii

i Z x Z x Y
∞

+ +=
∀ ≤ ≤∑

Form Lemma 1, one has 
  1 1: ( ) ( )i k i ki V x Z x Y+ +∀ ≤ ≤ ■

Now Lemma 1 and Lemma 2 will be used in the next 
main theorem. 

 Theorem 1 Define the sequence  { }iV  as in (11), with 

0 0V = .  Then { }iV  is a nondecreasing  sequence  in which 

1( ) ( )i k i kV x V x+ ≥ i∀ , and converge to the value function of 

the DT HJB, i.e.  iV V ∗⇒  as i ⇒ ∞ . 

 Proof: Let 0 0 0V = Φ =  where  iV  is updated as in (11) 

and, and iΦ  is updated as  

  1 1 1 1( ) ( ( ))T
i k k k i i i kx x Qx u Ru x+ + + +Φ = + + Φ  (11) 

with the policies iu  as in (10). We will first prove by 

induction that 1( ) ( )i k i kx V x+Φ ≤ . Note that  

  1 0

1 0

( ) ( ) 0

( ) ( )

T
k k k k

k k

V x x x Qx

V x x

− Φ = ≥

≥ Φ

Assume that 1( ) ( )i k i kV x x−≥ Φ kx∀ . Since  

  1 1( ) ( )T
i k k k i i i kx x Qx u Ru x− +Φ = + + Φ

  1 1( ) ( )T
i k k k i i i kV x x Qx u Ru V x+ += + + , 

then 
  1 1 1 1( ) ( ) ( ) ( ) 0i k i k i k i kV x x V x x+ + − +− Φ = − Φ ≥ ,  

and therefore 
  1( ) ( )i k i kx V x+Φ ≤ . (12) 

From Lemma 1 ( ) ( )i k i kV x x≤ Φ  and therfore  

  1

1

( ) ( ) ( )

( ) ( )
i k i k i k

i k i k

V x x V x

V x V x
+

+

≤ Φ ≤

≤

hence proving that { }iV  is a nondecreasing sequence 

bounded from above as shown in Lemma 2. Hence  

iV V ∗→  as i → ∞ . ■
We just proved that the proposed HDP algorithm 

converges to the value function of the DT HJB equation 
that appears in the nonlinear discrete-time optimal control. 

C. Neural network approximation 

In the case of linear systems the cost and policy are 
quadratic and linear respectively. In the nonlinear case, this 
is not necessarily true and therefore one needs to use a 
parametric structure or a neural network to approximate 
both ( )iu x  and ( )iV x .  Therefore, as is standard, in order to 

implement the HDP iterations on equations (10) and (11) 
we now employ neural networks for value function 
approximation.   

Denote the following neural networks used to 
approximate ( )iV x  and ( )iu x
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  ˆ ( , ) ( )T
i k Vi Vi kV x W W xφ=  (17) 

  ˆ ( , ) ( )T
i k ui ui ku x W W xσ=  (18) 

and the target cost function 

  1

1

ˆˆ ˆ( ( ), ) ( ) ( ) ( )

ˆ ˆ( ) ( ) ( )

T T T
k Vi k k i k i k i k

T T T
k k i k i k Vi k

d x W x Qx u x Ru x V x

x Qx u x Ru x W x

φ

φ

+

+

= + +

= + +
 (19) 

where  1vL
VW ×∈  and 1( ) vL

kxφ ×∈ . 

Note that in (17) the relation  between the weight ViW  and 

the target function (19) is explicit, so the parameter vector 

1ViW +  is found by minimizing the error between the target 

value function  (19) and (17) in a least-squares sense over a 
compact set Ω , and is therefore given as  

  
1

2
1 1arg min{ | ( ) ( ( ), ) | }

Vi

T T
Vi Vi k k Vi k

W
W W x d x W dxφ φ

+
+ +

Ω

= −∫ . (20) 

Solving the least-squares (LS) problem one obtains 

  

1

1 1
ˆ( ) ( ) ( ) ( ( ), )T

Vi k k k i k ViW x x dx x V x W dxφ φ φ φ

−

+ +

Ω Ω

⎛ ⎞
= ⎜ ⎟
⎝ ⎠
∫ ∫  (21) 

Similarly, to find the parameters of the control policy 
ˆ ( , )i k uiu x W . They are found by solving for  

  
ˆ ˆ( , ) ( , )

arg min
ˆ ˆ( ( ) ( ) ( , ))

T T
k k k k

ui

i k k k

x Qx u x Ru x
W

V f x g x u xα

α α

α
Ω

⎛ ⎞+ +
= ⎜ ⎟⎜ ⎟+⎝ ⎠

 (22) 

where 1uL
uW ×∈  and, 1( ) uL

kxσ ×∈ .  

Note that the relation between the control weights uiW  in  

(22) is implicit. One can use a gradient steepest decent 
algorithm on a training set constructed from Ω  to update 
the weights as 

  ( ) ( ) 1
( 1) ( )

( )

ˆˆ ˆ( ( )T T
k k i j i j i k

ui j ui j
ui j

x Qx u Ru V x
W W

W
α

+

+

∂ + +
= −

∂
 (23) 

where α  is a positive stepsize. (23) can be written as   

  
( 1) ( )

1
( )

1

( )
ˆ(2 ( ) ( ) ( ) )

ui j ui j

T k
k i j k k Vi

k

W W

x
x Ru x g x W

x

φ
α σ σ

+

+

+

= −

∂
+

∂

where 1 ( )ˆ( ) ( ) ( , )k k k k ui jx f x g x u x W+ = + . The weights 

( 1)ui j uiW W+ ⇒   as j ⇒ ∞ , which satisfies (22). Note that 

one can use different gradient methods like Newton’s 
method and Levenberg-Marquardt method. 

IV. DISCRETE-TIME NONLINEAR SYSTEM EXAMPLE

In this section, two examples are provided to demonstrate 
the solution of the DT HJB equation. The first example will 
be a linear dynamical system, which is a special case of the 
nonlinear system. The second example is for a DT 
nonlinear system. MATLAB is used in the simulations to 
implement some of the functions discussed in the paper. 

A. Linear system example 

Consider the linear system   
  1k kx Ax Bu+ = +  (24)  

It is known that the solution of the optimal control problem 
for the linear system is quadratic in the state and given as  
  ( ) T

k k kV x x Px∗ =

where P  is the solution of the ARE. Consider the linear 
system 

  
0 .1 0

   
.3 1 1

A B
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦
The solution for the ARE for the given linear system is  

  
3.0714   -0.2394

-0.2394    3.8336
P

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (25) 

and the optimal control  k ku Lx∗ = , where L  is the optimal 

policy 

   [ ]0.2379 .7981L = −  (26) 

The control is approximated as follows  

  ˆ ( )T
i ui ku W xσ=  (27) 

where uW  is the weights, and the ( )kxσ  is the basis. The 

basis is given as 

  2 2( ) (1) (2) (1) 2 (1) (2) (2)T
k k k k k k kx x x x x x xσ ⎡ ⎤= ⎣ ⎦

and the weights are 

  [ ]1 2 3 4 5
T

u u u u u uW w w w w w=

The control weights should converge to 

  [ ] [ ]11 12 1 2u uL L w w=

and the other weights should be zeros 
The approximation of the value function is given as  

    1 1 1
ˆ ( , ) ( )T
i k Vi Vi kV x W W xφ+ + +=

where VW  is the weight of the neural network and ( )kxφ  is 

the neuron vector 

  2 2
1 2 1 1 2 2( ) 2T x x x x x x xφ ⎡ ⎤= ⎣ ⎦

and the weights are given as  

  [ ]1 2 3 4 5
T

V V V V V VW w w w w w=

In the simulation the weights of the value function are 
related to the P  matrix given in (25) as follows 

  3 411 12

4 521 22

V V

V V

w wP P

w wP P

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦
and 1 20,     0V Vw w= = .   

The value function weights converge to 

  [ ]0  0 3.072   -0.2375   3.8442  vW = . 

The control weights converge to  

  [ ]-0.2380   0.7983  -0.0007    0.0035   -0.0063uW =

Note that the value function weights converge to the 
solution of the ARE (25), also the control weights converge 
to the optimal policy (26) as expected. 
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B.  Nonlinear system example 

Consider the following affine in input nonlinear system 
  1 ( ) ( )k k k kx f x g x u+ = +  (28) 

where 

  
2

3

00.2 (1)exp( (2))
( )      ( )

.2.3 (2)
k k

k k

k

x x
f x g x

x

⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

To approximation of the value function is given as   

  1 1 1
ˆ ( , ) ( )T
i k Vi Vi kV x W W xφ+ + +=

and the control input is approximated as   
  ˆ ( )T

i ui ku W xσ=

The neuron vector of the Neural network that approximates 
the value function 

  

2 2 4 3
1 1 2 2 1 1 2

4 6 5 4 2 3 3
2 1 1 2 1 2 1 2

2 4 5 6
1 2 1 2 2

( ) [

  ]

x x x x x x x x

x x x x x x x x

x x x x x

φ =

and the weights are given as  

  [ ]1 2 3 4 15.....V V V V V VW w w w w w= . 

The neuron vector of the Neural network that approximates 
the control is given as  

  

3 2 2
1 2 1 1 2 1 2

3 5 4 3 2 2 3
2 1 1 2 1 2 1 2

4 5
1 2 2

( ) [

  ]

T x x x x x x x x

x x x x x x x x

x x x

σ =

The result of the algorithm is compared to the discrete-
time State Dependent Riccati Equation (SDRE) proposed in 
[32]. 

The training sets is 1 [ 2,2]x ∈ − , 2 [ 1,1]x ∈ − . The value 

function weights converged to the following 

  
[1.0382   0  1.0826   .0028  -0  -.053  0 -.2792   

-.0004  0  -.0013  0   .1549  0  .3034]

T
VW =

and the control weights converged to  

=[ 0  -.0004  0   0   0  .0651  0   0   0  -.0003  0  -.0046]T
uW

In the next figures, we compare the results obtained using 
the SDRE and the HDP based method. Figure 2 and 3 show 
the states trajectories for the system for both methods. 
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Figure 2.  The state trajectory for both methods 

0 2 4 6 8
-1

-0.5

0

0.5

Time step

S
ta

te
 tr

aj
ec

te
or

y

x
2optimal

x
2SDRE

Figure 3.  The state trajectory for both methods 

In Figure 4, the cost function of the SDRE solution and 
the cost function of the proposed algorithm in this paper are 
compared. It is clear from the simulation that the cost 
function for the control policy derived from the HDP 
method is lower than the one obtained from the SDRE
method. In figure 5, the control signal for both methods is 
shown. 
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Figure 4.  The state cost function for both methods
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Figure 5.  The control input for both methods 

V. CONCLUSION

A rigorous computationally effective algorithm to find 
the discrete-time nonlinear optimal state feedback control 
laws by solving the corresponding DT HJB equation. The 
algorithm proposed in this paper namely Heuristic Dynamic 
programming (HDP) is used to find the optimal controller. 
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The main contribution in this paper is the proof of 
convergence for the HDP algorithm to the value function of 
DT HJB. 

Neural networks are used as parametric structures to 

approximate the critics, i.e. îV , and the actors networks, i.e. 

ˆiu . In the simulation part it is shown that the linear system 

critic network converges to the solution of the ARE, and the 
actor network converges to the optimal policy. In the 
nonlinear example, it is shown that the optimal controller 
derived from the HDP based method outperforms that 
derived using the discrete-time SDRE method. 
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